3. Spring Cloud Commons: Common Abstractions

Patterns such as service discovery, load balancing, and circuit breakers lend themselves to a common abstraction layer that can be consumed by all Spring Cloud clients, independent of the implementation (for example, discovery with Eureka or Consul).

3.1 @EnableDiscoveryClient

Spring Cloud Commons provides the @EnableDiscoveryClient annotation. This looks for implementations of the DiscoveryClient interface with META-INF/spring.factories. Implementations of the Discovery Client add a configuration class to spring.factories under the org.springframework.cloud.client.discovery.EnableDiscoveryClient key. Examples of DiscoveryClient implementations include Spring Cloud Netflix Eureka, Spring Cloud Consul Discovery, and Spring Cloud Zookeeper Discovery.

By default, implementations of DiscoveryClient auto-register the local Spring Boot server with the remote discovery server. This behavior can be disabled by setting autoRegister=false in @EnableDiscoveryClient.

[Note]Note

@EnableDiscoveryClient is no longer required. You can put a DiscoveryClient implementation on the classpath to cause the Spring Boot application to register with the service discovery server.

3.1.1 Health Indicator

Commons creates a Spring Boot HealthIndicator that DiscoveryClient implementations can participate in by implementing DiscoveryHealthIndicator. To disable the composite HealthIndicator, set spring.cloud.discovery.client.composite-indicator.enabled=false. A generic HealthIndicator based on DiscoveryClient is auto-configured (DiscoveryClientHealthIndicator). To disable it, set spring.cloud.discovery.client.health-indicator.enabled=false. To disable the description field of the DiscoveryClientHealthIndicator, set spring.cloud.discovery.client.health-indicator.include-description=false. Otherwise, it can bubble up as the description of the rolled up HealthIndicator.

3.2 ServiceRegistry

Commons now provides a ServiceRegistry interface that provides methods such as register(Registration) and deregister(Registration), which let you provide custom registered services. Registration is a marker interface.

The following example shows the ServiceRegistry in use:

@Configuration
@EnableDiscoveryClient(autoRegister=false)
public class MyConfiguration {
    private ServiceRegistry registry;

    public MyConfiguration(ServiceRegistry registry) {
        this.registry = registry;
    }

    // called through some external process, such as an event or a custom actuator endpoint
    public void register() {
        Registration registration = constructRegistration();
        this.registry.register(registration);
    }
}

Each ServiceRegistry implementation has its own Registry implementation.

  • ZookeeperRegistration used with ZookeeperServiceRegistry
  • EurekaRegistration used with EurekaServiceRegistry
  • ConsulRegistration used with ConsulServiceRegistry

If you are using the ServiceRegistry interface, you are going to need to pass the correct Registry implementation for the ServiceRegistry implementation you are using.

3.2.1 ServiceRegistry Auto-Registration

By default, the ServiceRegistry implementation auto-registers the running service. To disable that behavior, you can set: * @EnableDiscoveryClient(autoRegister=false) to permanently disable auto-registration. * spring.cloud.service-registry.auto-registration.enabled=false to disable the behavior through configuration.

3.2.2 Service Registry Actuator Endpoint

Spring Cloud Commons provides a /service-registry actuator endpoint. This endpoint relies on a Registration bean in the Spring Application Context. Calling /service-registry with GET returns the status of the Registration. Using POST to the same endpoint with a JSON body changes the status of the current Registration to the new value. The JSON body has to include the status field with the preferred value. Please see the documentation of the ServiceRegistry implementation you use for the allowed values when updating the status and the values returned for the status. For instance, Eureka’s supported statuses are UP, DOWN, OUT_OF_SERVICE, and UNKNOWN.

3.3 Spring RestTemplate as a Load Balancer Client

RestTemplate can be automatically configured to use ribbon. To create a load-balanced RestTemplate, create a RestTemplate @Bean and use the @LoadBalanced qualifier, as shown in the following example:

@Configuration
public class MyConfiguration {

    @LoadBalanced
    @Bean
    RestTemplate restTemplate() {
        return new RestTemplate();
    }
}

public class MyClass {
    @Autowired
    private RestTemplate restTemplate;

    public String doOtherStuff() {
        String results = restTemplate.getForObject("http://stores/stores", String.class);
        return results;
    }
}
[Caution]Caution

A RestTemplate bean is no longer created through auto-configuration. Individual applications must create it.

