
Spring Cloud

Table of Contents
1. Features . 2

2. Release Train Versions . 3

3. Cloud Native Applications . 4

3.1. Spring Cloud Context: Application Context Services . 4

3.2. Spring Cloud Commons: Common Abstractions . 10

3.3. Spring Cloud LoadBalancer . 23

3.4. Spring Cloud Circuit Breaker . 28

3.5. CachedRandomPropertySource . 31

3.6. Configuration Properties . 31

4. Spring Cloud Config . 32

4.1. Quick Start . 32

4.2. Spring Cloud Config Server . 36

4.3. Serving Alternative Formats . 64

4.4. Serving Plain Text. 65

4.5. Embedding the Config Server . 67

4.6. Push Notifications and Spring Cloud Bus . 68

4.7. Spring Cloud Config Client . 69

5. Spring Cloud Netflix. 75

5.1. Service Discovery: Eureka Clients . 75

5.2. Service Discovery: Eureka Server. 83

5.3. Circuit Breaker: Spring Cloud Circuit Breaker With Hystrix . 88

5.4. Circuit Breaker: Hystrix Clients . 90

5.5. Circuit Breaker: Hystrix Dashboard. 93

5.6. Hystrix Timeouts And Ribbon Clients . 94

5.7. Client Side Load Balancer: Ribbon . 98

5.8. External Configuration: Archaius . 105

5.9. Router and Filter: Zuul . 105

5.10. Polyglot support with Sidecar . 126

5.11. Retrying Failed Requests . 128

5.12. HTTP Clients . 129

5.13. Modules In Maintenance Mode . 129

5.14. Configuration properties . 130

6. Spring Cloud OpenFeign. 131

6.1. Declarative REST Client: Feign . 131

6.2. Configuration properties . 144

7. Spring Cloud Bus . 145

7.1. Quick Start . 145

7.2. Bus Endpoints . 145

7.3. Addressing an Instance. 146

7.4. Addressing All Instances of a Service . 147

7.5. Service ID Must Be Unique. 147

7.6. Customizing the Message Broker . 147

7.7. Tracing Bus Events. 147

7.8. Broadcasting Your Own Events . 148

7.9. Configuration properties . 150

8. Spring Cloud Sleuth . 151

8.1. Introduction. 151

8.2. Additional Resources . 170

8.3. Features . 171

8.4. Sampling. 176

8.5. Propagation . 178

8.6. Current Tracing Component . 183

8.7. Current Span . 184

8.8. Instrumentation . 184

8.9. Span lifecycle. 185

8.10. Naming spans . 187

8.11. Managing Spans with Annotations . 188

8.12. Customizations . 191

8.13. Sending Spans to Zipkin . 197

8.14. Zipkin Stream Span Consumer . 198

8.15. Integrations . 198

8.16. Configuration properties . 209

8.17. Running examples . 209

9. Spring Cloud Consul . 211

9.1. Install Consul . 211

9.2. Consul Agent . 211

9.3. Service Discovery with Consul . 211

9.4. Distributed Configuration with Consul . 218

9.5. Consul Retry. 221

9.6. Spring Cloud Bus with Consul . 221

9.7. Circuit Breaker with Hystrix . 222

9.8. Hystrix metrics aggregation with Turbine and Consul . 222

9.9. Configuration Properties . 223

10. Spring Cloud Zookeeper . 224

10.1. Install Zookeeper . 224

10.2. Service Discovery with Zookeeper. 225

10.3. Using Spring Cloud Zookeeper with Spring Cloud Netflix Components 227

10.4. Spring Cloud Zookeeper and Service Registry . 227

10.5. Zookeeper Dependencies . 228

10.6. Spring Cloud Zookeeper Dependency Watcher . 232

10.7. Distributed Configuration with Zookeeper . 233

11. Spring Boot Cloud CLI . 236

11.1. Installation. 236

11.2. Running Spring Cloud Services in Development . 236

11.3. Writing Groovy Scripts and Running Applications . 239

11.4. Encryption and Decryption . 240

12. Spring Cloud Security . 241

12.1. Quickstart. 241

12.2. More Detail . 243

12.3. Configuring Authentication Downstream of a Zuul Proxy . 246

13. Spring Cloud for Cloud Foundry . 248

13.1. Discovery . 248

13.2. Single Sign On . 249

13.3. Configuration . 249

14. Spring Cloud Contract Reference Documentation . 250

Legal . 250

14.1. Getting Started . 250

14.2. Using Spring Cloud Contract . 290

14.3. Spring Cloud Contract Features . 309

14.4. Maven Project . 499

14.5. Gradle Project . 516

14.6. Docker Project . 528

14.7. Spring Cloud Contract customization . 535

14.8. “How-to” Guides . 555

15. Spring Cloud Vault . 600

15.1. Quick Start . 600

15.2. Client Side Usage . 602

15.3. Authentication methods . 605

15.4. Secret Backends . 618

15.5. Database backends . 624

15.6. Configure PropertySourceLocator behavior . 628

15.7. Service Registry Configuration . 629

15.8. Vault Client Fail Fast . 629

15.9. Vault Enterprise Namespace Support . 630

15.10. Vault Client SSL configuration . 630

15.11. Lease lifecycle management (renewal and revocation) . 631

16. Spring Cloud Gateway . 632

16.1. How to Include Spring Cloud Gateway . 632

16.2. Glossary . 632

16.3. How It Works . 632

16.4. Configuring Route Predicate Factories and Gateway Filter Factories . 633

16.5. Route Predicate Factories. 634

16.6. GatewayFilter Factories. 641

16.7. Global Filters . 669

16.8. HttpHeadersFilters. 674

16.9. TLS and SSL . 675

16.10. Configuration . 677

16.11. Route Metadata Configuration . 678

16.12. Http timeouts configuration . 679

16.13. Reactor Netty Access Logs . 682

16.14. CORS Configuration . 683

16.15. Actuator API . 683

16.16. Troubleshooting . 688

16.17. Developer Guide. 688

16.18. Building a Simple Gateway by Using Spring MVC or Webflux . 692

16.19. Configuration properties . 694

17. Spring Cloud Function . 695

17.1. Introduction. 695

17.2. Getting Started . 696

17.3. Programming model . 697

17.4. Standalone Web Applications . 701

17.5. Standalone Streaming Applications. 703

17.6. Deploying a Packaged Function . 703

17.7. Functional Bean Definitions . 707

17.8. Testing Functional Applications . 710

17.9. Dynamic Compilation . 713

17.10. Serverless Platform Adapters . 715

18. Spring Cloud Kubernetes . 731

18.1. Why do you need Spring Cloud Kubernetes? . 731

18.2. Starters . 731

18.3. DiscoveryClient for Kubernetes . 732

18.4. Kubernetes native service discovery. 733

18.5. Kubernetes PropertySource implementations . 733

18.6. Kubernetes Ecosystem Awareness. 746

18.7. Pod Health Indicator . 747

18.8. Leader Election. 747

18.9. Security Configurations Inside Kubernetes . 747

18.10. Service Registry Implementation. 749

18.11. Examples . 749

18.12. Other Resources . 750

18.13. Configuration properties . 750

18.14. Building . 750

18.15. Contributing . 752

19. Spring Cloud GCP . 759

19.1. Introduction. 759

19.2. Getting Started . 759

19.3. Spring Cloud GCP Core . 762

19.4. Cloud Storage . 766

19.5. Cloud SQL. 768

19.6. Cloud Pub/Sub . 772

19.7. Spring Integration . 785

19.8. Spring Cloud Stream . 795

19.9. Spring Cloud Bus . 799

19.10. Stackdriver Trace . 801

19.11. Stackdriver Logging. 805

19.12. Spring Data Cloud Spanner . 810

19.13. Spring Data Cloud Datastore . 842

19.14. Spring Data Cloud Firestore . 873

19.15. Cloud Memorystore for Redis . 886

19.16. BigQuery. 887

19.17. Cloud IAP . 891

19.18. Cloud Vision. 893

19.19. Secret Manager. 897

19.20. Cloud Runtime Configuration API . 900

19.21. Cloud Foundry . 904

19.22. Kotlin Support. 905

19.23. Configuration properties . 906

20. Spring Cloud Circuit Breaker . 907

20.1. Configuring Resilience4J Circuit Breakers 907

20.2. Configuring Spring Retry Circuit Breakers 909

20.3. Building . 911

20.4. Contributing . 913

21. Spring Cloud Stream . 920

21.1. A Brief History of Spring’s Data Integration Journey . 920

21.2. Quick Start . 920

21.3. What’s New in 2.2?. 924

21.4. Notes on migrating from 1.x to 2.x?. 925

22. Spring Cloud Stream Reference Guide . 926

23. Preface . 927

23.1. A Brief History of Spring’s Data Integration Journey . 927

23.2. Quick Start . 927

23.3. What’s New in 2.2?. 931

23.4. Notes on migrating from 1.x to 2.x?. 932

23.5. Introducing Spring Cloud Stream. 932

23.6. Main Concepts. 933

23.7. Programming Model . 939

23.8. Binders . 958

23.9. Configuration Options. 965

23.10. Content Type Negotiation. 974

23.11. Schema Evolution Support . 979

23.12. Inter-Application Communication. 989

23.13. Testing . 992

23.14. Health Indicator . 999

23.15. Metrics Emitter. 1000

23.16. Samples . 1003

23.17. Binder Implementations . 1003

24. Binder Implementations . 1004

24.1. Apache Kafka Binder . 1004

24.2. Apache Kafka Streams Binder . 1026

24.3. RabbitMQ Binder . 1066

Appendix: Compendium of Configuration Properties . 1096

Spring Cloud provides tools for developers to quickly build some of the common
patterns in distributed systems (e.g. configuration management, service
discovery, circuit breakers, intelligent routing, micro-proxy, control bus).
Coordination of distributed systems leads to boiler plate patterns, and using
Spring Cloud developers can quickly stand up services and applications that
implement those patterns. They will work well in any distributed environment,
including the developer’s own laptop, bare metal data centres, and managed
platforms such as Cloud Foundry.

Release Train Version: Hoxton.SR5

Supported Boot Version: 2.2.1.RELEASE

Chapter 1. Features
Spring Cloud focuses on providing good out of box experience for typical use cases and extensibility
mechanism to cover others.

• Distributed/versioned configuration

• Service registration and discovery

• Routing

• Service-to-service calls

• Load balancing

• Circuit Breakers

• Distributed messaging

Chapter 2. Release Train Versions
Table 1. Release Train Project Versions

Project Name Project Version

spring-cloud-build 2.2.0.RELEASE

spring-cloud-commons 2.2.0.RELEASE

spring-cloud-function 3.0.0.RELEASE

spring-cloud-stream Horsham.RELEASE

spring-cloud-aws 2.2.0.RELEASE

spring-cloud-bus 2.2.0.RELEASE

spring-cloud-task 2.2.1.RELEASE

spring-cloud-config 2.2.0.RELEASE

spring-cloud-netflix 2.2.0.RELEASE

spring-cloud-cloudfoundry 2.2.0.RELEASE

spring-cloud-kubernetes 1.1.0.RELEASE

spring-cloud-openfeign 2.2.0.RELEASE

spring-cloud-consul 2.2.0.RELEASE

spring-cloud-gateway 2.2.0.RELEASE

spring-cloud-security 2.2.0.RELEASE

spring-cloud-sleuth 2.2.0.RELEASE

spring-cloud-zookeeper 2.2.0.RELEASE

spring-cloud-contract 2.2.0.RELEASE

spring-cloud-gcp 1.2.0.RELEASE

spring-cloud-vault 2.2.0.RELEASE

spring-cloud-circuitbreaker 1.0.0.RELEASE

spring-cloud-cli 2.2.0.RELEASE

Chapter 3. Cloud Native Applications
Cloud Native is a style of application development that encourages easy adoption of best practices
in the areas of continuous delivery and value-driven development. A related discipline is that of
building 12-factor Applications, in which development practices are aligned with delivery and
operations goals — for instance, by using declarative programming and management and
monitoring. Spring Cloud facilitates these styles of development in a number of specific ways. The
starting point is a set of features to which all components in a distributed system need easy access.

Many of those features are covered by Spring Boot, on which Spring Cloud builds. Some more
features are delivered by Spring Cloud as two libraries: Spring Cloud Context and Spring Cloud
Commons. Spring Cloud Context provides utilities and special services for the ApplicationContext of
a Spring Cloud application (bootstrap context, encryption, refresh scope, and environment
endpoints). Spring Cloud Commons is a set of abstractions and common classes used in different
Spring Cloud implementations (such as Spring Cloud Netflix and Spring Cloud Consul).

If you get an exception due to "Illegal key size" and you use Sun’s JDK, you need to install the Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files. See the following links
for more information:

• Java 6 JCE

• Java 7 JCE

• Java 8 JCE

Extract the files into the JDK/jre/lib/security folder for whichever version of JRE/JDK x64/x86 you
use.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
like to contribute to this section of the documentation or if you find an error, you
can find the source code and issue trackers for the project at {docslink}[github].

3.1. Spring Cloud Context: Application Context
Services
Spring Boot has an opinionated view of how to build an application with Spring. For instance, it has
conventional locations for common configuration files and has endpoints for common
management and monitoring tasks. Spring Cloud builds on top of that and adds a few features that
many components in a system would use or occasionally need.

3.1.1. The Bootstrap Application Context

A Spring Cloud application operates by creating a “bootstrap” context, which is a parent context for
the main application. This context is responsible for loading configuration properties from the
external sources and for decrypting properties in the local external configuration files. The two
contexts share an Environment, which is the source of external properties for any Spring application.
By default, bootstrap properties (not bootstrap.properties but properties that are loaded during the

https://pivotal.io/platform-as-a-service/migrating-to-cloud-native-application-architectures-ebook
https://12factor.net/
https://projects.spring.io/spring-boot
https://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

bootstrap phase) are added with high precedence, so they cannot be overridden by local
configuration.

The bootstrap context uses a different convention for locating external configuration than the main
application context. Instead of application.yml (or .properties), you can use bootstrap.yml, keeping
the external configuration for bootstrap and main context nicely separate. The following listing
shows an example:

Example 1. bootstrap.yml

spring:
 application:
 name: foo
 cloud:
 config:
 uri: ${SPRING_CONFIG_URI:http://localhost:8888}

If your application needs any application-specific configuration from the server, it is a good idea to
set the spring.application.name (in bootstrap.yml or application.yml). For the property
spring.application.name to be used as the application’s context ID, you must set it in
bootstrap.[properties | yml].

If you want to retrieve specific profile configuration, you should also set spring.profiles.active in
bootstrap.[properties | yml].

You can disable the bootstrap process completely by setting spring.cloud.bootstrap.enabled=false
(for example, in system properties).

3.1.2. Application Context Hierarchies

If you build an application context from SpringApplication or SpringApplicationBuilder, the
Bootstrap context is added as a parent to that context. It is a feature of Spring that child contexts
inherit property sources and profiles from their parent, so the “main” application context contains
additional property sources, compared to building the same context without Spring Cloud Config.
The additional property sources are:

• “bootstrap”: If any PropertySourceLocators are found in the bootstrap context and if they have
non-empty properties, an optional CompositePropertySource appears with high priority. An
example would be properties from the Spring Cloud Config Server. See “Customizing the
Bootstrap Property Sources” for how to customize the contents of this property source.

• “applicationConfig: [classpath:bootstrap.yml]” (and related files if Spring profiles are active): If
you have a bootstrap.yml (or .properties), those properties are used to configure the bootstrap
context. Then they get added to the child context when its parent is set. They have lower
precedence than the application.yml (or .properties) and any other property sources that are
added to the child as a normal part of the process of creating a Spring Boot application. See
“Changing the Location of Bootstrap Properties” for how to customize the contents of these
property sources.

Because of the ordering rules of property sources, the “bootstrap” entries take precedence.
However, note that these do not contain any data from bootstrap.yml, which has very low
precedence but can be used to set defaults.

You can extend the context hierarchy by setting the parent context of any ApplicationContext you
create — for example, by using its own interface or with the SpringApplicationBuilder convenience
methods (parent(), child() and sibling()). The bootstrap context is the parent of the most senior
ancestor that you create yourself. Every context in the hierarchy has its own “bootstrap” (possibly
empty) property source to avoid promoting values inadvertently from parents down to their
descendants. If there is a config server, every context in the hierarchy can also (in principle) have a
different spring.application.name and, hence, a different remote property source. Normal Spring
application context behavior rules apply to property resolution: properties from a child context
override those in the parent, by name and also by property source name. (If the child has a
property source with the same name as the parent, the value from the parent is not included in the
child).

Note that the SpringApplicationBuilder lets you share an Environment amongst the whole hierarchy,
but that is not the default. Thus, sibling contexts (in particular) do not need to have the same
profiles or property sources, even though they may share common values with their parent.

3.1.3. Changing the Location of Bootstrap Properties

The bootstrap.yml (or .properties) location can be specified by setting spring.cloud.bootstrap.name
(default: bootstrap), spring.cloud.bootstrap.location (default: empty) or
spring.cloud.bootstrap.additional-location (default: empty) — for example, in System properties.

Those properties behave like the spring.config.* variants with the same name. With
spring.cloud.bootstrap.location the default locations are replaced and only the specified ones are
used. To add locations to the list of default ones, spring.cloud.bootstrap.additional-location could
be used. In fact, they are used to set up the bootstrap ApplicationContext by setting those properties
in its Environment. If there is an active profile (from spring.profiles.active or through the
Environment API in the context you are building), properties in that profile get loaded as well, the
same as in a regular Spring Boot app — for example, from bootstrap-development.properties for a
development profile.

3.1.4. Overriding the Values of Remote Properties

The property sources that are added to your application by the bootstrap context are often
“remote” (from example, from Spring Cloud Config Server). By default, they cannot be overridden
locally. If you want to let your applications override the remote properties with their own system
properties or config files, the remote property source has to grant it permission by setting
spring.cloud.config.allowOverride=true (it does not work to set this locally). Once that flag is set,
two finer-grained settings control the location of the remote properties in relation to system
properties and the application’s local configuration:

• spring.cloud.config.overrideNone=true: Override from any local property source.

• spring.cloud.config.overrideSystemProperties=false: Only system properties, command line
arguments, and environment variables (but not the local config files) should override the

remote settings.

3.1.5. Customizing the Bootstrap Configuration

The bootstrap context can be set to do anything you like by adding entries to /META-

INF/spring.factories under a key named
org.springframework.cloud.bootstrap.BootstrapConfiguration. This holds a comma-separated list of
Spring @Configuration classes that are used to create the context. Any beans that you want to be
available to the main application context for autowiring can be created here. There is a special
contract for @Beans of type ApplicationContextInitializer. If you want to control the startup
sequence, you can mark classes with the @Order annotation (the default order is last).

When adding custom BootstrapConfiguration, be careful that the classes you add
are not @ComponentScanned by mistake into your “main” application context, where
they might not be needed. Use a separate package name for boot configuration
classes and make sure that name is not already covered by your @ComponentScan or
@SpringBootApplication annotated configuration classes.

The bootstrap process ends by injecting initializers into the main SpringApplication instance (which
is the normal Spring Boot startup sequence, whether it runs as a standalone application or is
deployed in an application server). First, a bootstrap context is created from the classes found in
spring.factories. Then, all @Beans of type ApplicationContextInitializer are added to the main
SpringApplication before it is started.

3.1.6. Customizing the Bootstrap Property Sources

The default property source for external configuration added by the bootstrap process is the Spring
Cloud Config Server, but you can add additional sources by adding beans of type
PropertySourceLocator to the bootstrap context (through spring.factories). For instance, you can
insert additional properties from a different server or from a database.

As an example, consider the following custom locator:

@Configuration
public class CustomPropertySourceLocator implements PropertySourceLocator {

 @Override
 public PropertySource<?> locate(Environment environment) {
 return new MapPropertySource("customProperty",
 Collections.<String,
Object>singletonMap("property.from.sample.custom.source", "worked as intended"));
 }

}

The Environment that is passed in is the one for the ApplicationContext about to be created — in

other words, the one for which we supply additional property sources. It already has its normal
Spring Boot-provided property sources, so you can use those to locate a property source specific to
this Environment (for example, by keying it on spring.application.name, as is done in the default
Spring Cloud Config Server property source locator).

If you create a jar with this class in it and then add a META-INF/spring.factories containing the
following setting, the customProperty PropertySource appears in any application that includes that
jar on its classpath:

org.springframework.cloud.bootstrap.BootstrapConfiguration=sample.custom.CustomPro
pertySourceLocator

3.1.7. Logging Configuration

If you use Spring Boot to configure log settings, you should place this configuration in
bootstrap.[yml | properties] if you would like it to apply to all events.

For Spring Cloud to initialize logging configuration properly, you cannot use a
custom prefix. For example, using custom.loggin.logpath is not recognized by
Spring Cloud when initializing the logging system.

3.1.8. Environment Changes

The application listens for an EnvironmentChangeEvent and reacts to the change in a couple of
standard ways (additional ApplicationListeners can be added as @Beans in the normal way). When
an EnvironmentChangeEvent is observed, it has a list of key values that have changed, and the
application uses those to:

• Re-bind any @ConfigurationProperties beans in the context.

• Set the logger levels for any properties in logging.level.*.

Note that the Spring Cloud Config Client does not, by default, poll for changes in the Environment.
Generally, we would not recommend that approach for detecting changes (although you could set it
up with a @Scheduled annotation). If you have a scaled-out client application, it is better to broadcast
the EnvironmentChangeEvent to all the instances instead of having them polling for changes (for
example, by using the Spring Cloud Bus).

The EnvironmentChangeEvent covers a large class of refresh use cases, as long as you can actually
make a change to the Environment and publish the event. Note that those APIs are public and part of
core Spring). You can verify that the changes are bound to @ConfigurationProperties beans by
visiting the /configprops endpoint (a standard Spring Boot Actuator feature). For instance, a
DataSource can have its maxPoolSize changed at runtime (the default DataSource created by Spring
Boot is a @ConfigurationProperties bean) and grow capacity dynamically. Re-binding
@ConfigurationProperties does not cover another large class of use cases, where you need more
control over the refresh and where you need a change to be atomic over the whole
ApplicationContext. To address those concerns, we have @RefreshScope.

https://github.com/spring-cloud/spring-cloud-bus

3.1.9. Refresh Scope

When there is a configuration change, a Spring @Bean that is marked as @RefreshScope gets special
treatment. This feature addresses the problem of stateful beans that get their configuration injected
only when they are initialized. For instance, if a DataSource has open connections when the
database URL is changed through the Environment, you probably want the holders of those
connections to be able to complete what they are doing. Then, the next time something borrows a
connection from the pool, it gets one with the new URL.

Sometimes, it might even be mandatory to apply the @RefreshScope annotation on some beans that
can be only initialized once. If a bean is “immutable”, you have to either annotate the bean with
@RefreshScope or specify the classname under the property key: spring.cloud.refresh.extra-
refreshable.

If you hava a DataSource bean that is a HikariDataSource, it can not be refreshed. It
is the default value for spring.cloud.refresh.never-refreshable. Choose a different
DataSource implementation if you need it to be refreshed.

Refresh scope beans are lazy proxies that initialize when they are used (that is, when a method is
called), and the scope acts as a cache of initialized values. To force a bean to re-initialize on the next
method call, you must invalidate its cache entry.

The RefreshScope is a bean in the context and has a public refreshAll() method to refresh all beans
in the scope by clearing the target cache. The /refresh endpoint exposes this functionality (over
HTTP or JMX). To refresh an individual bean by name, there is also a refresh(String) method.

To expose the /refresh endpoint, you need to add following configuration to your application:

management:
 endpoints:
 web:
 exposure:
 include: refresh

@RefreshScope works (technically) on a @Configuration class, but it might lead to
surprising behavior. For example, it does not mean that all the @Beans defined in
that class are themselves in @RefreshScope. Specifically, anything that depends on
those beans cannot rely on them being updated when a refresh is initiated, unless
it is itself in @RefreshScope. In that case, it is rebuilt on a refresh and its
dependencies are re-injected. At that point, they are re-initialized from the
refreshed @Configuration).

3.1.10. Encryption and Decryption

Spring Cloud has an Environment pre-processor for decrypting property values locally. It follows the
same rules as the Spring Cloud Config Server and has the same external configuration through

encrypt.*. Thus, you can use encrypted values in the form of {cipher}*, and, as long as there is a
valid key, they are decrypted before the main application context gets the Environment settings. To
use the encryption features in an application, you need to include Spring Security RSA in your
classpath (Maven co-ordinates: org.springframework.security:spring-security-rsa), and you also
need the full strength JCE extensions in your JVM.

If you get an exception due to "Illegal key size" and you use Sun’s JDK, you need to install the Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files. See the following links
for more information:

• Java 6 JCE

• Java 7 JCE

• Java 8 JCE

Extract the files into the JDK/jre/lib/security folder for whichever version of JRE/JDK x64/x86 you
use.

3.1.11. Endpoints

For a Spring Boot Actuator application, some additional management endpoints are available. You
can use:

• POST to /actuator/env to update the Environment and rebind @ConfigurationProperties and log
levels.

• /actuator/refresh to re-load the boot strap context and refresh the @RefreshScope beans.

• /actuator/restart to close the ApplicationContext and restart it (disabled by default).

• /actuator/pause and /actuator/resume for calling the Lifecycle methods (stop() and start() on
the ApplicationContext).

If you disable the /actuator/restart endpoint then the /actuator/pause and
/actuator/resume endpoints will also be disabled since they are just a special case
of /actuator/restart.

3.2. Spring Cloud Commons: Common Abstractions
Patterns such as service discovery, load balancing, and circuit breakers lend themselves to a
common abstraction layer that can be consumed by all Spring Cloud clients, independent of the
implementation (for example, discovery with Eureka or Consul).

3.2.1. The @EnableDiscoveryClient Annotation

Spring Cloud Commons provides the @EnableDiscoveryClient annotation. This looks for
implementations of the DiscoveryClient and ReactiveDiscoveryClient interfaces with META-

INF/spring.factories. Implementations of the discovery client add a configuration class to
spring.factories under the org.springframework.cloud.client.discovery.EnableDiscoveryClient key.
Examples of DiscoveryClient implementations include Spring Cloud Netflix Eureka, Spring Cloud

https://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://cloud.spring.io/spring-cloud-netflix/
https://cloud.spring.io/spring-cloud-consul/

Consul Discovery, and Spring Cloud Zookeeper Discovery.

Spring Cloud will provide both the blocking and reactive service discovery clients by default. You
can disable the blocking and/or reactive clients easily by setting
spring.cloud.discovery.blocking.enabled=false or spring.cloud.discovery.reactive.enabled=false.
To completely disable service discovery you just need to set spring.cloud.discovery.enabled=false.

By default, implementations of DiscoveryClient auto-register the local Spring Boot server with the
remote discovery server. This behavior can be disabled by setting autoRegister=false in
@EnableDiscoveryClient.

@EnableDiscoveryClient is no longer required. You can put a DiscoveryClient
implementation on the classpath to cause the Spring Boot application to register
with the service discovery server.

Health Indicator

Commons creates a Spring Boot HealthIndicator that DiscoveryClient implementations can
participate in by implementing DiscoveryHealthIndicator. To disable the composite HealthIndicator,
set spring.cloud.discovery.client.composite-indicator.enabled=false. A generic HealthIndicator
based on DiscoveryClient is auto-configured (DiscoveryClientHealthIndicator). To disable it, set
spring.cloud.discovery.client.health-indicator.enabled=false. To disable the description field of
the DiscoveryClientHealthIndicator, set spring.cloud.discovery.client.health-indicator.include-
description=false. Otherwise, it can bubble up as the description of the rolled up HealthIndicator.

Ordering DiscoveryClient instances

DiscoveryClient interface extends Ordered. This is useful when using multiple discovery clients, as it
allows you to define the order of the returned discovery clients, similar to how you can order the
beans loaded by a Spring application. By default, the order of any DiscoveryClient is set to 0. If you
want to set a different order for your custom DiscoveryClient implementations, you just need to
override the getOrder() method so that it returns the value that is suitable for your setup. Apart
from this, you can use properties to set the order of the DiscoveryClient implementations provided
by Spring Cloud, among others ConsulDiscoveryClient, EurekaDiscoveryClient and
ZookeeperDiscoveryClient. In order to do it, you just need to set the
spring.cloud.{clientIdentifier}.discovery.order (or eureka.client.order for Eureka) property to
the desired value.

SimpleDiscoveryClient

If there is no Service-Registry-backed DiscoveryClient in the classpath, SimpleDiscoveryClient
instance, that uses properties to get information on service and instances, will be used.

The information about the available instances should be passed to via properties in the following
format: spring.cloud.discovery.client.simple.instances.service1[0].uri=http://s11:8080, where
spring.cloud.discovery.client.simple.instances is the common prefix, then service1 stands for the
ID of the service in question, while [0] indicates the index number of the instance (as visible in the
example, indexes start with 0), and then the value of uri is the actual URI under which the instance
is available.

https://cloud.spring.io/spring-cloud-consul/
https://cloud.spring.io/spring-cloud-zookeeper/

3.2.2. ServiceRegistry

Commons now provides a ServiceRegistry interface that provides methods such as
register(Registration) and deregister(Registration), which let you provide custom registered
services. Registration is a marker interface.

The following example shows the ServiceRegistry in use:

@Configuration
@EnableDiscoveryClient(autoRegister=false)
public class MyConfiguration {
 private ServiceRegistry registry;

 public MyConfiguration(ServiceRegistry registry) {
 this.registry = registry;
 }

 // called through some external process, such as an event or a custom actuator
endpoint
 public void register() {
 Registration registration = constructRegistration();
 this.registry.register(registration);
 }
}

Each ServiceRegistry implementation has its own Registry implementation.

• ZookeeperRegistration used with ZookeeperServiceRegistry

• EurekaRegistration used with EurekaServiceRegistry

• ConsulRegistration used with ConsulServiceRegistry

If you are using the ServiceRegistry interface, you are going to need to pass the correct Registry
implementation for the ServiceRegistry implementation you are using.

ServiceRegistry Auto-Registration

By default, the ServiceRegistry implementation auto-registers the running service. To disable that
behavior, you can set: * @EnableDiscoveryClient(autoRegister=false) to permanently disable auto-
registration. * spring.cloud.service-registry.auto-registration.enabled=false to disable the
behavior through configuration.

ServiceRegistry Auto-Registration Events

There are two events that will be fired when a service auto-registers. The first event, called
InstancePreRegisteredEvent, is fired before the service is registered. The second event, called
InstanceRegisteredEvent, is fired after the service is registered. You can register an
ApplicationListener(s) to listen to and react to these events.

These events will not be fired if the spring.cloud.service-registry.auto-

registration.enabled property is set to false.

Service Registry Actuator Endpoint

Spring Cloud Commons provides a /service-registry actuator endpoint. This endpoint relies on a
Registration bean in the Spring Application Context. Calling /service-registry with GET returns the
status of the Registration. Using POST to the same endpoint with a JSON body changes the status of
the current Registration to the new value. The JSON body has to include the status field with the
preferred value. Please see the documentation of the ServiceRegistry implementation you use for
the allowed values when updating the status and the values returned for the status. For instance,
Eureka’s supported statuses are UP, DOWN, OUT_OF_SERVICE, and UNKNOWN.

3.2.3. Spring RestTemplate as a Load Balancer Client

You can configure a RestTemplate to use a Load-balancer client. To create a load-balanced
RestTemplate, create a RestTemplate @Bean and use the @LoadBalanced qualifier, as the following
example shows:

@Configuration
public class MyConfiguration {

 @LoadBalanced
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }
}

public class MyClass {
 @Autowired
 private RestTemplate restTemplate;

 public String doOtherStuff() {
 String results = restTemplate.getForObject("http://stores/stores",
String.class);
 return results;
 }
}

A RestTemplate bean is no longer created through auto-configuration. Individual
applications must create it.

The URI needs to use a virtual host name (that is, a service name, not a host name). The Ribbon
client is used to create a full physical address. See {githubroot}/spring-cloud-
netflix/blob/master/spring-cloud-netflix-

ribbon/src/main/java/org/springframework/cloud/netflix/ribbon/RibbonAutoConfiguration.java[Rib
bonAutoConfiguration] for the details of how the RestTemplate is set up.

To use a load-balanced RestTemplate, you need to have a load-balancer
implementation in your classpath. The recommended implementation is
BlockingLoadBalancerClient. Add Spring Cloud LoadBalancer starter to your project
in order to use it. The RibbonLoadBalancerClient also can be used, but it’s now
under maintenance and we do not recommend adding it to new projects.

By default, if you have both RibbonLoadBalancerClient and
BlockingLoadBalancerClient, to preserve backward compatibility,
RibbonLoadBalancerClient is used. To override it, you can set the
spring.cloud.loadbalancer.ribbon.enabled property to false.

3.2.4. Spring WebClient as a Load Balancer Client

You can configure WebClient to automatically use a load-balancer client. To create a load-balanced
WebClient, create a WebClient.Builder @Bean and use the @LoadBalanced qualifier, as follows:

@Configuration
public class MyConfiguration {

 @Bean
 @LoadBalanced
 public WebClient.Builder loadBalancedWebClientBuilder() {
 return WebClient.builder();
 }
}

public class MyClass {
 @Autowired
 private WebClient.Builder webClientBuilder;

 public Mono<String> doOtherStuff() {
 return webClientBuilder.build().get().uri("http://stores/stores")
 .retrieve().bodyToMono(String.class);
 }
}

The URI needs to use a virtual host name (that is, a service name, not a host name). The Ribbon
client or Spring Cloud LoadBalancer is used to create a full physical address.

If you want to use a @LoadBalanced WebClient.Builder, you need to have a load
balancer implementation in the classpath. We recommend that you add the Spring
Cloud LoadBalancer starter to your project. Then, ReactiveLoadBalancer is used
underneath. Alternatively, this functionality also works with spring-cloud-starter-
netflix-ribbon, but the request is handled by a non-reactive LoadBalancerClient
under the hood. Additionally, spring-cloud-starter-netflix-ribbon is already in
maintenance mode, so we do not recommend adding it to new projects. If you
have both spring-cloud-starter-loadbalancer and spring-cloud-starter-netflix-
ribbon in your classpath, Ribbon is used by default. To switch to Spring Cloud
LoadBalancer, set the spring.cloud.loadbalancer.ribbon.enabled property to false.

Retrying Failed Requests

A load-balanced RestTemplate can be configured to retry failed requests. By default, this logic is
disabled. You can enable it by adding Spring Retry to your application’s classpath. The load-
balanced RestTemplate honors some of the Ribbon configuration values related to retrying failed
requests. You can use client.ribbon.MaxAutoRetries, client.ribbon.MaxAutoRetriesNextServer, and
client.ribbon.OkToRetryOnAllOperations properties. If you would like to disable the retry logic with
Spring Retry on the classpath, you can set spring.cloud.loadbalancer.retry.enabled=false. See the
Ribbon documentation for a description of what these properties do.

If you would like to implement a BackOffPolicy in your retries, you need to create a bean of type
LoadBalancedRetryFactory and override the createBackOffPolicy method:

@Configuration
public class MyConfiguration {
 @Bean
 LoadBalancedRetryFactory retryFactory() {
 return new LoadBalancedRetryFactory() {
 @Override
 public BackOffPolicy createBackOffPolicy(String service) {
 return new ExponentialBackOffPolicy();
 }
 };
 }
}

client in the preceding examples should be replaced with your Ribbon client’s
name.

If you want to add one or more RetryListener implementations to your retry functionality, you need
to create a bean of type LoadBalancedRetryListenerFactory and return the RetryListener array you
would like to use for a given service, as the following example shows:

https://github.com/spring-projects/spring-retry
https://github.com/Netflix/ribbon/wiki/Getting-Started#the-properties-file-sample-clientproperties

@Configuration
public class MyConfiguration {
 @Bean
 LoadBalancedRetryListenerFactory retryListenerFactory() {
 return new LoadBalancedRetryListenerFactory() {
 @Override
 public RetryListener[] createRetryListeners(String service) {
 return new RetryListener[]{new RetryListener() {
 @Override
 public <T, E extends Throwable> boolean open(RetryContext
context, RetryCallback<T, E> callback) {
 //TODO Do you business...
 return true;
 }

 @Override
 public <T, E extends Throwable> void close(RetryContext
context, RetryCallback<T, E> callback, Throwable throwable) {
 //TODO Do you business...
 }

 @Override
 public <T, E extends Throwable> void onError(RetryContext
context, RetryCallback<T, E> callback, Throwable throwable) {
 //TODO Do you business...
 }
 }};
 }
 };
 }
}

3.2.5. Multiple RestTemplate Objects

If you want a RestTemplate that is not load-balanced, create a RestTemplate bean and inject it. To
access the load-balanced RestTemplate, use the @LoadBalanced qualifier when you create your @Bean,
as the following example shows:

@Configuration
public class MyConfiguration {

 @LoadBalanced
 @Bean
 RestTemplate loadBalanced() {
 return new RestTemplate();
 }

 @Primary
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }
}

public class MyClass {
@Autowired
private RestTemplate restTemplate;

 @Autowired
 @LoadBalanced
 private RestTemplate loadBalanced;

 public String doOtherStuff() {
 return loadBalanced.getForObject("http://stores/stores", String.class);
 }

 public String doStuff() {
 return restTemplate.getForObject("http://example.com", String.class);
 }
}

Notice the use of the @Primary annotation on the plain RestTemplate declaration in
the preceding example to disambiguate the unqualified @Autowired injection.

If you see errors such as java.lang.IllegalArgumentException: Can not set
org.springframework.web.client.RestTemplate field com.my.app.Foo.restTemplate

to com.sun.proxy.$Proxy89, try injecting RestOperations or setting
spring.aop.proxyTargetClass=true.