The URI needs to use a virtual host name (that is, a service name, not a host name). The Ribbon client is used to create a full physical address. See RibbonAutoConfiguration for details of how the RestTemplate is set up.

3.4 Spring WebClient as a Load Balancer Client

WebClient can be automatically configured to use the LoadBalancerClient. To create a load-balanced WebClient, create a WebClient.Builder @Bean and use the @LoadBalanced qualifier, as shown in the following example:

@Configuration
public class MyConfiguration {

	@Bean
	@LoadBalanced
	public WebClient.Builder loadBalancedWebClientBuilder() {
		return WebClient.builder();
	}
}

public class MyClass {
    @Autowired
    private WebClient.Builder webClientBuilder;

    public Mono<String> doOtherStuff() {
        return webClientBuilder.build().get().uri("http://stores/stores")
        				.retrieve().bodyToMono(String.class);
    }
}

The URI needs to use a virtual host name (that is, a service name, not a host name). The Ribbon client is used to create a full physical address.

3.4.1 Retrying Failed Requests

A load-balanced RestTemplate can be configured to retry failed requests. By default, this logic is disabled. You can enable it by adding Spring Retry to your application’s classpath. The load-balanced RestTemplate honors some of the Ribbon configuration values related to retrying failed requests. You can use client.ribbon.MaxAutoRetries, client.ribbon.MaxAutoRetriesNextServer, and client.ribbon.OkToRetryOnAllOperations properties. If you would like to disable the retry logic with Spring Retry on the classpath, you can set spring.cloud.loadbalancer.retry.enabled=false. See the Ribbon documentation for a description of what these properties do.

If you would like to implement a BackOffPolicy in your retries, you need to create a bean of type LoadBalancedBackOffPolicyFactory and return the BackOffPolicy you would like to use for a given service, as shown in the following example:

@Configuration
public class MyConfiguration {
    @Bean
    LoadBalancedBackOffPolicyFactory backOffPolciyFactory() {
        return new LoadBalancedBackOffPolicyFactory() {
            @Override
            public BackOffPolicy createBackOffPolicy(String service) {
        		return new ExponentialBackOffPolicy();
        	}
        };
    }
}
[Note]Note

client in the preceding examples should be replaced with your Ribbon client’s name.

If you want to add one or more RetryListener implementations to your retry functionality, you need to create a bean of type LoadBalancedRetryListenerFactory and return the RetryListener array you would like to use for a given service, as shown in the following example:

@Configuration
public class MyConfiguration {
    @Bean
    LoadBalancedRetryListenerFactory retryListenerFactory() {
        return new LoadBalancedRetryListenerFactory() {
            @Override
            public RetryListener[] createRetryListeners(String service) {
                return new RetryListener[]{new RetryListener() {
                    @Override
                    public <T, E extends Throwable> boolean open(RetryContext context, RetryCallback<T, E> callback) {
                        //TODO Do you business...
                        return true;
                    }

                    @Override
                     public <T, E extends Throwable> void close(RetryContext context, RetryCallback<T, E> callback, Throwable throwable) {
                        //TODO Do you business...
                    }

                    @Override
                    public <T, E extends Throwable> void onError(RetryContext context, RetryCallback<T, E> callback, Throwable throwable) {
                        //TODO Do you business...
                    }
                }};
            }
        };
    }
}

3.5 Multiple RestTemplate objects

If you want a RestTemplate that is not load-balanced, create a RestTemplate bean and inject it. To access the load-balanced RestTemplate, use the @LoadBalanced qualifier when you create your @Bean, as shown in the following example:\

@Configuration
public class MyConfiguration {

    @LoadBalanced
    @Bean
    RestTemplate loadBalanced() {
        return new RestTemplate();
    }

    @Primary
    @Bean
    RestTemplate restTemplate() {
        return new RestTemplate();
    }
}

public class MyClass {
    @Autowired
    private RestTemplate restTemplate;

    @Autowired
    @LoadBalanced
    private RestTemplate loadBalanced;

    public String doOtherStuff() {
        return loadBalanced.getForObject("http://stores/stores", String.class);
    }

    public String doStuff() {
        return restTemplate.getForObject("http://example.com", String.class);
    }
}
[Important]Important

Notice the use of the @Primary annotation on the plain RestTemplate declaration in the preceding example to disambiguate the unqualified @Autowired injection.