3.2.6. Multiple WebClient Objects

If you want a WebClient that is not load-balanced, create a WebClient bean and inject it. To access the
load-balanced WebClient, use the @LoadBalanced qualifier when you create your @Bean, as the
following example shows:

@Configuration
public class MyConfiguration {

 @LoadBalanced
 @Bean
 WebClient.Builder loadBalanced() {
 return WebClient.builder();
 }

 @Primary
 @Bean
 WebClient.Builder webClient() {
 return WebClient.builder();
 }
}

public class MyClass {
 @Autowired
 private WebClient.Builder webClientBuilder;

 @Autowired
 @LoadBalanced
 private WebClient.Builder loadBalanced;

 public Mono<String> doOtherStuff() {
 return loadBalanced.build().get().uri("http://stores/stores")
 .retrieve().bodyToMono(String.class);
 }

 public Mono<String> doStuff() {
 return webClientBuilder.build().get().uri("http://example.com")
 .retrieve().bodyToMono(String.class);
 }
}

3.2.7. Spring WebFlux WebClient as a Load Balancer Client

The Spring WebFlux can work with both reactive and non-reactive WebClient configurations, as the
topics describe:

• Spring WebFlux WebClient with ReactorLoadBalancerExchangeFilterFunction

• [load-balancer-exchange-filter-functionload-balancer-exchange-filter-function]

Spring WebFlux WebClient with ReactorLoadBalancerExchangeFilterFunction

You can configure WebClient to use the ReactiveLoadBalancer. If you add Spring Cloud LoadBalancer
starter to your project and if spring-webflux is on the classpath,

ReactorLoadBalancerExchangeFilterFunction is auto-configured. The following example shows how
to configure a WebClient to use reactive load-balancer:

public class MyClass {
 @Autowired
 private ReactorLoadBalancerExchangeFilterFunction lbFunction;

 public Mono<String> doOtherStuff() {
 return WebClient.builder().baseUrl("http://stores")
 .filter(lbFunction)
 .build()
 .get()
 .uri("/stores")
 .retrieve()
 .bodyToMono(String.class);
 }
}

The URI needs to use a virtual host name (that is, a service name, not a host name). The
ReactorLoadBalancer is used to create a full physical address.

By default, if you have spring-cloud-netflix-ribbon in your classpath,
LoadBalancerExchangeFilterFunction is used to maintain backward compatibility.
To use ReactorLoadBalancerExchangeFilterFunction, set the
spring.cloud.loadbalancer.ribbon.enabled property to false.

Spring WebFlux WebClient with a Non-reactive Load Balancer Client

If you you do not have Spring Cloud LoadBalancer starter in your project but you do have spring-
cloud-starter-netflix-ribbon, you can still use WebClient with LoadBalancerClient. If spring-webflux is
on the classpath, LoadBalancerExchangeFilterFunction is auto-configured. Note, however, that this
uses a non-reactive client under the hood. The following example shows how to configure a
WebClient to use load-balancer:

public class MyClass {
 @Autowired
 private LoadBalancerExchangeFilterFunction lbFunction;

 public Mono<String> doOtherStuff() {
 return WebClient.builder().baseUrl("http://stores")
 .filter(lbFunction)
 .build()
 .get()
 .uri("/stores")
 .retrieve()
 .bodyToMono(String.class);
 }
}

The URI needs to use a virtual host name (that is, a service name, not a host name). The
LoadBalancerClient is used to create a full physical address.

WARN: This approach is now deprecated. We suggest that you use WebFlux with reactive Load-
Balancer instead.

3.2.8. Ignore Network Interfaces

Sometimes, it is useful to ignore certain named network interfaces so that they can be excluded
from Service Discovery registration (for example, when running in a Docker container). A list of
regular expressions can be set to cause the desired network interfaces to be ignored. The following
configuration ignores the docker0 interface and all interfaces that start with veth:

Example 2. application.yml

spring:
 cloud:
 inetutils:
 ignoredInterfaces:
 - docker0
 - veth.*

You can also force the use of only specified network addresses by using a list of regular expressions,
as the following example shows:

Example 3. bootstrap.yml

spring:
 cloud:
 inetutils:
 preferredNetworks:
 - 192.168
 - 10.0

You can also force the use of only site-local addresses, as the following example shows:

Example 4. application.yml

spring:
 cloud:
 inetutils:
 useOnlySiteLocalInterfaces: true

See Inet4Address.html.isSiteLocalAddress() for more details about what constitutes a site-local
address.

3.2.9. HTTP Client Factories

Spring Cloud Commons provides beans for creating both Apache HTTP clients
(ApacheHttpClientFactory) and OK HTTP clients (OkHttpClientFactory). The OkHttpClientFactory bean
is created only if the OK HTTP jar is on the classpath. In addition, Spring Cloud Commons provides
beans for creating the connection managers used by both clients:
ApacheHttpClientConnectionManagerFactory for the Apache HTTP client and
OkHttpClientConnectionPoolFactory for the OK HTTP client. If you would like to customize how the
HTTP clients are created in downstream projects, you can provide your own implementation of
these beans. In addition, if you provide a bean of type HttpClientBuilder or OkHttpClient.Builder,
the default factories use these builders as the basis for the builders returned to downstream
projects. You can also disable the creation of these beans by setting
spring.cloud.httpclientfactories.apache.enabled or spring.cloud.httpclientfactories.ok.enabled

to false.

3.2.10. Enabled Features

Spring Cloud Commons provides a /features actuator endpoint. This endpoint returns features
available on the classpath and whether they are enabled. The information returned includes the
feature type, name, version, and vendor.

Feature types

There are two types of 'features': abstract and named.

https://docs.oracle.com/javase/8/docs/api/java/net/Inet4Address.html#isSiteLocalAddress--

Abstract features are features where an interface or abstract class is defined and that an
implementation the creates, such as DiscoveryClient, LoadBalancerClient, or LockService. The
abstract class or interface is used to find a bean of that type in the context. The version displayed is
bean.getClass().getPackage().getImplementationVersion().

Named features are features that do not have a particular class they implement. These features
include “Circuit Breaker”, “API Gateway”, “Spring Cloud Bus”, and others. These features require a
name and a bean type.

Declaring features

Any module can declare any number of HasFeature beans, as the following examples show:

@Bean
public HasFeatures commonsFeatures() {
 return HasFeatures.abstractFeatures(DiscoveryClient.class,
LoadBalancerClient.class);
}

@Bean
public HasFeatures consulFeatures() {
 return HasFeatures.namedFeatures(
 new NamedFeature("Spring Cloud Bus", ConsulBusAutoConfiguration.class),
 new NamedFeature("Circuit Breaker", HystrixCommandAspect.class));
}

@Bean
HasFeatures localFeatures() {
 return HasFeatures.builder()
 .abstractFeature(Something.class)
 .namedFeature(new NamedFeature("Some Other Feature", Someother.class))
 .abstractFeature(Somethingelse.class)
 .build();
}

Each of these beans should go in an appropriately guarded @Configuration.

3.2.11. Spring Cloud Compatibility Verification

Due to the fact that some users have problem with setting up Spring Cloud application, we’ve
decided to add a compatibility verification mechanism. It will break if your current setup is not
compatible with Spring Cloud requirements, together with a report, showing what exactly went
wrong.

At the moment we verify which version of Spring Boot is added to your classpath.

Example of a report

APPLICATION FAILED TO START

Description:

Your project setup is incompatible with our requirements due to following reasons:

- Spring Boot [2.1.0.RELEASE] is not compatible with this Spring Cloud release
train

Action:

Consider applying the following actions:

- Change Spring Boot version to one of the following versions [1.2.x, 1.3.x] .
You can find the latest Spring Boot versions here
[https://spring.io/projects/spring-boot#learn].
If you want to learn more about the Spring Cloud Release train compatibility, you
can visit this page [https://spring.io/projects/spring-cloud#overview] and check
the [Release Trains] section.

In order to disable this feature, set spring.cloud.compatibility-verifier.enabled to false. If you
want to override the compatible Spring Boot versions, just set the spring.cloud.compatibility-
verifier.compatible-boot-versions property with a comma separated list of compatible Spring Boot
versions.

3.3. Spring Cloud LoadBalancer
Spring Cloud provides its own client-side load-balancer abstraction and implementation. For the
load-balancing mechanism, ReactiveLoadBalancer interface has been added and a Round-Robin-
based implementation has been provided for it. In order to get instances to select from reactive
ServiceInstanceListSupplier is used. Currently we support a service-discovery-based
implementation of ServiceInstanceListSupplier that retrieves available instances from Service
Discovery using a Discovery Client available in the classpath.

3.3.1. Spring Cloud LoadBalancer integrations

In order to make it easy to use Spring Cloud LoadBalancer, we provide
ReactorLoadBalancerExchangeFilterFunction that can be used with WebClient and
BlockingLoadBalancerClient that works with RestTemplate. You can see more information and
examples of usage in the following sections:

• Spring RestTemplate as a Load Balancer Client

• Spring WebClient as a Load Balancer Client

• Spring WebFlux WebClient with ReactorLoadBalancerExchangeFilterFunction

3.3.2. Spring Cloud LoadBalancer Caching

Apart from the basic ServiceInstanceListSupplier implementation that retrieves instances via
DiscoveryClient each time it has to choose an instance, we provide two caching implementations.

Caffeine-backed LoadBalancer Cache Implementation

If you have com.github.ben-manes.caffeine:caffeine in the classpath, Caffeine-based
implementation will be used. See the LoadBalancerCacheConfiguration section for information on
how to configure it.

If you are using Caffeine, you can also override the default Caffeine Cache setup for the
LoadBalancer by passing your own Caffeine Specification in the
spring.cloud.loadbalancer.cache.caffeine.spec property.

WARN: Passing your own Caffeine specification will override any other LoadBalancerCache
settings, including General LoadBalancer Cache Configuration fields, such as ttl and capacity.

Default LoadBalancer Cache Implementation

If you do not have Caffeine in the classpath, the DefaultLoadBalancerCache, which comes
automatically with spring-cloud-starter-loadbalancer, will be used. See the
LoadBalancerCacheConfiguration section for information on how to configure it.

To use Caffeine instead of the default cache, add the com.github.ben-

manes.caffeine:caffeine dependency to classpath.

LoadBalancer Cache Configuration

You can set your own ttl value (the time after write after which entries should be expired),
expressed as Duration, by passing a String compliant with the Spring Boot String to Duration
converter syntax. as the value of the spring.cloud.loadbalancer.cache.ttl property. You can also set
your own LoadBalancer cache initial capacity by setting the value of the
spring.cloud.loadbalancer.cache.capacity property.

The default setup includes ttl set to 35 seconds and the default initialCapacity is 256.

You can also altogether disable loadBalancer caching by setting the value of
spring.cloud.loadbalancer.cache.enabled to false.

Although the basic, non-cached, implementation is useful for prototyping and
testing, it’s much less efficient than the cached versions, so we recommend always
using the cached version in production.

3.3.3. Zone-Based Load-Balancing

To enable zone-based load-balancing, we provide the ZonePreferenceServiceInstanceListSupplier.

https://github.com/ben-manes/caffeine
https://static.javadoc.io/com.github.ben-manes.caffeine/caffeine/2.2.2/com/github/benmanes/caffeine/cache/CaffeineSpec.html
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration

We use DiscoveryClient-specific zone configuration (for example, eureka.instance.metadata-

map.zone) to pick the zone that the client tries to filter available service instances for.

You can also override DiscoveryClient-specific zone setup by setting the value of
spring.cloud.loadbalancer.zone property.

For the time being, only Eureka Discovery Client is instrumented to set the
LoadBalancer zone. For other discovery client, set the
spring.cloud.loadbalancer.zone property. More instrumentations coming shortly.

To determine the zone of a retrieved ServiceInstance, we check the value under
the "zone" key in its metadata map.

The ZonePreferenceServiceInstanceListSupplier filters retrieved instances and only returns the ones
within the same zone. If the zone is null or there are no instances within the same zone, it returns
all the retrieved instances.

In order to use the zone-based load-balancing approach, you will have to instantiate a
ZonePreferenceServiceInstanceListSupplier bean in a custom configuration.

We use delegates to work with ServiceInstanceListSupplier beans. We suggest passing a
DiscoveryClientServiceInstanceListSupplier delegate in the constructor of
ZonePreferenceServiceInstanceListSupplier and, in turn, wrapping the latter with a
CachingServiceInstanceListSupplier to leverage LoadBalancer caching mechanism.

You could use this sample configuration to set it up:

public class CustomLoadBalancerConfiguration {

 @Bean
 public ServiceInstanceListSupplier discoveryClientServiceInstanceListSupplier(
 ConfigurableApplicationContext context) {
 return ServiceInstanceListSuppliers.builder()
 .withDiscoveryClient()
 .withZonePreference()
 .withCaching()
 .build(context);
 }
}

3.3.4. Instance Health-Check for LoadBalancer

It is possible to enable a scheduled HealthCheck for the LoadBalancer. The
HealthCheckServiceInstanceListSupplier is provided for that. It regularly verifies if the instances
provided by a delegate ServiceInstanceListSupplier are still alive and only returns the healthy
instances, unless there are none - then it returns all the retrieved instances.

This mechanism is particularly helpful while using the SimpleDiscoveryClient. For
the clients backed by an actual Service Registry, it’s not necessary to use, as we
already get healthy instances after querying the external ServiceDiscovery.

TIP

This supplier is also recommended for setups with a small number of instances per service in
order to avoid retrying calls on a failing instance.

HealthCheckServiceInstanceListSupplier uses properties prefixed with
spring.cloud.loadbalancer.healthcheck. You can set the initialDelay and interval for the scheduler.
You can set the default path for the healthcheck URL by setting the value of the
spring.cloud.loadbalancer.healthcheck.path.default. You can also set a specific value for any given
service by setting the value of the spring.cloud.loadbalancer.healthcheck.path.[SERVICE_ID],
substituting the [SERVICE_ID] with the correct ID of your service. If the path is not set,
/actuator/health is used by default.

TIP

If you rely on the default path (/actuator/health), make sure you add spring-boot-starter-
actuator to your collaborator’s dependencies, unless you are planning to add such an endpoint
on your own.

In order to use the health-check scheduler approach, you will have to instantiate a
HealthCheckServiceInstanceListSupplier bean in a custom configuration.

We use delegates to work with ServiceInstanceListSupplier beans. We suggest passing a
DiscoveryClientServiceInstanceListSupplier delegate in the constructor of
HealthCheckServiceInstanceListSupplier.

You could use this sample configuration to set it up:

public class CustomLoadBalancerConfiguration {

 @Bean
 public ServiceInstanceListSupplier discoveryClientServiceInstanceListSupplier(
 ConfigurableApplicationContext context) {
 return ServiceInstanceListSupplier.builder()
 .withDiscoveryClient()
 .withHealthChecks()
 .build(context);
 }
 }

NOTE

HealthCheckServiceInstanceListSupplier has its own caching mechanism based on Reactor Flux
replay(), therefore, if it’s being used, you may want to skip wrapping that supplier with
CachingServiceInstanceListSupplier.

3.3.5. Spring Cloud LoadBalancer Starter

We also provide a starter that allows you to easily add Spring Cloud LoadBalancer in a Spring Boot
app. In order to use it, just add org.springframework.cloud:spring-cloud-starter-loadbalancer to
your Spring Cloud dependencies in your build file.

 Spring Cloud LoadBalancer starter includes Spring Boot Caching and Evictor.

If you have both Ribbon and Spring Cloud LoadBalancer int the classpath, in order
to maintain backward compatibility, Ribbon-based implementations will be used
by default. In order to switch to using Spring Cloud LoadBalancer under the hood,
make sure you set the property spring.cloud.loadbalancer.ribbon.enabled to false.

3.3.6. Passing Your Own Spring Cloud LoadBalancer Configuration

You can also use the @LoadBalancerClient annotation to pass your own load-balancer client
configuration, passing the name of the load-balancer client and the configuration class, as follows:

@Configuration
@LoadBalancerClient(value = "stores", configuration =
CustomLoadBalancerConfiguration.class)
public class MyConfiguration {

 @Bean
 @LoadBalanced
 public WebClient.Builder loadBalancedWebClientBuilder() {
 return WebClient.builder();
 }
}

TIP

In order to make working on your own LoadBalancer configuration easier, we have added
a builder() method to the ServiceInstanceListSupplier class.

TIP

You can also use our alternative predefined configurations in place of the default ones by
setting the value of spring.cloud.loadbalancer.configurations property to zone-preference
to use ZonePreferenceServiceInstanceListSupplier with caching or to health-check to use
HealthCheckServiceInstanceListSupplier with caching.

You can use this feature to instantiate different implementations of ServiceInstanceListSupplier or
ReactorLoadBalancer, either written by you, or provided by us as alternatives (for example
ZonePreferenceServiceInstanceListSupplier) to override the default setup.

You can see an example of a custom configuration here.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-caching.html
https://github.com/stoyanr

The annotation value arguments (stores in the example above) specifies the
service id of the service that we should send the requests to with the given custom
configuration.

You can also pass multiple configurations (for more than one load-balancer client) through the
@LoadBalancerClients annotation, as the following example shows:

@Configuration
@LoadBalancerClients({@LoadBalancerClient(value = "stores", configuration =
StoresLoadBalancerClientConfiguration.class), @LoadBalancerClient(value =
"customers", configuration = CustomersLoadBalancerClientConfiguration.class)})
public class MyConfiguration {

 @Bean
 @LoadBalanced
 public WebClient.Builder loadBalancedWebClientBuilder() {
 return WebClient.builder();
 }
}

3.4. Spring Cloud Circuit Breaker

3.4.1. Introduction

Spring Cloud Circuit breaker provides an abstraction across different circuit breaker
implementations. It provides a consistent API to use in your applications, letting you, the developer,
choose the circuit breaker implementation that best fits your needs for your application.

Supported Implementations

Spring Cloud supports the following circuit-breaker implementations:

• Netflix Hystrix

• Resilience4J

• Sentinel

• Spring Retry

3.4.2. Core Concepts

To create a circuit breaker in your code, you can use the CircuitBreakerFactory API. When you
include a Spring Cloud Circuit Breaker starter on your classpath, a bean that implements this API is
automatically created for you. The following example shows a simple example of how to use this
API:

https://github.com/Netflix/Hystrix
https://github.com/resilience4j/resilience4j
https://github.com/alibaba/Sentinel
https://github.com/spring-projects/spring-retry

@Service
public static class DemoControllerService {
 private RestTemplate rest;
 private CircuitBreakerFactory cbFactory;

 public DemoControllerService(RestTemplate rest, CircuitBreakerFactory
cbFactory) {
 this.rest = rest;
 this.cbFactory = cbFactory;
 }

 public String slow() {
 return cbFactory.create("slow").run(() -> rest.getForObject("/slow",
String.class), throwable -> "fallback");
 }

}

The CircuitBreakerFactory.create API creates an instance of a class called CircuitBreaker. The run
method takes a Supplier and a Function. The Supplier is the code that you are going to wrap in a
circuit breaker. The Function is the fallback that is executed if the circuit breaker is tripped. The
function is passed the Throwable that caused the fallback to be triggered. You can optionally exclude
the fallback if you do not want to provide one.

Circuit Breakers In Reactive Code

If Project Reactor is on the class path, you can also use ReactiveCircuitBreakerFactory for your
reactive code. The following example shows how to do so:

@Service
public static class DemoControllerService {
 private ReactiveCircuitBreakerFactory cbFactory;
 private WebClient webClient;

 public DemoControllerService(WebClient webClient,
ReactiveCircuitBreakerFactory cbFactory) {
 this.webClient = webClient;
 this.cbFactory = cbFactory;
 }

 public Mono<String> slow() {
 return
webClient.get().uri("/slow").retrieve().bodyToMono(String.class).transform(
 it -> cbFactory.create("slow").run(it, throwable -> return
Mono.just("fallback")));
 }
}

The ReactiveCircuitBreakerFactory.create API creates an instance of a class called
ReactiveCircuitBreaker. The run method takes a Mono or a Flux and wraps it in a circuit breaker. You
can optionally profile a fallback Function, which will be called if the circuit breaker is tripped and is
passed the Throwable that caused the failure.

3.4.3. Configuration

You can configure your circuit breakers by creating beans of type Customizer. The Customizer
interface has a single method (called customize) that takes the Object to customize.

For detailed information on how to customize a given implementation see the following
documentation:

• Hystrix

• Resilience4J

• Sentinal

• Spring Retry

Some CircuitBreaker implementations such as Resilience4JCircuitBreaker call customize method
every time CircuitBreaker#run is called. It can be inefficient. In that case, you can use
CircuitBreaker#once method. It is useful where calling customize many times doesn’t make sense,
for example, in case of consuming Resilience4j’s events.

The following example shows the way for each
io.github.resilience4j.circuitbreaker.CircuitBreaker to consume events.

../../../../spring-cloud-netflix/current/reference/html/#circuit-breaker-spring-cloud-circuit-breaker-with-hystrix
../../../../spring-cloud-circuitbreaker/current/reference/html/spring-cloud-circuitbreaker.html#configuring-resilience4j-circuit-breakers
https://github.com/alibaba/spring-cloud-alibaba/blob/master/spring-cloud-alibaba-docs/src/main/asciidoc/circuitbreaker-sentinel.adoc#circuit-breaker-spring-cloud-circuit-breaker-with-sentinel—configuring-sentinel-circuit-breakers
../../../../spring-cloud-circuitbreaker/current/reference/html/spring-cloud-circuitbreaker.html#configuring-spring-retry-circuit-breakers
https://resilience4j.readme.io/docs/circuitbreaker#section-consume-emitted-circuitbreakerevents

Customizer.once(circuitBreaker -> {
 circuitBreaker.getEventPublisher()
 .onStateTransition(event -> log.info("{}: {}", event.getCircuitBreakerName(),
event.getStateTransition()));
}, CircuitBreaker::getName)

3.5. CachedRandomPropertySource
Spring Cloud Context provides a PropertySource that caches random values based on a key. Outside
of the caching functionality it works the same as Spring Boot’s RandomValuePropertySource. This
random value might be useful in the case where you want a random value that is consistent even
after the Spring Application context restarts. The property value takes the form of
cachedrandom.[yourkey].[type] where yourkey is the key in the cache. The type value can be any type
supported by Spring Boot’s RandomValuePropertySource.

myrandom=${cachedrandom.appname.value}

3.6. Configuration Properties
To see the list of all Spring Cloud Commons related configuration properties please check the
Appendix page.

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/env/RandomValuePropertySource.java
appendix.html
appendix.html

Chapter 4. Spring Cloud Config
Hoxton.SR5

Spring Cloud Config provides server-side and client-side support for externalized configuration in a
distributed system. With the Config Server, you have a central place to manage external properties
for applications across all environments. The concepts on both client and server map identically to
the Spring Environment and PropertySource abstractions, so they fit very well with Spring
applications but can be used with any application running in any language. As an application
moves through the deployment pipeline from dev to test and into production, you can manage the
configuration between those environments and be certain that applications have everything they
need to run when they migrate. The default implementation of the server storage backend uses git,
so it easily supports labelled versions of configuration environments as well as being accessible to a
wide range of tooling for managing the content. It is easy to add alternative implementations and
plug them in with Spring configuration.

4.1. Quick Start
This quick start walks through using both the server and the client of Spring Cloud Config Server.

First, start the server, as follows:

$ cd spring-cloud-config-server
$../mvnw spring-boot:run

The server is a Spring Boot application, so you can run it from your IDE if you prefer to do so (the
main class is ConfigServerApplication).

Next try out a client, as follows:

$ curl localhost:8888/foo/development
{"name":"foo","label":"master","propertySources":[
 {"name":"https://github.com/scratches/config-repo/foo-
development.properties","source":{"bar":"spam"}},
 {"name":"https://github.com/scratches/config-
repo/foo.properties","source":{"foo":"bar"}}
]}

The default strategy for locating property sources is to clone a git repository (at
spring.cloud.config.server.git.uri) and use it to initialize a mini SpringApplication. The mini-
application’s Environment is used to enumerate property sources and publish them at a JSON
endpoint.

The HTTP service has resources in the following form:

/{application}/{profile}[/{label}]
/{application}-{profile}.yml
/{label}/{application}-{profile}.yml
/{application}-{profile}.properties
/{label}/{application}-{profile}.properties

where application is injected as the spring.config.name in the SpringApplication (what is normally
application in a regular Spring Boot app), profile is an active profile (or comma-separated list of
properties), and label is an optional git label (defaults to master.)

Spring Cloud Config Server pulls configuration for remote clients from various sources. The
following example gets configuration from a git repository (which must be provided), as shown in
the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo

Other sources are any JDBC compatible database, Subversion, Hashicorp Vault, Credhub and local
filesystems.

4.1.1. Client Side Usage

To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-config-client (for an example, see the test cases for the config-client or the sample
application). The most convenient way to add the dependency is with a Spring Boot starter
org.springframework.cloud:spring-cloud-starter-config. There is also a parent pom and BOM
(spring-cloud-starter-parent) for Maven users and a Spring IO version management properties file
for Gradle and Spring CLI users. The following example shows a typical Maven configuration:

pom.xml

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>{spring-boot-docs-version}</version>
 <relativePath /> <!-- lookup parent from repository -->
</parent>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>{spring-cloud-version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

<!-- repositories also needed for snapshots and milestones -->

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

 @RequestMapping("/")
 public String home() {
 return "Hello World!";
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}

When this HTTP server runs, it picks up the external configuration from the default local config
server (if it is running) on port 8888. To modify the startup behavior, you can change the location of
the config server by using bootstrap.properties (similar to application.properties but for the
bootstrap phase of an application context), as shown in the following example:

spring.cloud.config.uri: http://myconfigserver.com

By default, if no application name is set, application will be used. To modify the name, the following
property can be added to the bootstrap.properties file:

spring.application.name: myapp

When setting the property ${spring.application.name} do not prefix your app
name with the reserved word application- to prevent issues resolving the correct
property source.

The bootstrap properties show up in the /env endpoint as a high-priority property source, as shown
in the following example.

$ curl localhost:8080/env
{
 "profiles":[],
 "configService:https://github.com/spring-cloud-samples/config-
repo/bar.properties":{"foo":"bar"},
 "servletContextInitParams":{},
 "systemProperties":{...},
 ...
}

A property source called configService:<URL of remote repository>/<file name> contains the foo

property with a value of bar and is the highest priority.

The URL in the property source name is the git repository, not the config server
URL.

4.2. Spring Cloud Config Server
Spring Cloud Config Server provides an HTTP resource-based API for external configuration (name-
value pairs or equivalent YAML content). The server is embeddable in a Spring Boot application, by
using the @EnableConfigServer annotation. Consequently, the following application is a config
server:

ConfigServer.java

@SpringBootApplication
@EnableConfigServer
public class ConfigServer {
 public static void main(String[] args) {
 SpringApplication.run(ConfigServer.class, args);
 }
}

Like all Spring Boot applications, it runs on port 8080 by default, but you can switch it to the more
conventional port 8888 in various ways. The easiest, which also sets a default configuration
repository, is by launching it with spring.config.name=configserver (there is a configserver.yml in
the Config Server jar). Another is to use your own application.properties, as shown in the
following example:

application.properties

server.port: 8888
spring.cloud.config.server.git.uri: file://${user.home}/config-repo

where ${user.home}/config-repo is a git repository containing YAML and properties files.

On Windows, you need an extra "/" in the file URL if it is absolute with a drive
prefix (for example,/${user.home}/config-repo).

file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo

The following listing shows a recipe for creating the git repository in the preceding
example:

$ cd $HOME
$ mkdir config-repo
$ cd config-repo
$ git init .
$ echo info.foo: bar > application.properties
$ git add -A .
$ git commit -m "Add application.properties"

Using the local filesystem for your git repository is intended for testing only. You
should use a server to host your configuration repositories in production.

The initial clone of your configuration repository can be quick and efficient if you
keep only text files in it. If you store binary files, especially large ones, you may
experience delays on the first request for configuration or encounter out of
memory errors in the server.

4.2.1. Environment Repository

Where should you store the configuration data for the Config Server? The strategy that governs this
behaviour is the EnvironmentRepository, serving Environment objects. This Environment is a shallow
copy of the domain from the Spring Environment (including propertySources as the main feature).
The Environment resources are parametrized by three variables:

• {application}, which maps to spring.application.name on the client side.

• {profile}, which maps to spring.profiles.active on the client (comma-separated list).

• {label}, which is a server side feature labelling a "versioned" set of config files.

Repository implementations generally behave like a Spring Boot application, loading configuration
files from a spring.config.name equal to the {application} parameter, and spring.profiles.active
equal to the {profiles} parameter. Precedence rules for profiles are also the same as in a regular
Spring Boot application: Active profiles take precedence over defaults, and, if there are multiple
profiles, the last one wins (similar to adding entries to a Map).

The following sample client application has this bootstrap configuration:

bootstrap.yml

spring:
 application:
 name: foo
 profiles:
 active: dev,mysql

(As usual with a Spring Boot application, these properties could also be set by environment
variables or command line arguments).

If the repository is file-based, the server creates an Environment from application.yml (shared
between all clients) and foo.yml (with foo.yml taking precedence). If the YAML files have documents
inside them that point to Spring profiles, those are applied with higher precedence (in order of the
profiles listed). If there are profile-specific YAML (or properties) files, these are also applied with
higher precedence than the defaults. Higher precedence translates to a PropertySource listed earlier
in the Environment. (These same rules apply in a standalone Spring Boot application.)

You can set spring.cloud.config.server.accept-empty to false so that Server would return a HTTP 404
status, if the application is not found.By default, this flag is set to true.

Git Backend

The default implementation of EnvironmentRepository uses a Git backend, which is very convenient
for managing upgrades and physical environments and for auditing changes. To change the
location of the repository, you can set the spring.cloud.config.server.git.uri configuration
property in the Config Server (for example in application.yml). If you set it with a file: prefix, it
should work from a local repository so that you can get started quickly and easily without a server.
However, in that case, the server operates directly on the local repository without cloning it (it does
not matter if it is not bare because the Config Server never makes changes to the "remote"
repository). To scale the Config Server up and make it highly available, you need to have all
instances of the server pointing to the same repository, so only a shared file system would work.
Even in that case, it is better to use the ssh: protocol for a shared filesystem repository, so that the
server can clone it and use a local working copy as a cache.

This repository implementation maps the {label} parameter of the HTTP resource to a git label
(commit id, branch name, or tag). If the git branch or tag name contains a slash (/), then the label in
the HTTP URL should instead be specified with the special string (_) (to avoid ambiguity with other
URL paths). For example, if the label is foo/bar, replacing the slash would result in the following
label: foo(_)bar. The inclusion of the special string (_) can also be applied to the {application}
parameter. If you use a command-line client such as curl, be careful with the brackets in the
URL — you should escape them from the shell with single quotes ('').

Skipping SSL Certificate Validation

The configuration server’s validation of the Git server’s SSL certificate can be disabled by setting
the git.skipSslValidation property to true (default is false).

spring:
 cloud:
 config:
 server:
 git:
 uri: https://example.com/my/repo
 skipSslValidation: true

Setting HTTP Connection Timeout

You can configure the time, in seconds, that the configuration server will wait to acquire an HTTP
connection. Use the git.timeout property.

spring:
 cloud:
 config:
 server:
 git:
 uri: https://example.com/my/repo
 timeout: 4

Placeholders in Git URI

Spring Cloud Config Server supports a git repository URL with placeholders for the {application}
and {profile} (and {label} if you need it, but remember that the label is applied as a git label
anyway). So you can support a “one repository per application” policy by using a structure similar
to the following:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/myorg/{application}

You can also support a “one repository per profile” policy by using a similar pattern but with
{profile}.

Additionally, using the special string "(_)" within your {application} parameters can enable support
for multiple organizations, as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/{application}

where {application} is provided at request time in the following format:
organization(_)application.

Pattern Matching and Multiple Repositories

Spring Cloud Config also includes support for more complex requirements with pattern matching
on the application and profile name. The pattern format is a comma-separated list of
{application}/{profile} names with wildcards (note that a pattern beginning with a wildcard may

need to be quoted), as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 repos:
 simple: https://github.com/simple/config-repo
 special:
 pattern: special*/dev*,*special*/dev*
 uri: https://github.com/special/config-repo
 local:
 pattern: local*
 uri: file:/home/configsvc/config-repo

If {application}/{profile} does not match any of the patterns, it uses the default URI defined under
spring.cloud.config.server.git.uri. In the above example, for the “simple” repository, the pattern
is simple/* (it only matches one application named simple in all profiles). The “local” repository
matches all application names beginning with local in all profiles (the /* suffix is added
automatically to any pattern that does not have a profile matcher).

The “one-liner” short cut used in the “simple” example can be used only if the only
property to be set is the URI. If you need to set anything else (credentials, pattern,
and so on) you need to use the full form.

The pattern property in the repo is actually an array, so you can use a YAML array (or [0], [1], etc.
suffixes in properties files) to bind to multiple patterns. You may need to do so if you are going to
run apps with multiple profiles, as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 repos:
 development:
 pattern:
 - '*/development'
 - '*/staging'
 uri: https://github.com/development/config-repo
 staging:
 pattern:
 - '*/qa'
 - '*/production'
 uri: https://github.com/staging/config-repo

Spring Cloud guesses that a pattern containing a profile that does not end in *
implies that you actually want to match a list of profiles starting with this pattern
(so */staging is a shortcut for ["*/staging", "*/staging,*"], and so on). This is
common where, for instance, you need to run applications in the “development”
profile locally but also the “cloud” profile remotely.

Every repository can also optionally store config files in sub-directories, and patterns to search for
those directories can be specified as searchPaths. The following example shows a config file at the
top level:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 searchPaths: foo,bar*

In the preceding example, the server searches for config files in the top level and in the foo/ sub-
directory and also any sub-directory whose name begins with bar.

By default, the server clones remote repositories when configuration is first requested. The server
can be configured to clone the repositories at startup, as shown in the following top-level example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://git/common/config-repo.git
 repos:
 team-a:
 pattern: team-a-*
 cloneOnStart: true
 uri: https://git/team-a/config-repo.git
 team-b:
 pattern: team-b-*
 cloneOnStart: false
 uri: https://git/team-b/config-repo.git
 team-c:
 pattern: team-c-*
 uri: https://git/team-a/config-repo.git

In the preceding example, the server clones team-a’s config-repo on startup, before it accepts any
requests. All other repositories are not cloned until configuration from the repository is requested.

Setting a repository to be cloned when the Config Server starts up can help to
identify a misconfigured configuration source (such as an invalid repository URI)
quickly, while the Config Server is starting up. With cloneOnStart not enabled for a
configuration source, the Config Server may start successfully with a
misconfigured or invalid configuration source and not detect an error until an
application requests configuration from that configuration source.

Authentication

To use HTTP basic authentication on the remote repository, add the username and password
properties separately (not in the URL), as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 username: trolley
 password: strongpassword

If you do not use HTTPS and user credentials, SSH should also work out of the box when you store
keys in the default directories (~/.ssh) and the URI points to an SSH location, such as
git@github.com:configuration/cloud-configuration. It is important that an entry for the Git server
be present in the ~/.ssh/known_hosts file and that it is in ssh-rsa format. Other formats (such as
ecdsa-sha2-nistp256) are not supported. To avoid surprises, you should ensure that only one entry
is present in the known_hosts file for the Git server and that it matches the URL you provided to the
config server. If you use a hostname in the URL, you want to have exactly that (not the IP) in the
known_hosts file. The repository is accessed by using JGit, so any documentation you find on that
should be applicable. HTTPS proxy settings can be set in ~/.git/config or (in the same way as for
any other JVM process) with system properties (-Dhttps.proxyHost and -Dhttps.proxyPort).

If you do not know where your ~/.git directory is, use git config --global to
manipulate the settings (for example, git config --global http.sslVerify false).

JGit requires RSA keys in PEM format. Below is an example ssh-keygen (from openssh) command
that will generate a key in the corect format:

ssh-keygen -m PEM -t rsa -b 4096 -f ~/config_server_deploy_key.rsa

Warning: When working with SSH keys, the expected ssh private-key must begin with -----BEGIN
RSA PRIVATE KEY-----. If the key starts with -----BEGIN OPENSSH PRIVATE KEY----- then the RSA key
will not load when spring-cloud-config server is started. The error looks like:

- Error in object 'spring.cloud.config.server.git': codes
[PrivateKeyIsValid.spring.cloud.config.server.git,PrivateKeyIsValid]; arguments
[org.springframework.context.support.DefaultMessageSourceResolvable: codes
[spring.cloud.config.server.git.,]; arguments []; default message []]; default message
[Property 'spring.cloud.config.server.git.privateKey' is not a valid private key]

To correct the above error the RSA key must be converted to PEM format. An example using
openssh is provided above for generating a new key in the appropriate format.

Authentication with AWS CodeCommit

Spring Cloud Config Server also supports AWS CodeCommit authentication. AWS CodeCommit uses
an authentication helper when using Git from the command line. This helper is not used with the
JGit library, so a JGit CredentialProvider for AWS CodeCommit is created if the Git URI matches the
AWS CodeCommit pattern. AWS CodeCommit URIs follow this pattern://git-
codecommit.${AWS_REGION}.amazonaws.com/${repopath}.

If you provide a username and password with an AWS CodeCommit URI, they must be the AWS
accessKeyId and secretAccessKey that provide access to the repository. If you do not specify a
username and password, the accessKeyId and secretAccessKey are retrieved by using the AWS
Default Credential Provider Chain.

If your Git URI matches the CodeCommit URI pattern (shown earlier), you must provide valid AWS
credentials in the username and password or in one of the locations supported by the default
credential provider chain. AWS EC2 instances may use IAM Roles for EC2 Instances.

The aws-java-sdk-core jar is an optional dependency. If the aws-java-sdk-core jar is
not on your classpath, the AWS Code Commit credential provider is not created,
regardless of the git server URI.

Authentication with Google Cloud Source

Spring Cloud Config Server also supports authenticating against Google Cloud Source repositories.

If your Git URI uses the http or https protocol and the domain name is
source.developers.google.com, the Google Cloud Source credentials provider will be used. A Google
Cloud Source repository URI has the format source.developers.google.com/p/${GCP_PROJECT}/r/
${REPO}. To obtain the URI for your repository, click on "Clone" in the Google Cloud Source UI, and
select "Manually generated credentials". Do not generate any credentials, simply copy the displayed
URI.