[Tip]Tip

If you see errors such as java.lang.IllegalArgumentException: Can not set org.springframework.web.client.RestTemplate field com.my.app.Foo.restTemplate to com.sun.proxy.$Proxy89, try injecting RestOperations or setting spring.aop.proxyTargetClass=true.

3.6 Spring WebFlux WebClient as a Load Balancer Client

WebClient can be configured to use the LoadBalancerClient. LoadBalancerExchangeFilterFunction is auto-configured if spring-webflux is on the classpath. The following example shows how to configure a WebClient to use load balancer:

public class MyClass {
    @Autowired
    private LoadBalancerExchangeFilterFunction lbFunction;

    public Mono<String> doOtherStuff() {
        return WebClient.builder().baseUrl("http://stores")
            .filter(lbFunction)
            .build()
            .get()
            .uri("/stores")
            .retrieve()
            .bodyToMono(String.class);
    }
}

The URI needs to use a virtual host name (that is, a service name, not a host name). The LoadBalancerClient is used to create a full physical address.

3.7 Ignore Network Interfaces

Sometimes, it is useful to ignore certain named network interfaces so that they can be excluded from Service Discovery registration (for example, when running in a Docker container). A list of regular expressions can be set to cause the desired network interfaces to be ignored. The following configuration ignores the docker0 interface and all interfaces that start with veth:

application.yml. 

spring:
  cloud:
    inetutils:
      ignoredInterfaces:
        - docker0
        - veth.*

You can also force the use of only specified network addresses by using a list of regular expressions, as shown in the following example:

bootstrap.yml. 

spring:
  cloud:
    inetutils:
      preferredNetworks:
        - 192.168
        - 10.0

You can also force the use of only site-local addresses, as shown in the following example: .application.yml

spring:
  cloud:
    inetutils:
      useOnlySiteLocalInterfaces: true

See Inet4Address.html.isSiteLocalAddress() for more details about what constitutes a site-local address.

3.8 HTTP Client Factories

Spring Cloud Commons provides beans for creating both Apache HTTP clients (ApacheHttpClientFactory) and OK HTTP clients (OkHttpClientFactory). The OkHttpClientFactory bean is created only if the OK HTTP jar is on the classpath. In addition, Spring Cloud Commons provides beans for creating the connection managers used by both clients: ApacheHttpClientConnectionManagerFactory for the Apache HTTP client and OkHttpClientConnectionPoolFactory for the OK HTTP client. If you would like to customize how the HTTP clients are created in downstream projects, you can provide your own implementation of these beans. In addition, if you provide a bean of type HttpClientBuilder or OkHttpClient.Builder, the default factories use these builders as the basis for the builders returned to downstream projects. You can also disable the creation of these beans by setting spring.cloud.httpclientfactories.apache.enabled or spring.cloud.httpclientfactories.ok.enabled to false.

3.9 Enabled Features

Spring Cloud Commons provides a /features actuator endpoint. This endpoint returns features available on the classpath and whether they are enabled. The information returned includes the feature type, name, version, and vendor.

3.9.1 Feature types

There are two types of 'features': abstract and named.

Abstract features are features where an interface or abstract class is defined and that an implementation the creates, such as DiscoveryClient, LoadBalancerClient, or LockService. The abstract class or interface is used to find a bean of that type in the context. The version displayed is bean.getClass().getPackage().getImplementationVersion().

Named features are features that do not have a particular class they implement, such as "Circuit Breaker", "API Gateway", "Spring Cloud Bus", and others. These features require a name and a bean type.

3.9.2 Declaring features

Any module can declare any number of HasFeature beans, as shown in the following examples:

@Bean
public HasFeatures commonsFeatures() {
  return HasFeatures.abstractFeatures(DiscoveryClient.class, LoadBalancerClient.class);
}

@Bean
public HasFeatures consulFeatures() {
  return HasFeatures.namedFeatures(
    new NamedFeature("Spring Cloud Bus", ConsulBusAutoConfiguration.class),
    new NamedFeature("Circuit Breaker", HystrixCommandAspect.class));
}

@Bean
HasFeatures localFeatures() {
  return HasFeatures.builder()
      .abstractFeature(Foo.class)
      .namedFeature(new NamedFeature("Bar Feature", Bar.class))
      .abstractFeature(Baz.class)
      .build();
}

Each of these beans should go in an appropriately guarded @Configuration.