The Google Cloud Source credentials provider will use Google Cloud Platform application default
credentials. See Google Cloud SDK documentation on how to create application default credentials
for a system. This approach will work for user accounts in dev environments and for service
accounts in production environments.

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://cloud.google.com/source-repositories/
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://cloud.google.com/sdk/gcloud/reference/auth/application-default/login

com.google.auth:google-auth-library-oauth2-http is an optional dependency. If the
google-auth-library-oauth2-http jar is not on your classpath, the Google Cloud
Source credential provider is not created, regardless of the git server URI.

Git SSH configuration using properties

By default, the JGit library used by Spring Cloud Config Server uses SSH configuration files such as
~/.ssh/known_hosts and /etc/ssh/ssh_config when connecting to Git repositories by using an SSH
URI. In cloud environments such as Cloud Foundry, the local filesystem may be ephemeral or not
easily accessible. For those cases, SSH configuration can be set by using Java properties. In order to
activate property-based SSH configuration, the
spring.cloud.config.server.git.ignoreLocalSshSettings property must be set to true, as shown in
the following example:

 spring:
 cloud:
 config:
 server:
 git:
 uri: git@gitserver.com:team/repo1.git
 ignoreLocalSshSettings: true
 hostKey: someHostKey
 hostKeyAlgorithm: ssh-rsa
 privateKey: |
 -----BEGIN RSA PRIVATE KEY-----

MIIEpgIBAAKCAQEAx4UbaDzY5xjW6hc9jwN0mX33XpTDVW9WqHp5AKaRbtAC3DqX

IXFMPgw3K45jxRb93f8tv9vL3rD9CUG1Gv4FM+o7ds7FRES5RTjv2RT/JVNJCoqF

ol8+ngLqRZCyBtQN7zYByWMRirPGoDUqdPYrj2yq+ObBBNhg5N+hOwKjjpzdj2Ud

1l7R+wxIqmJo1IYyy16xS8WsjyQuyC0lL456qkd5BDZ0Ag8j2X9H9D5220Ln7s9i

oezTipXipS7p7Jekf3Ywx6abJwOmB0rX79dV4qiNcGgzATnG1PkXxqt76VhcGa0W

DDVHEEYGbSQ6hIGSh0I7BQun0aLRZojfE3gqHQIDAQABAoIBAQCZmGrk8BK6tXCd

fY6yTiKxFzwb38IQP0ojIUWNrq0+9Xt+NsypviLHkXfXXCKKU4zUHeIGVRq5MN9b

BO56/RrcQHHOoJdUWuOV2qMqJvPUtC0CpGkD+valhfD75MxoXU7s3FK7yjxy3rsG

EmfA6tHV8/4a5umo5TqSd2YTm5B19AhRqiuUVI1wTB41DjULUGiMYrnYrhzQlVvj

5MjnKTlYu3V8PoYDfv1GmxPPh6vlpafXEeEYN8VB97e5x3DGHjZ5UrurAmTLTdO8

+AahyoKsIY612TkkQthJlt7FJAwnCGMgY6podzzvzICLFmmTXYiZ/28I4BX/mOSe

pZVnfRixAoGBAO6Uiwt40/PKs53mCEWngslSCsh9oGAaLTf/XdvMns5VmuyyAyKG

ti8Ol5wqBMi4GIUzjbgUvSUt+IowIrG3f5tN85wpjQ1UGVcpTnl5Qo9xaS1PFScQ

xrtWZ9eNj2TsIAMp/svJsyGG3OibxfnuAIpSXNQiJPwRlW3irzpGgVx/AoGBANYW

dnhshUcEHMJi3aXwR12OTDnaLoanVGLwLnkqLSYUZA7ZegpKq90UAuBdcEfgdpyi

PhKpeaeIiAaNnFo8m9aoTKr+7I6/uMTlwrVnfrsVTZv3orxjwQV20YIBCVRKD1uX

VhE0ozPZxwwKSPAFocpyWpGHGreGF1AIYBE9UBtjAoGBAI8bfPgJpyFyMiGBjO6z

FwlJc/xlFqDusrcHL7abW5qq0L4v3R+FrJw3ZYufzLTVcKfdj6GelwJJO+8wBm+R

gTKYJItEhT48duLIfTDyIpHGVm9+I1MGhh5zKuCqIhxIYr9jHloBB7kRm0rPvYY4

VAykcNgyDvtAVODP+4m6JvhjAoGBALbtTqErKN47V0+JJpapLnF0KxGrqeGIjIRV

cYA6V4WYGr7NeIfesecfOC356PyhgPfpcVyEztwlvwTKb3RzIT1TZN8fH4YBr6Ee

KTbTjefRFhVUjQqnucAvfGi29f+9oE3Ei9f7wA+H35ocF6JvTYUsHNMIO/3gZ38N

CPjyCMa9AoGBAMhsITNe3QcbsXAbdUR00dDsIFVROzyFJ2m40i4KCRM35bC/BIBs

q0TY3we+ERB40U8Z2BvU61QuwaunJ2+uGadHo58VSVdggqAo0BSkH58innKKt96J
 69pcVH/4rmLbXdcmNYGm6iu+MlPQk4BUZknHSmVHIFdJ0EPupVaQ8RHT
 -----END RSA PRIVATE KEY-----

The following table describes the SSH configuration properties.

Table 2. SSH Configuration Properties

Property Name Remarks

ignoreLocalSshSettings If true, use property-based instead of file-based
SSH config. Must be set at as
spring.cloud.config.server.git.ignoreLocalSshS

ettings, not inside a repository definition.

privateKey Valid SSH private key. Must be set if
ignoreLocalSshSettings is true and Git URI is SSH
format.

hostKey Valid SSH host key. Must be set if
hostKeyAlgorithm is also set.

hostKeyAlgorithm One of ssh-dss, ssh-rsa, ecdsa-sha2-nistp256,
ecdsa-sha2-nistp384, or ecdsa-sha2-nistp521.
Must be set if hostKey is also set.

strictHostKeyChecking true or false. If false, ignore errors with host
key.

knownHostsFile Location of custom .known_hosts file.

Property Name Remarks

preferredAuthentications Override server authentication method order.
This should allow for evading login prompts if
server has keyboard-interactive authentication
before the publickey method.

Placeholders in Git Search Paths

Spring Cloud Config Server also supports a search path with placeholders for the {application} and
{profile} (and {label} if you need it), as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 searchPaths: '{application}'

The preceding listing causes a search of the repository for files in the same name as the directory
(as well as the top level). Wildcards are also valid in a search path with placeholders (any matching
directory is included in the search).

Force pull in Git Repositories

As mentioned earlier, Spring Cloud Config Server makes a clone of the remote git repository in case
the local copy gets dirty (for example, folder content changes by an OS process) such that Spring
Cloud Config Server cannot update the local copy from remote repository.

To solve this issue, there is a force-pull property that makes Spring Cloud Config Server force pull
from the remote repository if the local copy is dirty, as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 force-pull: true

If you have a multiple-repositories configuration, you can configure the force-pull property per
repository, as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://git/common/config-repo.git
 force-pull: true
 repos:
 team-a:
 pattern: team-a-*
 uri: https://git/team-a/config-repo.git
 force-pull: true
 team-b:
 pattern: team-b-*
 uri: https://git/team-b/config-repo.git
 force-pull: true
 team-c:
 pattern: team-c-*
 uri: https://git/team-a/config-repo.git

 The default value for force-pull property is false.

Deleting untracked branches in Git Repositories

As Spring Cloud Config Server has a clone of the remote git repository after check-outing branch to
local repo (e.g fetching properties by label) it will keep this branch forever or till the next server
restart (which creates new local repo). So there could be a case when remote branch is deleted but
local copy of it is still available for fetching. And if Spring Cloud Config Server client service starts
with --spring.cloud.config.label=deletedRemoteBranch,master it will fetch properties from
deletedRemoteBranch local branch, but not from master.

In order to keep local repository branches clean and up to remote - deleteUntrackedBranches
property could be set. It will make Spring Cloud Config Server force delete untracked branches
from local repository. Example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 deleteUntrackedBranches: true

 The default value for deleteUntrackedBranches property is false.

Git Refresh Rate

You can control how often the config server will fetch updated configuration data from your Git
backend by using spring.cloud.config.server.git.refreshRate. The value of this property is
specified in seconds. By default the value is 0, meaning the config server will fetch updated
configuration from the Git repo every time it is requested.

Version Control Backend Filesystem Use

With VCS-based backends (git, svn), files are checked out or cloned to the local
filesystem. By default, they are put in the system temporary directory with a prefix
of config-repo-. On linux, for example, it could be /tmp/config-repo-<randomid>.
Some operating systems routinely clean out temporary directories. This can lead to
unexpected behavior, such as missing properties. To avoid this problem, change
the directory that Config Server uses by setting
spring.cloud.config.server.git.basedir or
spring.cloud.config.server.svn.basedir to a directory that does not reside in the
system temp structure.

File System Backend

There is also a “native” profile in the Config Server that does not use Git but loads the config files
from the local classpath or file system (any static URL you want to point to with
spring.cloud.config.server.native.searchLocations). To use the native profile, launch the Config
Server with spring.profiles.active=native.

Remember to use the file: prefix for file resources (the default without a prefix is
usually the classpath). As with any Spring Boot configuration, you can embed ${}
-style environment placeholders, but remember that absolute paths in Windows
require an extra / (for example, /${user.home}/config-repo).

The default value of the searchLocations is identical to a local Spring Boot
application (that is, [classpath:/, classpath:/config, file:./, file:./config]).
This does not expose the application.properties from the server to all clients,
because any property sources present in the server are removed before being sent
to the client.

A filesystem backend is great for getting started quickly and for testing. To use it in
production, you need to be sure that the file system is reliable and shared across
all instances of the Config Server.

The search locations can contain placeholders for {application}, {profile}, and {label}. In this way,
you can segregate the directories in the path and choose a strategy that makes sense for you (such
as subdirectory per application or subdirectory per profile).

If you do not use placeholders in the search locations, this repository also appends the {label}
parameter of the HTTP resource to a suffix on the search path, so properties files are loaded from
each search location and a subdirectory with the same name as the label (the labelled properties

https://serverfault.com/questions/377348/when-does-tmp-get-cleared/377349#377349
file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo

take precedence in the Spring Environment). Thus, the default behaviour with no placeholders is
the same as adding a search location ending with /{label}/. For example, file:/tmp/config is the
same as file:/tmp/config,file:/tmp/config/{label}. This behavior can be disabled by setting
spring.cloud.config.server.native.addLabelLocations=false.

Vault Backend

Spring Cloud Config Server also supports Vault as a backend.

Vault is a tool for securely accessing secrets. A secret is anything that to which you want to
tightly control access, such as API keys, passwords, certificates, and other sensitive
information. Vault provides a unified interface to any secret while providing tight access
control and recording a detailed audit log.

For more information on Vault, see the Vault quick start guide.

To enable the config server to use a Vault backend, you can run your config server with the vault
profile. For example, in your config server’s application.properties, you can add
spring.profiles.active=vault.

By default, the config server assumes that your Vault server runs at 127.0.0.1:8200. It also assumes
that the name of backend is secret and the key is application. All of these defaults can be
configured in your config server’s application.properties. The following table describes
configurable Vault properties:

Name Default Value

host 127.0.0.1

port 8200

scheme http

backend secret

defaultKey application

profileSeparator ,

kvVersion 1

skipSslValidation false

timeout 5

namespace null

All of the properties in the preceding table must be prefixed with
spring.cloud.config.server.vault or placed in the correct Vault section of a
composite configuration.

All configurable properties can be found in
org.springframework.cloud.config.server.environment.VaultEnvironmentProperties.

https://www.vaultproject.io
https://learn.hashicorp.com/vault/?track=getting-started#getting-started
http://127.0.0.1:8200

Vault 0.10.0 introduced a versioned key-value backend (k/v backend version 2) that
exposes a different API than earlier versions, it now requires a data/ between the
mount path and the actual context path and wraps secrets in a data object. Setting
spring.cloud.config.server.vault.kv-version=2 will take this into account.

Optionally, there is support for the Vault Enterprise X-Vault-Namespace header. To have it sent to
Vault set the namespace property.

With your config server running, you can make HTTP requests to the server to retrieve values from
the Vault backend. To do so, you need a token for your Vault server.

First, place some data in you Vault, as shown in the following example:

$ vault kv put secret/application foo=bar baz=bam
$ vault kv put secret/myapp foo=myappsbar

Second, make an HTTP request to your config server to retrieve the values, as shown in the
following example:

$ curl -X "GET" "http://localhost:8888/myapp/default" -H "X-Config-Token: yourtoken"

You should see a response similar to the following:

{
 "name":"myapp",
 "profiles":[
 "default"
],
 "label":null,
 "version":null,
 "state":null,
 "propertySources":[
 {
 "name":"vault:myapp",
 "source":{
 "foo":"myappsbar"
 }
 },
 {
 "name":"vault:application",
 "source":{
 "baz":"bam",
 "foo":"bar"
 }
 }
]
}

The default way for a client to provide the necessary authentication to let Config Server talk to
Vault is to set the X-Config-Token header. However, you can instead omit the header and configure
the authentication in the server, by setting the same configuration properties as Spring Cloud Vault.
The property to set is spring.cloud.config.server.vault.authentication. It should be set to one of
the supported authentication methods. You may also need to set other properties specific to the
authentication method you use, by using the same property names as documented for
spring.cloud.vault but instead using the spring.cloud.config.server.vault prefix. See the Spring
Cloud Vault Reference Guide for more detail.

If you omit the X-Config-Token header and use a server property to set the
authentication, the Config Server application needs an additional dependency on
Spring Vault to enable the additional authentication options. See the Spring Vault
Reference Guide for how to add that dependency.

Multiple Properties Sources

When using Vault, you can provide your applications with multiple properties sources. For
example, assume you have written data to the following paths in Vault:

secret/myApp,dev
secret/myApp
secret/application,dev
secret/application

Properties written to secret/application are available to all applications using the Config Server.
An application with the name, myApp, would have any properties written to secret/myApp and
secret/application available to it. When myApp has the dev profile enabled, properties written to all
of the above paths would be available to it, with properties in the first path in the list taking
priority over the others.

Accessing Backends Through a Proxy

The configuration server can access a Git or Vault backend through an HTTP or HTTPS proxy. This
behavior is controlled for either Git or Vault by settings under proxy.http and proxy.https. These
settings are per repository, so if you are using a composite environment repository you must
configure proxy settings for each backend in the composite individually. If using a network which
requires separate proxy servers for HTTP and HTTPS URLs, you can configure both the HTTP and
the HTTPS proxy settings for a single backend.

The following table describes the proxy configuration properties for both HTTP and HTTPS proxies.
All of these properties must be prefixed by proxy.http or proxy.https.

Table 3. Proxy Configuration Properties

Property Name Remarks

host The host of the proxy.

port The port with which to access the proxy.

https://cloud.spring.io/spring-cloud-vault/reference/html/#vault.config.authentication
https://cloud.spring.io/spring-cloud-vault/reference/html/#vault.config.authentication
https://docs.spring.io/spring-vault/docs/current/reference/html/#dependencies
https://docs.spring.io/spring-vault/docs/current/reference/html/#dependencies

Property Name Remarks

nonProxyHosts Any hosts which the configuration server should
access outside the proxy. If values are provided
for both proxy.http.nonProxyHosts and
proxy.https.nonProxyHosts, the proxy.http value
will be used.

username The username with which to authenticate to the
proxy. If values are provided for both
proxy.http.username and proxy.https.username,
the proxy.http value will be used.

password The password with which to authenticate to the
proxy. If values are provided for both
proxy.http.password and proxy.https.password,
the proxy.http value will be used.

The following configuration uses an HTTPS proxy to access a Git repository.

spring:
 profiles:
 active: git
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 proxy:
 https:
 host: my-proxy.host.io
 password: myproxypassword
 port: '3128'
 username: myproxyusername
 nonProxyHosts: example.com

Sharing Configuration With All Applications

Sharing configuration between all applications varies according to which approach you take, as
described in the following topics:

• File Based Repositories

• Vault Server

File Based Repositories

With file-based (git, svn, and native) repositories, resources with file names in application*
(application.properties, application.yml, application-*.properties, and so on) are shared between
all client applications. You can use resources with these file names to configure global defaults and
have them be overridden by application-specific files as necessary.

The property overrides feature can also be used for setting global defaults, with placeholders
applications allowed to override them locally.

With the “native” profile (a local file system backend) , you should use an explicit
search location that is not part of the server’s own configuration. Otherwise, the
application* resources in the default search locations get removed because they
are part of the server.

Vault Server

When using Vault as a backend, you can share configuration with all applications by placing
configuration in secret/application. For example, if you run the following Vault command, all
applications using the config server will have the properties foo and baz available to them:

$ vault write secret/application foo=bar baz=bam

CredHub Server

When using CredHub as a backend, you can share configuration with all applications by placing
configuration in /application/ or by placing it in the default profile for the application. For
example, if you run the following CredHub command, all applications using the config server will
have the properties shared.color1 and shared.color2 available to them:

credhub set --name "/application/profile/master/shared" --type=json
value: {"shared.color1": "blue", "shared.color": "red"}

credhub set --name "/my-app/default/master/more-shared" --type=json
value: {"shared.word1": "hello", "shared.word2": "world"}

JDBC Backend

Spring Cloud Config Server supports JDBC (relational database) as a backend for configuration
properties. You can enable this feature by adding spring-jdbc to the classpath and using the jdbc
profile or by adding a bean of type JdbcEnvironmentRepository. If you include the right dependencies
on the classpath (see the user guide for more details on that), Spring Boot configures a data source.

The database needs to have a table called PROPERTIES with columns called APPLICATION, PROFILE, and
LABEL (with the usual Environment meaning), plus KEY and VALUE for the key and value pairs in
Properties style. All fields are of type String in Java, so you can make them VARCHAR of whatever
length you need. Property values behave in the same way as they would if they came from Spring
Boot properties files named {application}-{profile}.properties, including all the encryption and
decryption, which will be applied as post-processing steps (that is, not in the repository
implementation directly).

Redis Backend

Spring Cloud Config Server supports Redis as a backend for configuration properties. You can
enable this feature by adding a dependency to Spring Data Redis.

pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-redis</artifactId>
 </dependency>
</dependencies>

The following configuration uses Spring Data RedisTemplate to access a Redis. We can use
spring.redis.* properties to override default connection settings.

spring:
 profiles:
 active: redis
 redis:
 host: redis
 port: 16379

The properties should be stored as fields in a hash. The name of hash should be the same as
spring.application.name property or conjunction of spring.application.name and
spring.profiles.active[n].

HMSET sample-app server.port "8100" sample.topic.name "test" test.property1
"property1"

After executing the command visible above a hash should contain the following keys with values:

HGETALL sample-app
{
 "server.port": "8100",
 "sample.topic.name": "test",
 "test.property1": "property1"
}

 When no profile is specified default will be used.

AWS S3 Backend

Spring Cloud Config Server supports AWS S3 as a backend for configuration properties. You can
enable this feature by adding a dependency to the AWS Java SDK For Amazon S3.

https://spring.io/projects/spring-data-redis
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-s3.html

pom.xml

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-s3</artifactId>
 </dependency>
</dependencies>

The following configuration uses the AWS S3 client to access configuration files. We can use
spring.awss3.* properties to select the bucket where your configuration is stored.

spring:
 profiles:
 active: awss3
 cloud:
 config:
 server:
 awss3:
 region: us-east-1
 bucket: bucket1

It is also possible to specify an AWS URL to override the standard endpoint of your S3 service with
spring.awss3.endpoint. This allows support for beta regions of S3, and other S3 compatible storage
APIs.

Credentials are found using the Default AWS Credential Provider Chain. Versioned and encrypted
buckets are supported without further configuration.

Configuration files are stored in your bucket as {application}-{profile}.properties, {application}-
{profile}.yml or {application}-{profile}.json. An optional label can be provided to specify a
directory path to the file.

 When no profile is specified default will be used.

CredHub Backend

Spring Cloud Config Server supports CredHub as a backend for configuration properties. You can
enable this feature by adding a dependency to Spring CredHub.

pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.credhub</groupId>
 <artifactId>spring-credhub-starter</artifactId>
 </dependency>
</dependencies>

https://aws.amazon.com/blogs/developer/using-new-regions-and-endpoints/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://docs.cloudfoundry.org/credhub
https://spring.io/projects/spring-credhub

The following configuration uses mutual TLS to access a CredHub:

spring:
 profiles:
 active: credhub
 cloud:
 config:
 server:
 credhub:
 url: https://credhub:8844

The properties should be stored as JSON, such as:

credhub set --name "/demo-app/default/master/toggles" --type=json
value: {"toggle.button": "blue", "toggle.link": "red"}

credhub set --name "/demo-app/default/master/abs" --type=json
value: {"marketing.enabled": true, "external.enabled": false}

All client applications with the name spring.cloud.config.name=demo-app will have the following
properties available to them:

{
 toggle.button: "blue",
 toggle.link: "red",
 marketing.enabled: true,
 external.enabled: false
}

When no profile is specified default will be used and when no label is specified
master will be used as a default value. NOTE: Values added to application will be
shared by all the applications.

OAuth 2.0

You can authenticate with OAuth 2.0 using UAA as a provider.

https://oauth.net/2/
https://docs.cloudfoundry.org/concepts/architecture/uaa.html

pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-config</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-oauth2-client</artifactId>
 </dependency>
</dependencies>

The following configuration uses OAuth 2.0 and UAA to access a CredHub:

spring:
 profiles:
 active: credhub
 cloud:
 config:
 server:
 credhub:
 url: https://credhub:8844
 oauth2:
 registration-id: credhub-client
 security:
 oauth2:
 client:
 registration:
 credhub-client:
 provider: uaa
 client-id: credhub_config_server
 client-secret: asecret
 authorization-grant-type: client_credentials
 provider:
 uaa:
 token-uri: https://uaa:8443/oauth/token

 The used UAA client-id should have credhub.read as scope.

Composite Environment Repositories

In some scenarios, you may wish to pull configuration data from multiple environment
repositories. To do so, you can enable the composite profile in your configuration server’s
application properties or YAML file. If, for example, you want to pull configuration data from a
Subversion repository as well as two Git repositories, you can set the following properties for your
configuration server:

spring:
 profiles:
 active: composite
 cloud:
 config:
 server:
 composite:
 -
 type: svn
 uri: file:///path/to/svn/repo
 -
 type: git
 uri: file:///path/to/rex/git/repo
 -
 type: git
 uri: file:///path/to/walter/git/repo

Using this configuration, precedence is determined by the order in which repositories are listed
under the composite key. In the above example, the Subversion repository is listed first, so a value
found in the Subversion repository will override values found for the same property in one of the
Git repositories. A value found in the rex Git repository will be used before a value found for the
same property in the walter Git repository.

If you want to pull configuration data only from repositories that are each of distinct types, you can
enable the corresponding profiles, rather than the composite profile, in your configuration server’s
application properties or YAML file. If, for example, you want to pull configuration data from a
single Git repository and a single HashiCorp Vault server, you can set the following properties for
your configuration server:

spring:
 profiles:
 active: git, vault
 cloud:
 config:
 server:
 git:
 uri: file:///path/to/git/repo
 order: 2
 vault:
 host: 127.0.0.1
 port: 8200
 order: 1

Using this configuration, precedence can be determined by an order property. You can use the order
property to specify the priority order for all your repositories. The lower the numerical value of the
order property, the higher priority it has. The priority order of a repository helps resolve any
potential conflicts between repositories that contain values for the same properties.

If your composite environment includes a Vault server as in the previous example,
you must include a Vault token in every request made to the configuration server.
See Vault Backend.

Any type of failure when retrieving values from an environment repository results
in a failure for the entire composite environment.

When using a composite environment, it is important that all repositories contain
the same labels. If you have an environment similar to those in the preceding
examples and you request configuration data with the master label but the
Subversion repository does not contain a branch called master, the entire request
fails.

Custom Composite Environment Repositories

In addition to using one of the environment repositories from Spring Cloud, you can also provide
your own EnvironmentRepository bean to be included as part of a composite environment. To do so,
your bean must implement the EnvironmentRepository interface. If you want to control the priority
of your custom EnvironmentRepository within the composite environment, you should also
implement the Ordered interface and override the getOrdered method. If you do not implement the
Ordered interface, your EnvironmentRepository is given the lowest priority.

Property Overrides

The Config Server has an “overrides” feature that lets the operator provide configuration properties
to all applications. The overridden properties cannot be accidentally changed by the application
with the normal Spring Boot hooks. To declare overrides, add a map of name-value pairs to
spring.cloud.config.server.overrides, as shown in the following example:

spring:
 cloud:
 config:
 server:
 overrides:
 foo: bar

The preceding examples causes all applications that are config clients to read foo=bar, independent
of their own configuration.

A configuration system cannot force an application to use configuration data in
any particular way. Consequently, overrides are not enforceable. However, they do
provide useful default behavior for Spring Cloud Config clients.

Normally, Spring environment placeholders with ${} can be escaped (and resolved
on the client) by using backslash (\) to escape the $ or the {. For example,
\${app.foo:bar} resolves to bar, unless the app provides its own app.foo.

In YAML, you do not need to escape the backslash itself. However, in properties
files, you do need to escape the backslash, when you configure the overrides on
the server.

You can change the priority of all overrides in the client to be more like default values, letting
applications supply their own values in environment variables or System properties, by setting the
spring.cloud.config.overrideNone=true flag (the default is false) in the remote repository.

4.2.2. Health Indicator

Config Server comes with a Health Indicator that checks whether the configured
EnvironmentRepository is working. By default, it asks the EnvironmentRepository for an application
named app, the default profile, and the default label provided by the EnvironmentRepository
implementation.

You can configure the Health Indicator to check more applications along with custom profiles and
custom labels, as shown in the following example:

spring:
 cloud:
 config:
 server:
 health:
 repositories:
 myservice:
 label: mylabel
 myservice-dev:
 name: myservice
 profiles: development

You can disable the Health Indicator by setting spring.cloud.config.server.health.enabled=false.

4.2.3. Security

You can secure your Config Server in any way that makes sense to you (from physical network
security to OAuth2 bearer tokens), because Spring Security and Spring Boot offer support for many
security arrangements.

To use the default Spring Boot-configured HTTP Basic security, include Spring Security on the
classpath (for example, through spring-boot-starter-security). The default is a username of user
and a randomly generated password. A random password is not useful in practice, so we
recommend you configure the password (by setting spring.security.user.password) and encrypt it
(see below for instructions on how to do that).

4.2.4. Encryption and Decryption

To use the encryption and decryption features you need the full-strength JCE
installed in your JVM (it is not included by default). You can download the “Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files” from
Oracle and follow the installation instructions (essentially, you need to replace the
two policy files in the JRE lib/security directory with the ones that you
downloaded).

If the remote property sources contain encrypted content (values starting with {cipher}), they are
decrypted before sending to clients over HTTP. The main advantage of this setup is that the
property values need not be in plain text when they are “at rest” (for example, in a git repository).
If a value cannot be decrypted, it is removed from the property source and an additional property
is added with the same key but prefixed with invalid and a value that means “not applicable”
(usually <n/a>). This is largely to prevent cipher text being used as a password and accidentally
leaking.

If you set up a remote config repository for config client applications, it might contain an
application.yml similar to the following:

application.yml

spring:
 datasource:
 username: dbuser
 password: '{cipher}FKSAJDFGYOS8F7GLHAKERGFHLSAJ'

Encrypted values in a .properties file must not be wrapped in quotes. Otherwise, the value is not
decrypted. The following example shows values that would work:

application.properties

spring.datasource.username: dbuser
spring.datasource.password: {cipher}FKSAJDFGYOS8F7GLHAKERGFHLSAJ

You can safely push this plain text to a shared git repository, and the secret password remains
protected.

The server also exposes /encrypt and /decrypt endpoints (on the assumption that these are secured
and only accessed by authorized agents). If you edit a remote config file, you can use the Config
Server to encrypt values by POSTing to the /encrypt endpoint, as shown in the following example:

$ curl localhost:8888/encrypt -d mysecret
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda

If the value you encrypt has characters in it that need to be URL encoded, you
should use the --data-urlencode option to curl to make sure they are encoded
properly.

Be sure not to include any of the curl command statistics in the encrypted value.
Outputting the value to a file can help avoid this problem.

The inverse operation is also available through /decrypt (provided the server is configured with a
symmetric key or a full key pair), as shown in the following example:

$ curl localhost:8888/decrypt -d
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
mysecret

If you testing with curl, then use --data-urlencode (instead of -d) or set an explicit
Content-Type: text/plain to make sure curl encodes the data correctly when there
are special characters ('+' is particularly tricky).

Take the encrypted value and add the {cipher} prefix before you put it in the YAML or properties
file and before you commit and push it to a remote (potentially insecure) store.

The /encrypt and /decrypt endpoints also both accept paths in the form of
/*/{application}/{profiles}, which can be used to control cryptography on a per-application
(name) and per-profile basis when clients call into the main environment resource.

To control the cryptography in this granular way, you must also provide a @Bean of
type TextEncryptorLocator that creates a different encryptor per name and profiles.
The one that is provided by default does not do so (all encryptions use the same
key).

The spring command line client (with Spring Cloud CLI extensions installed) can also be used to
encrypt and decrypt, as shown in the following example:

$ spring encrypt mysecret --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
$ spring decrypt --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
mysecret

To use a key in a file (such as an RSA public key for encryption), prepend the key value with "@"
and provide the file path, as shown in the following example:

$ spring encrypt mysecret --key @${HOME}/.ssh/id_rsa.pub
AQAjPgt3eFZQXwt8tsHAVv/QHiY5sI2dRcR+...

 The --key argument is mandatory (despite having a -- prefix).

4.2.5. Key Management

The Config Server can use a symmetric (shared) key or an asymmetric one (RSA key pair). The
asymmetric choice is superior in terms of security, but it is often more convenient to use a
symmetric key since it is a single property value to configure in the bootstrap.properties.

To configure a symmetric key, you need to set encrypt.key to a secret String (or use the ENCRYPT_KEY
environment variable to keep it out of plain-text configuration files).

 You cannot configure an asymmetric key using encrypt.key.

To configure an asymmetric key use a keystore (e.g. as created by the keytool utility that comes with
the JDK). The keystore properties are encrypt.keyStore.* with * equal to

Property Description

encrypt.keyStore.location Contains a Resource location

encrypt.keyStore.password Holds the password that unlocks the keystore

encrypt.keyStore.alias Identifies which key in the store to use

encrypt.keyStore.type The type of KeyStore to create. Defaults to jks.

The encryption is done with the public key, and a private key is needed for decryption. Thus, in
principle, you can configure only the public key in the server if you want to only encrypt (and are
prepared to decrypt the values yourself locally with the private key). In practice, you might not
want to do decrypt locally, because it spreads the key management process around all the clients,
instead of concentrating it in the server. On the other hand, it can be a useful option if your config
server is relatively insecure and only a handful of clients need the encrypted properties.

4.2.6. Creating a Key Store for Testing

To create a keystore for testing, you can use a command resembling the following:

$ keytool -genkeypair -alias mytestkey -keyalg RSA \
 -dname "CN=Web Server,OU=Unit,O=Organization,L=City,S=State,C=US" \
 -keypass changeme -keystore server.jks -storepass letmein

When using JDK 11 or above you may get the following warning when using the
command above. In this case you probably want to make sure the keypass and
storepass values match.

Warning: Different store and key passwords not supported for PKCS12 KeyStores.
Ignoring user-specified -keypass value.

Put the server.jks file in the classpath (for instance) and then, in your bootstrap.yml, for the Config
Server, create the following settings:

encrypt:
 keyStore:
 location: classpath:/server.jks
 password: letmein
 alias: mytestkey
 secret: changeme

4.2.7. Using Multiple Keys and Key Rotation

In addition to the {cipher} prefix in encrypted property values, the Config Server looks for zero or
more {name:value} prefixes before the start of the (Base64 encoded) cipher text. The keys are passed
to a TextEncryptorLocator, which can do whatever logic it needs to locate a TextEncryptor for the
cipher. If you have configured a keystore (encrypt.keystore.location), the default locator looks for
keys with aliases supplied by the key prefix, with a cipher text like resembling the following:

foo:
 bar: `{cipher}{key:testkey}...`

The locator looks for a key named "testkey". A secret can also be supplied by using a {secret:…}

value in the prefix. However, if it is not supplied, the default is to use the keystore password (which
is what you get when you build a keystore and do not specify a secret). If you do supply a secret,
you should also encrypt the secret using a custom SecretLocator.

When the keys are being used only to encrypt a few bytes of configuration data (that is, they are not
being used elsewhere), key rotation is hardly ever necessary on cryptographic grounds. However,
you might occasionally need to change the keys (for example, in the event of a security breach). In
that case, all the clients would need to change their source config files (for example, in git) and use
a new {key:…} prefix in all the ciphers. Note that the clients need to first check that the key alias is
available in the Config Server keystore.

If you want to let the Config Server handle all encryption as well as decryption, the
{name:value} prefixes can also be added as plain text posted to the /encrypt
endpoint, .

4.2.8. Serving Encrypted Properties

Sometimes you want the clients to decrypt the configuration locally, instead of doing it in the
server. In that case, if you provide the encrypt.* configuration to locate a key, you can still have
/encrypt and /decrypt endpoints, but you need to explicitly switch off the decryption of outgoing
properties by placing spring.cloud.config.server.encrypt.enabled=false in
bootstrap.[yml|properties]. If you do not care about the endpoints, it should work if you do not
configure either the key or the enabled flag.

4.3. Serving Alternative Formats
The default JSON format from the environment endpoints is perfect for consumption by Spring

applications, because it maps directly onto the Environment abstraction. If you prefer, you can
consume the same data as YAML or Java properties by adding a suffix (".yml", ".yaml" or
".properties") to the resource path. This can be useful for consumption by applications that do not
care about the structure of the JSON endpoints or the extra metadata they provide (for example, an
application that is not using Spring might benefit from the simplicity of this approach).

The YAML and properties representations have an additional flag (provided as a boolean query
parameter called resolvePlaceholders) to signal that placeholders in the source documents (in the
standard Spring ${…} form) should be resolved in the output before rendering, where possible.
This is a useful feature for consumers that do not know about the Spring placeholder conventions.

There are limitations in using the YAML or properties formats, mainly in relation
to the loss of metadata. For example, the JSON is structured as an ordered list of
property sources, with names that correlate with the source. The YAML and
properties forms are coalesced into a single map, even if the origin of the values
has multiple sources, and the names of the original source files are lost. Also, the
YAML representation is not necessarily a faithful representation of the YAML
source in a backing repository either. It is constructed from a list of flat property
sources, and assumptions have to be made about the form of the keys.

4.4. Serving Plain Text
Instead of using the Environment abstraction (or one of the alternative representations of it in YAML
or properties format), your applications might need generic plain-text configuration files that are
tailored to their environment. The Config Server provides these through an additional endpoint at
/{application}/{profile}/{label}/{path}, where application, profile, and label have the same
meaning as the regular environment endpoint, but path is a path to a file name (such as log.xml).
The source files for this endpoint are located in the same way as for the environment endpoints.
The same search path is used for properties and YAML files. However, instead of aggregating all
matching resources, only the first one to match is returned.

After a resource is located, placeholders in the normal format (${…}) are resolved by using the
effective Environment for the supplied application name, profile, and label. In this way, the resource
endpoint is tightly integrated with the environment endpoints.

As with the source files for environment configuration, the profile is used to
resolve the file name. So, if you want a profile-specific file,
/*/development/*/logback.xml can be resolved by a file called logback-

development.xml (in preference to logback.xml).

If you do not want to supply the label and let the server use the default label, you
can supply a useDefaultLabel request parameter. Consequently, the preceding
example for the default profile could be
/sample/default/nginx.conf?useDefaultLabel.

At present, Spring Cloud Config can serve plaintext for git, SVN, native backends, and AWS S3. The
support for git, SVN, and native backends is identical. AWS S3 works a bit differently. The following

sections show how each one works:

• Git, SVN, and Native Backends

• AWS S3

4.4.1. Git, SVN, and Native Backends

Consider the following example for a GIT or SVN repository or a native backend:

application.yml
nginx.conf

The nginx.conf might resemble the following listing:

server {
 listen 80;
 server_name ${nginx.server.name};
}

application.yml might resemble the following listing:

nginx:
 server:
 name: example.com

spring:
 profiles: development
nginx:
 server:
 name: develop.com

The /sample/default/master/nginx.conf resource might be as follows:

server {
 listen 80;
 server_name example.com;
}

/sample/development/master/nginx.conf might be as follows:

server {
 listen 80;
 server_name develop.com;
}

4.4.2. AWS S3

To enable serving plain text for AWS s3, the Config Server application needs to include a
dependency on Spring Cloud AWS. For details on how to set up that dependency, see the Spring
Cloud AWS Reference Guide. Then you need to configure Spring Cloud AWS, as described in the
Spring Cloud AWS Reference Guide.

4.4.3. Decrypting Plain Text

By default, encrypted values in plain text files are not decrypted. In order to enable decryption for
plain text files, set spring.cloud.config.server.encrypt.enabled=true and
spring.cloud.config.server.encrypt.plainTextEncrypt=true in bootstrap.[yml|properties]

Decrypting plain text files is only supported for YAML, JSON, and properties file
extensions.

If this feature is enabled, and an unsupported file extention is requested, any encrypted values in
the file will not be decrypted.

4.5. Embedding the Config Server
The Config Server runs best as a standalone application. However, if need be, you can embed it in
another application. To do so, use the @EnableConfigServer annotation. An optional property named
spring.cloud.config.server.bootstrap can be useful in this case. It is a flag to indicate whether the
server should configure itself from its own remote repository. By default, the flag is off, because it
can delay startup. However, when embedded in another application, it makes sense to initialize the
same way as any other application. When setting spring.cloud.config.server.bootstrap to true you
must also use a composite environment repository configuration. For example

https://cloud.spring.io/spring-cloud-static/spring-cloud-aws/2.1.3.RELEASE/single/spring-cloud-aws.html#_spring_cloud_aws_maven_dependency_management
https://cloud.spring.io/spring-cloud-static/spring-cloud-aws/2.1.3.RELEASE/single/spring-cloud-aws.html#_spring_cloud_aws_maven_dependency_management
https://cloud.spring.io/spring-cloud-static/spring-cloud-aws/2.1.3.RELEASE/single/spring-cloud-aws.html#_configuring_credentials

spring:
 application:
 name: configserver
 profiles:
 active: composite
 cloud:
 config:
 server:
 composite:
 - type: native
 search-locations: ${HOME}/Desktop/config
 bootstrap: true

If you use the bootstrap flag, the config server needs to have its name and
repository URI configured in bootstrap.yml.

To change the location of the server endpoints, you can (optionally) set
spring.cloud.config.server.prefix (for example, /config), to serve the resources under a prefix.
The prefix should start but not end with a /. It is applied to the @RequestMappings in the Config
Server (that is, underneath the Spring Boot server.servletPath and server.contextPath prefixes).

If you want to read the configuration for an application directly from the backend repository
(instead of from the config server), you basically want an embedded config server with no
endpoints. You can switch off the endpoints entirely by not using the @EnableConfigServer
annotation (set spring.cloud.config.server.bootstrap=true).

4.6. Push Notifications and Spring Cloud Bus
Many source code repository providers (such as Github, Gitlab, Gitea, Gitee, Gogs, or Bitbucket)
notify you of changes in a repository through a webhook. You can configure the webhook through
the provider’s user interface as a URL and a set of events in which you are interested. For instance,
Github uses a POST to the webhook with a JSON body containing a list of commits and a header (X-
Github-Event) set to push. If you add a dependency on the spring-cloud-config-monitor library and
activate the Spring Cloud Bus in your Config Server, then a /monitor endpoint is enabled.

When the webhook is activated, the Config Server sends a RefreshRemoteApplicationEvent targeted
at the applications it thinks might have changed. The change detection can be strategized. However,
by default, it looks for changes in files that match the application name (for example,
foo.properties is targeted at the foo application, while application.properties is targeted at all
applications). The strategy to use when you want to override the behavior is
PropertyPathNotificationExtractor, which accepts the request headers and body as parameters and
returns a list of file paths that changed.

The default configuration works out of the box with Github, Gitlab, Gitea, Gitee, Gogs or Bitbucket.
In addition to the JSON notifications from Github, Gitlab, Gitee, or Bitbucket, you can trigger a
change notification by POSTing to /monitor with form-encoded body parameters in the pattern of
path={application}. Doing so broadcasts to applications matching the {application} pattern (which

https://developer.github.com/v3/activity/events/types/#pushevent

can contain wildcards).

The RefreshRemoteApplicationEvent is transmitted only if the spring-cloud-bus is
activated in both the Config Server and in the client application.

The default configuration also detects filesystem changes in local git repositories.
In that case, the webhook is not used. However, as soon as you edit a config file, a
refresh is broadcast.

4.7. Spring Cloud Config Client
A Spring Boot application can take immediate advantage of the Spring Config Server (or other
external property sources provided by the application developer). It also picks up some additional
useful features related to Environment change events.

4.7.1. Config First Bootstrap

The default behavior for any application that has the Spring Cloud Config Client on the classpath is
as follows: When a config client starts, it binds to the Config Server (through the
spring.cloud.config.uri bootstrap configuration property) and initializes Spring Environment with
remote property sources.

The net result of this behavior is that all client applications that want to consume the Config Server
need a bootstrap.yml (or an environment variable) with the server address set in
spring.cloud.config.uri (it defaults to "http://localhost:8888").

4.7.2. Discovery First Bootstrap

If you use a DiscoveryClient implementation, such as Spring Cloud Netflix and Eureka Service
Discovery or Spring Cloud Consul, you can have the Config Server register with the Discovery
Service. However, in the default “Config First” mode, clients cannot take advantage of the
registration.

If you prefer to use DiscoveryClient to locate the Config Server, you can do so by setting
spring.cloud.config.discovery.enabled=true (the default is false). The net result of doing so is that
client applications all need a bootstrap.yml (or an environment variable) with the appropriate
discovery configuration. For example, with Spring Cloud Netflix, you need to define the Eureka
server address (for example, in eureka.client.serviceUrl.defaultZone). The price for using this
option is an extra network round trip on startup, to locate the service registration. The benefit is
that, as long as the Discovery Service is a fixed point, the Config Server can change its coordinates.
The default service ID is configserver, but you can change that on the client by setting
spring.cloud.config.discovery.serviceId (and on the server, in the usual way for a service, such as
by setting spring.application.name).

The discovery client implementations all support some kind of metadata map (for example, we
have eureka.instance.metadataMap for Eureka). Some additional properties of the Config Server may
need to be configured in its service registration metadata so that clients can connect correctly. If the
Config Server is secured with HTTP Basic, you can configure the credentials as user and password.

Also, if the Config Server has a context path, you can set configPath. For example, the following
YAML file is for a Config Server that is a Eureka client:

bootstrap.yml

eureka:
 instance:
 ...
 metadataMap:
 user: osufhalskjrtl
 password: lviuhlszvaorhvlo5847
 configPath: /config

4.7.3. Config Client Fail Fast

In some cases, you may want to fail startup of a service if it cannot connect to the Config Server. If
this is the desired behavior, set the bootstrap configuration property spring.cloud.config.fail-
fast=true to make the client halt with an Exception.

4.7.4. Config Client Retry

If you expect that the config server may occasionally be unavailable when your application starts,
you can make it keep trying after a failure. First, you need to set spring.cloud.config.fail-
fast=true. Then you need to add spring-retry and spring-boot-starter-aop to your classpath. The
default behavior is to retry six times with an initial backoff interval of 1000ms and an exponential
multiplier of 1.1 for subsequent backoffs. You can configure these properties (and others) by setting
the spring.cloud.config.retry.* configuration properties.

To take full control of the retry behavior, add a @Bean of type
RetryOperationsInterceptor with an ID of configServerRetryInterceptor. Spring
Retry has a RetryInterceptorBuilder that supports creating one.

4.7.5. Locating Remote Configuration Resources

The Config Service serves property sources from /{application}/{profile}/{label}, where the
default bindings in the client app are as follows:

• "name" = ${spring.application.name}

• "profile" = ${spring.profiles.active} (actually Environment.getActiveProfiles())

• "label" = "master"

When setting the property ${spring.application.name} do not prefix your app
name with the reserved word application- to prevent issues resolving the correct
property source.

You can override all of them by setting spring.cloud.config.* (where * is name, profile or label). The
label is useful for rolling back to previous versions of configuration. With the default Config Server

implementation, it can be a git label, branch name, or commit ID. Label can also be provided as a
comma-separated list. In that case, the items in the list are tried one by one until one succeeds. This
behavior can be useful when working on a feature branch. For instance, you might want to align
the config label with your branch but make it optional (in that case, use
spring.cloud.config.label=myfeature,develop).

4.7.6. Specifying Multiple Urls for the Config Server

To ensure high availability when you have multiple instances of Config Server deployed and expect
one or more instances to be unavailable from time to time, you can either specify multiple URLs (as
a comma-separated list under the spring.cloud.config.uri property) or have all your instances
register in a Service Registry like Eureka (if using Discovery-First Bootstrap mode). Note that doing
so ensures high availability only when the Config Server is not running (that is, when the
application has exited) or when a connection timeout has occurred. For example, if the Config
Server returns a 500 (Internal Server Error) response or the Config Client receives a 401 from the
Config Server (due to bad credentials or other causes), the Config Client does not try to fetch
properties from other URLs. An error of that kind indicates a user issue rather than an availability
problem.

If you use HTTP basic security on your Config Server, it is currently possible to support per-Config
Server auth credentials only if you embed the credentials in each URL you specify under the
spring.cloud.config.uri property. If you use any other kind of security mechanism, you cannot
(currently) support per-Config Server authentication and authorization.

4.7.7. Configuring Timeouts

If you want to configure timeout thresholds:

• Read timeouts can be configured by using the property spring.cloud.config.request-read-
timeout.

• Connection timeouts can be configured by using the property spring.cloud.config.request-
connect-timeout.

4.7.8. Security

If you use HTTP Basic security on the server, clients need to know the password (and username if it
is not the default). You can specify the username and password through the config server URI or via
separate username and password properties, as shown in the following example:

bootstrap.yml

spring:
 cloud:
 config:
 uri: https://user:secret@myconfig.mycompany.com

The following example shows an alternate way to pass the same information:

bootstrap.yml

spring:
 cloud:
 config:
 uri: https://myconfig.mycompany.com
 username: user
 password: secret

The spring.cloud.config.password and spring.cloud.config.username values override anything that
is provided in the URI.

If you deploy your apps on Cloud Foundry, the best way to provide the password is through service
credentials (such as in the URI, since it does not need to be in a config file). The following example
works locally and for a user-provided service on Cloud Foundry named configserver:

bootstrap.yml

spring:
 cloud:
 config:
 uri:
${vcap.services.configserver.credentials.uri:http://user:password@localhost:8888}

If you use another form of security, you might need to provide a RestTemplate to the
ConfigServicePropertySourceLocator (for example, by grabbing it in the bootstrap context and
injecting it).

Health Indicator

The Config Client supplies a Spring Boot Health Indicator that attempts to load configuration from
the Config Server. The health indicator can be disabled by setting health.config.enabled=false. The
response is also cached for performance reasons. The default cache time to live is 5 minutes. To
change that value, set the health.config.time-to-live property (in milliseconds).

Providing A Custom RestTemplate

In some cases, you might need to customize the requests made to the config server from the client.
Typically, doing so involves passing special Authorization headers to authenticate requests to the
server. To provide a custom RestTemplate:

1. Create a new configuration bean with an implementation of PropertySourceLocator, as shown in
the following example:

CustomConfigServiceBootstrapConfiguration.java

@Configuration
public class CustomConfigServiceBootstrapConfiguration {
 @Bean
 public ConfigServicePropertySourceLocator configServicePropertySourceLocator() {
 ConfigClientProperties clientProperties = configClientProperties();
 ConfigServicePropertySourceLocator configServicePropertySourceLocator = new
ConfigServicePropertySourceLocator(clientProperties);

configServicePropertySourceLocator.setRestTemplate(customRestTemplate(clientProperties
));
 return configServicePropertySourceLocator;
 }
}

For a simplified approach to adding Authorization headers, the
spring.cloud.config.headers.* property can be used instead.

1. In resources/META-INF, create a file called spring.factories and specify your custom
configuration, as shown in the following example:

spring.factories

org.springframework.cloud.bootstrap.BootstrapConfiguration =
com.my.config.client.CustomConfigServiceBootstrapConfiguration

Vault

When using Vault as a backend to your config server, the client needs to supply a token for the
server to retrieve values from Vault. This token can be provided within the client by setting
spring.cloud.config.token in bootstrap.yml, as shown in the following example:

bootstrap.yml

spring:
 cloud:
 config:
 token: YourVaultToken

4.7.9. Nested Keys In Vault

Vault supports the ability to nest keys in a value stored in Vault, as shown in the following example:

echo -n '{"appA": {"secret": "appAsecret"}, "bar": "baz"}' | vault write secret/myapp -

This command writes a JSON object to your Vault. To access these values in Spring, you would use
the traditional dot(.) annotation, as shown in the following example

@Value("${appA.secret}")
String name = "World";

The preceding code would sets the value of the name variable to appAsecret.

Chapter 5. Spring Cloud Netflix
Hoxton.SR5

This project provides Netflix OSS integrations for Spring Boot apps through autoconfiguration and
binding to the Spring Environment and other Spring programming model idioms. With a few
simple annotations you can quickly enable and configure the common patterns inside your
application and build large distributed systems with battle-tested Netflix components. The patterns
provided include Service Discovery (Eureka), Circuit Breaker (Hystrix), Intelligent Routing (Zuul)
and Client Side Load Balancing (Ribbon).

5.1. Service Discovery: Eureka Clients
Service Discovery is one of the key tenets of a microservice-based architecture. Trying to hand-
configure each client or some form of convention can be difficult to do and can be brittle. Eureka is
the Netflix Service Discovery Server and Client. The server can be configured and deployed to be
highly available, with each server replicating state about the registered services to the others.

5.1.1. How to Include Eureka Client

To include the Eureka Client in your project, use the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-netflix-eureka-client. See the
Spring Cloud Project page for details on setting up your build system with the current Spring Cloud
Release Train.

5.1.2. Registering with Eureka

When a client registers with Eureka, it provides meta-data about itself — such as host, port, health
indicator URL, home page, and other details. Eureka receives heartbeat messages from each
instance belonging to a service. If the heartbeat fails over a configurable timetable, the instance is
normally removed from the registry.

The following example shows a minimal Eureka client application:

https://projects.spring.io/spring-cloud/

@SpringBootApplication
@RestController
public class Application {

 @RequestMapping("/")
 public String home() {
 return "Hello world";
 }

 public static void main(String[] args) {
 new SpringApplicationBuilder(Application.class).web(true).run(args);
 }

}

Note that the preceding example shows a normal Spring Boot application. By having spring-cloud-
starter-netflix-eureka-client on the classpath, your application automatically registers with the
Eureka Server. Configuration is required to locate the Eureka server, as shown in the following
example:

application.yml

eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

In the preceding example, defaultZone is a magic string fallback value that provides the service URL
for any client that does not express a preference (in other words, it is a useful default).

The defaultZone property is case sensitive and requires camel case because the
serviceUrl property is a Map<String, String>. Therefore, the defaultZone property
does not follow the normal Spring Boot snake-case convention of default-zone.

The default application name (that is, the service ID), virtual host, and non-secure port (taken from
the Environment) are ${spring.application.name}, ${spring.application.name} and ${server.port},
respectively.

Having spring-cloud-starter-netflix-eureka-client on the classpath makes the app into both a
Eureka “instance” (that is, it registers itself) and a “client” (it can query the registry to locate other
services). The instance behaviour is driven by eureka.instance.* configuration keys, but the
defaults are fine if you ensure that your application has a value for spring.application.name (this is
the default for the Eureka service ID or VIP).

See EurekaInstanceConfigBean and EurekaClientConfigBean for more details on the configurable
options.

To disable the Eureka Discovery Client, you can set eureka.client.enabled to false. Eureka

https://projects.spring.io/spring-boot/
https://github.com/spring-cloud/tree/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/tree/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java

Discovery Client will also be disabled when spring.cloud.discovery.enabled is set to false.

5.1.3. Authenticating with the Eureka Server

HTTP basic authentication is automatically added to your eureka client if one of the
eureka.client.serviceUrl.defaultZone URLs has credentials embedded in it (curl style, as follows:
user:password@localhost:8761/eureka). For more complex needs, you can create a @Bean of type
DiscoveryClientOptionalArgs and inject ClientFilter instances into it, all of which is applied to the
calls from the client to the server.

Because of a limitation in Eureka, it is not possible to support per-server basic auth
credentials, so only the first set that are found is used.

5.1.4. Status Page and Health Indicator

The status page and health indicators for a Eureka instance default to /info and /health
respectively, which are the default locations of useful endpoints in a Spring Boot Actuator
application. You need to change these, even for an Actuator application if you use a non-default
context path or servlet path (such as server.servletPath=/custom). The following example shows the
default values for the two settings:

application.yml

eureka:
 instance:
 statusPageUrlPath: ${server.servletPath}/info
 healthCheckUrlPath: ${server.servletPath}/health

These links show up in the metadata that is consumed by clients and are used in some scenarios to
decide whether to send requests to your application, so it is helpful if they are accurate.

In Dalston it was also required to set the status and health check URLs when
changing that management context path. This requirement was removed
beginning in Edgware.

5.1.5. Registering a Secure Application

If your app wants to be contacted over HTTPS, you can set two flags in the EurekaInstanceConfig:

• eureka.instance.[nonSecurePortEnabled]=[false]

• eureka.instance.[securePortEnabled]=[true]

Doing so makes Eureka publish instance information that shows an explicit preference for secure
communication. The Spring Cloud DiscoveryClient always returns a URI starting with https for a
service configured this way. Similarly, when a service is configured this way, the Eureka (native)
instance information has a secure health check URL.

Because of the way Eureka works internally, it still publishes a non-secure URL for the status and

https://user:password@localhost:8761/eureka
https://user:password@localhost:8761/eureka
https://user:password@localhost:8761/eureka

home pages unless you also override those explicitly. You can use placeholders to configure the
eureka instance URLs, as shown in the following example:

application.yml

eureka:
 instance:
 statusPageUrl: https://${eureka.hostname}/info
 healthCheckUrl: https://${eureka.hostname}/health
 homePageUrl: https://${eureka.hostname}/

(Note that ${eureka.hostname} is a native placeholder only available in later versions of Eureka. You
could achieve the same thing with Spring placeholders as well — for example, by using
${eureka.instance.hostName}.)

If your application runs behind a proxy, and the SSL termination is in the proxy
(for example, if you run in Cloud Foundry or other platforms as a service), then
you need to ensure that the proxy “forwarded” headers are intercepted and
handled by the application. If the Tomcat container embedded in a Spring Boot
application has explicit configuration for the 'X-Forwarded-*` headers, this
happens automatically. The links rendered by your app to itself being wrong (the
wrong host, port, or protocol) is a sign that you got this configuration wrong.

5.1.6. Eureka’s Health Checks

By default, Eureka uses the client heartbeat to determine if a client is up. Unless specified
otherwise, the Discovery Client does not propagate the current health check status of the
application, per the Spring Boot Actuator. Consequently, after successful registration, Eureka
always announces that the application is in 'UP' state. This behavior can be altered by enabling
Eureka health checks, which results in propagating application status to Eureka. As a consequence,
every other application does not send traffic to applications in states other then 'UP'. The following
example shows how to enable health checks for the client:

application.yml

eureka:
 client:
 healthcheck:
 enabled: true

eureka.client.healthcheck.enabled=true should only be set in application.yml.
Setting the value in bootstrap.yml causes undesirable side effects, such as
registering in Eureka with an UNKNOWN status.

If you require more control over the health checks, consider implementing your own
com.netflix.appinfo.HealthCheckHandler.

5.1.7. Eureka Metadata for Instances and Clients

It is worth spending a bit of time understanding how the Eureka metadata works, so you can use it
in a way that makes sense in your platform. There is standard metadata for information such as
hostname, IP address, port numbers, the status page, and health check. These are published in the
service registry and used by clients to contact the services in a straightforward way. Additional
metadata can be added to the instance registration in the eureka.instance.metadataMap, and this
metadata is accessible in the remote clients. In general, additional metadata does not change the
behavior of the client, unless the client is made aware of the meaning of the metadata. There are a
couple of special cases, described later in this document, where Spring Cloud already assigns
meaning to the metadata map.

Using Eureka on Cloud Foundry

Cloud Foundry has a global router so that all instances of the same app have the same hostname
(other PaaS solutions with a similar architecture have the same arrangement). This is not
necessarily a barrier to using Eureka. However, if you use the router (recommended or even
mandatory, depending on the way your platform was set up), you need to explicitly set the
hostname and port numbers (secure or non-secure) so that they use the router. You might also want
to use instance metadata so that you can distinguish between the instances on the client (for
example, in a custom load balancer). By default, the eureka.instance.instanceId is
vcap.application.instance_id, as shown in the following example:

application.yml

eureka:
 instance:
 hostname: ${vcap.application.uris[0]}
 nonSecurePort: 80

Depending on the way the security rules are set up in your Cloud Foundry instance, you might be
able to register and use the IP address of the host VM for direct service-to-service calls. This feature
is not yet available on Pivotal Web Services (PWS).

Using Eureka on AWS

If the application is planned to be deployed to an AWS cloud, the Eureka instance must be
configured to be AWS-aware. You can do so by customizing the EurekaInstanceConfigBean as
follows:

@Bean
@Profile("!default")
public EurekaInstanceConfigBean eurekaInstanceConfig(InetUtils inetUtils) {
 EurekaInstanceConfigBean b = new EurekaInstanceConfigBean(inetUtils);
 AmazonInfo info = AmazonInfo.Builder.newBuilder().autoBuild("eureka");
 b.setDataCenterInfo(info);
 return b;
}

https://run.pivotal.io
https://github.com/spring-cloud/tree/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java

Changing the Eureka Instance ID

A vanilla Netflix Eureka instance is registered with an ID that is equal to its host name (that is, there
is only one service per host). Spring Cloud Eureka provides a sensible default, which is defined as
follows:

${spring.cloud.client.hostname}:${spring.application.name}:${spring.application.instance_id:${s
erver.port}}}

An example is myhost:myappname:8080.

By using Spring Cloud, you can override this value by providing a unique identifier in
eureka.instance.instanceId, as shown in the following example:

application.yml

eureka:
 instance:
 instanceId:
${spring.application.name}:${vcap.application.instance_id:${spring.application.instanc
e_id:${random.value}}}

With the metadata shown in the preceding example and multiple service instances deployed on
localhost, the random value is inserted there to make the instance unique. In Cloud Foundry, the
vcap.application.instance_id is populated automatically in a Spring Boot application, so the
random value is not needed.

5.1.8. Using the EurekaClient

Once you have an application that is a discovery client, you can use it to discover service instances
from the Eureka Server. One way to do so is to use the native com.netflix.discovery.EurekaClient
(as opposed to the Spring Cloud DiscoveryClient), as shown in the following example:

@Autowired
private EurekaClient discoveryClient;

public String serviceUrl() {
 InstanceInfo instance = discoveryClient.getNextServerFromEureka("STORES", false);
 return instance.getHomePageUrl();
}

Do not use the EurekaClient in a @PostConstruct method or in a @Scheduled method
(or anywhere where the ApplicationContext might not be started yet). It is
initialized in a SmartLifecycle (with phase=0), so the earliest you can rely on it
being available is in another SmartLifecycle with a higher phase.

EurekaClient without Jersey

By default, EurekaClient uses Jersey for HTTP communication. If you wish to avoid dependencies

from Jersey, you can exclude it from your dependencies. Spring Cloud auto-configures a transport
client based on Spring RestTemplate. The following example shows Jersey being excluded:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
 <exclusions>
 <exclusion>
 <groupId>com.sun.jersey</groupId>
 <artifactId>jersey-client</artifactId>
 </exclusion>
 <exclusion>
 <groupId>com.sun.jersey</groupId>
 <artifactId>jersey-core</artifactId>
 </exclusion>
 <exclusion>
 <groupId>com.sun.jersey.contribs</groupId>
 <artifactId>jersey-apache-client4</artifactId>
 </exclusion>
 </exclusions>
</dependency>

5.1.9. Alternatives to the Native Netflix EurekaClient

You need not use the raw Netflix EurekaClient. Also, it is usually more convenient to use it behind a
wrapper of some sort. Spring Cloud has support for Feign (a REST client builder) and Spring
RestTemplate through the logical Eureka service identifiers (VIPs) instead of physical URLs. To
configure Ribbon with a fixed list of physical servers, you can set <client>.ribbon.listOfServers to
a comma-separated list of physical addresses (or hostnames), where <client> is the ID of the client.

You can also use the org.springframework.cloud.client.discovery.DiscoveryClient, which provides a
simple API (not specific to Netflix) for discovery clients, as shown in the following example:

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
 List<ServiceInstance> list = discoveryClient.getInstances("STORES");
 if (list != null && list.size() > 0) {
 return list.get(0).getUri();
 }
 return null;
}

5.1.10. Why Is It so Slow to Register a Service?

Being an instance also involves a periodic heartbeat to the registry (through the client’s serviceUrl)
with a default duration of 30 seconds. A service is not available for discovery by clients until the

instance, the server, and the client all have the same metadata in their local cache (so it could take 3
heartbeats). You can change the period by setting eureka.instance.leaseRenewalIntervalInSeconds.
Setting it to a value of less than 30 speeds up the process of getting clients connected to other
services. In production, it is probably better to stick with the default, because of internal
computations in the server that make assumptions about the lease renewal period.

5.1.11. Zones

If you have deployed Eureka clients to multiple zones, you may prefer that those clients use
services within the same zone before trying services in another zone. To set that up, you need to
configure your Eureka clients correctly.

First, you need to make sure you have Eureka servers deployed to each zone and that they are
peers of each other. See the section on zones and regions for more information.

Next, you need to tell Eureka which zone your service is in. You can do so by using the metadataMap
property. For example, if service 1 is deployed to both zone 1 and zone 2, you need to set the
following Eureka properties in service 1:

Service 1 in Zone 1

eureka.instance.metadataMap.zone = zone1
eureka.client.preferSameZoneEureka = true

Service 1 in Zone 2

eureka.instance.metadataMap.zone = zone2
eureka.client.preferSameZoneEureka = true

5.1.12. Refreshing Eureka Clients

By default, the EurekaClient bean is refreshable, meaning the Eureka client properties can be
changed and refreshed. When a refresh occurs clients will be unregistered from the Eureka server
and there might be a brief moment of time where all instance of a given service are not available.
One way to eliminate this from happening is to disable the ability to refresh Eureka clients. To do
this set eureka.client.refresh.enable=false.

5.1.13. Using Eureka with Spring Cloud LoadBalancer

We offer support for the Spring Cloud LoadBalancer ZonePreferenceServiceInstanceListSupplier.
The zone value from the Eureka instance metadata (eureka.instance.metadataMap.zone) is used for
setting the value of spring-clod-loadbalancer-zone property that is used to filter service instances
by zone.

If that is missing and if the spring.cloud.loadbalancer.eureka.approximateZoneFromHostname flag is
set to true, it can use the domain name from the server hostname as a proxy for the zone.

If there is no other source of zone data, then a guess is made, based on the client configuration (as
opposed to the instance configuration). We take eureka.client.availabilityZones, which is a map
from region name to a list of zones, and pull out the first zone for the instance’s own region (that is,
the eureka.client.region, which defaults to "us-east-1", for compatibility with native Netflix).

5.2. Service Discovery: Eureka Server
This section describes how to set up a Eureka server.

5.2.1. How to Include Eureka Server

To include Eureka Server in your project, use the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-netflix-eureka-server. See the
Spring Cloud Project page for details on setting up your build system with the current Spring Cloud
Release Train.

If your project already uses Thymeleaf as its template engine, the Freemarker
templates of the Eureka server may not be loaded correctly. In this case it is
necessary to configure the template loader manually:

application.yml

spring:
 freemarker:
 template-loader-path: classpath:/templates/
 prefer-file-system-access: false

5.2.2. How to Run a Eureka Server

The following example shows a minimal Eureka server:

@SpringBootApplication
@EnableEurekaServer
public class Application {

 public static void main(String[] args) {
 new SpringApplicationBuilder(Application.class).web(true).run(args);
 }

}

The server has a home page with a UI and HTTP API endpoints for the normal Eureka functionality
under /eureka/*.

The following links have some Eureka background reading: flux capacitor and google group
discussion.

https://projects.spring.io/spring-cloud/
https://github.com/cfregly/fluxcapacitor/wiki/NetflixOSS-FAQ#eureka-service-discovery-load-balancer
https://groups.google.com/forum/?fromgroups#!topic/eureka_netflix/g3p2r7gHnN0
https://groups.google.com/forum/?fromgroups#!topic/eureka_netflix/g3p2r7gHnN0

Due to Gradle’s dependency resolution rules and the lack of a parent bom feature,
depending on spring-cloud-starter-netflix-eureka-server can cause failures on
application startup. To remedy this issue, add the Spring Boot Gradle plugin and
import the Spring cloud starter parent bom as follows:

build.gradle

buildscript {
 dependencies {
 classpath("org.springframework.boot:spring-boot-gradle-
plugin:{spring-boot-docs-version}")
 }
}

apply plugin: "spring-boot"

dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:{spring-cloud-version}"
 }
}

5.2.3. High Availability, Zones and Regions

The Eureka server does not have a back end store, but the service instances in the registry all have
to send heartbeats to keep their registrations up to date (so this can be done in memory). Clients
also have an in-memory cache of Eureka registrations (so they do not have to go to the registry for
every request to a service).

By default, every Eureka server is also a Eureka client and requires (at least one) service URL to
locate a peer. If you do not provide it, the service runs and works, but it fills your logs with a lot of
noise about not being able to register with the peer.

See also below for details of Ribbon support on the client side for Zones and Regions.

5.2.4. Standalone Mode

The combination of the two caches (client and server) and the heartbeats make a standalone
Eureka server fairly resilient to failure, as long as there is some sort of monitor or elastic runtime
(such as Cloud Foundry) keeping it alive. In standalone mode, you might prefer to switch off the
client side behavior so that it does not keep trying and failing to reach its peers. The following
example shows how to switch off the client-side behavior:

application.yml (Standalone Eureka Server)

server:
 port: 8761

eureka:
 instance:
 hostname: localhost
 client:
 registerWithEureka: false
 fetchRegistry: false
 serviceUrl:
 defaultZone: http://${eureka.instance.hostname}:${server.port}/eureka/

Notice that the serviceUrl is pointing to the same host as the local instance.

5.2.5. Peer Awareness

Eureka can be made even more resilient and available by running multiple instances and asking
them to register with each other. In fact, this is the default behavior, so all you need to do to make it
work is add a valid serviceUrl to a peer, as shown in the following example:

application.yml (Two Peer Aware Eureka Servers)

spring:
 profiles: peer1
eureka:
 instance:
 hostname: peer1
 client:
 serviceUrl:
 defaultZone: https://peer2/eureka/

spring:
 profiles: peer2
eureka:
 instance:
 hostname: peer2
 client:
 serviceUrl:
 defaultZone: https://peer1/eureka/

In the preceding example, we have a YAML file that can be used to run the same server on two
hosts (peer1 and peer2) by running it in different Spring profiles. You could use this configuration to
test the peer awareness on a single host (there is not much value in doing that in production) by
manipulating /etc/hosts to resolve the host names. In fact, the eureka.instance.hostname is not
needed if you are running on a machine that knows its own hostname (by default, it is looked up by

using java.net.InetAddress).

You can add multiple peers to a system, and, as long as they are all connected to each other by at
least one edge, they synchronize the registrations amongst themselves. If the peers are physically
separated (inside a data center or between multiple data centers), then the system can, in principle,
survive “split-brain” type failures. You can add multiple peers to a system, and as long as they are
all directly connected to each other, they will synchronize the registrations amongst themselves.

application.yml (Three Peer Aware Eureka Servers)

eureka:
 client:
 serviceUrl:
 defaultZone: https://peer1/eureka/,http://peer2/eureka/,http://peer3/eureka/

spring:
 profiles: peer1
eureka:
 instance:
 hostname: peer1

spring:
 profiles: peer2
eureka:
 instance:
 hostname: peer2

spring:
 profiles: peer3
eureka:
 instance:
 hostname: peer3

5.2.6. When to Prefer IP Address

In some cases, it is preferable for Eureka to advertise the IP addresses of services rather than the
hostname. Set eureka.instance.preferIpAddress to true and, when the application registers with
eureka, it uses its IP address rather than its hostname.

If the hostname cannot be determined by Java, then the IP address is sent to
Eureka. Only explict way of setting the hostname is by setting
eureka.instance.hostname property. You can set your hostname at the run-time by
using an environment variable — for example,
eureka.instance.hostname=${HOST_NAME}.

5.2.7. Securing The Eureka Server

You can secure your Eureka server simply by adding Spring Security to your server’s classpath via
spring-boot-starter-security. By default when Spring Security is on the classpath it will require
that a valid CSRF token be sent with every request to the app. Eureka clients will not generally
possess a valid cross site request forgery (CSRF) token you will need to disable this requirement for
the /eureka/** endpoints. For example:

@EnableWebSecurity
class WebSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.csrf().ignoringAntMatchers("/eureka/**");
 super.configure(http);
 }
}

For more information on CSRF see the Spring Security documentation.

A demo Eureka Server can be found in the Spring Cloud Samples repo.

5.2.8. Disabling Ribbon with Eureka Server and Client starters

spring-cloud-starter-netflix-eureka-server and spring-cloud-starter-netflix-eureka-client come
along with a spring-cloud-starter-netflix-ribbon. Since Ribbon load-balancer is now in
maintenance mode, we suggest switching to using the Spring Cloud LoadBalancer, also included in
Eureka starters, instead.

In order to that, you can set the value of spring.cloud.loadbalancer.ribbon.enabled property to
false.

You can then also exclude ribbon-related dependencies from Eureka starters in your build files, like
so:

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#csrf
https://github.com/spring-cloud-samples/eureka/tree/Eureka-With-Security

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-ribbon</artifactId>
 </exclusion>
 <exclusion>
 <groupId>com.netflix.ribbon</groupId>
 <artifactId>ribbon-eureka</artifactId>
 </exclusion>
 </exclusions>
</dependency>

5.2.9. JDK 11 Support

The JAXB modules which the Eureka server depends upon were removed in JDK 11. If you intend to
use JDK 11 when running a Eureka server you must include these dependencies in your POM or
Gradle file.

<dependency>
 <groupId>org.glassfish.jaxb</groupId>
 <artifactId>jaxb-runtime</artifactId>
</dependency>

5.3. Circuit Breaker: Spring Cloud Circuit Breaker With
Hystrix

5.3.1. Disabling Spring Cloud Circuit Breaker Hystrix

You can disable the auto-configuration by setting spring.cloud.circuitbreaker.hystrix.enabled to
false.

5.3.2. Configuring Hystrix Circuit Breakers

Default Configuration

To provide a default configuration for all of your circuit breakers create a Customize bean that is
passed a HystrixCircuitBreakerFactory or ReactiveHystrixCircuitBreakerFactory. The
configureDefault method can be used to provide a default configuration.

@Bean
public Customizer<HystrixCircuitBreakerFactory> defaultConfig() {
 return factory -> factory.configureDefault(id -> HystrixCommand.Setter
 .withGroupKey(HystrixCommandGroupKey.Factory.asKey(id))
 .andCommandPropertiesDefaults(HystrixCommandProperties.Setter()
 .withExecutionTimeoutInMilliseconds(4000)));
}

Reactive Example

@Bean
public Customizer<ReactiveHystrixCircuitBreakerFactory> defaultConfig() {
 return factory -> factory.configureDefault(id ->
HystrixObservableCommand.Setter
 .withGroupKey(HystrixCommandGroupKey.Factory.asKey(id))
 .andCommandPropertiesDefaults(HystrixCommandProperties.Setter()
 .withExecutionTimeoutInMilliseconds(4000)));
}

Specific Circuit Breaker Configuration

Similarly to providing a default configuration, you can create a Customize bean this is passed a
HystrixCircuitBreakerFactory

@Bean
public Customizer<HystrixCircuitBreakerFactory> customizer() {
 return factory -> factory.configure(builder -> builder.commandProperties(

HystrixCommandProperties.Setter().withExecutionTimeoutInMilliseconds(2000)),
"foo", "bar");
}

Reactive Example

@Bean
public Customizer<ReactiveHystrixCircuitBreakerFactory> customizer() {
 return factory -> factory.configure(builder -> builder.commandProperties(

HystrixCommandProperties.Setter().withExecutionTimeoutInMilliseconds(2000)),
"foo", "bar");
}

5.4. Circuit Breaker: Hystrix Clients
Netflix has created a library called Hystrix that implements the circuit breaker pattern. In a
microservice architecture, it is common to have multiple layers of service calls, as shown in the
following example:

Figure 1. Microservice Graph

A service failure in the lower level of services can cause cascading failure all the way up to the user.
When calls to a particular service exceed circuitBreaker.requestVolumeThreshold (default: 20
requests) and the failure percentage is greater than circuitBreaker.errorThresholdPercentage
(default: >50%) in a rolling window defined by metrics.rollingStats.timeInMilliseconds (default: 10
seconds), the circuit opens and the call is not made. In cases of error and an open circuit, a fallback
can be provided by the developer.

https://github.com/Netflix/Hystrix
https://martinfowler.com/bliki/CircuitBreaker.html

Figure 2. Hystrix fallback prevents cascading failures

Having an open circuit stops cascading failures and allows overwhelmed or failing services time to
recover. The fallback can be another Hystrix protected call, static data, or a sensible empty value.
Fallbacks may be chained so that the first fallback makes some other business call, which in turn
falls back to static data.

5.4.1. How to Include Hystrix

To include Hystrix in your project, use the starter with a group ID of org.springframework.cloud and
a artifact ID of spring-cloud-starter-netflix-hystrix. See the Spring Cloud Project page for details
on setting up your build system with the current Spring Cloud Release Train.

The following example shows a minimal Eureka server with a Hystrix circuit breaker:

https://projects.spring.io/spring-cloud/

@SpringBootApplication
@EnableCircuitBreaker
public class Application {

 public static void main(String[] args) {
 new SpringApplicationBuilder(Application.class).web(true).run(args);
 }

}

@Component
public class StoreIntegration {

 @HystrixCommand(fallbackMethod = "defaultStores")
 public Object getStores(Map<String, Object> parameters) {
 //do stuff that might fail
 }

 public Object defaultStores(Map<String, Object> parameters) {
 return /* something useful */;
 }
}

The @HystrixCommand is provided by a Netflix contrib library called “javanica”. Spring Cloud
automatically wraps Spring beans with that annotation in a proxy that is connected to the Hystrix
circuit breaker. The circuit breaker calculates when to open and close the circuit and what to do in
case of a failure.

To configure the @HystrixCommand you can use the commandProperties attribute with a list of
@HystrixProperty annotations. See here for more details. See the Hystrix wiki for details on the
properties available.

5.4.2. Propagating the Security Context or Using Spring Scopes

If you want some thread local context to propagate into a @HystrixCommand, the default declaration
does not work, because it executes the command in a thread pool (in case of timeouts). You can
switch Hystrix to use the same thread as the caller through configuration or directly in the
annotation, by asking it to use a different “Isolation Strategy”. The following example demonstrates
setting the thread in the annotation:

@HystrixCommand(fallbackMethod = "stubMyService",
 commandProperties = {
 @HystrixProperty(name="execution.isolation.strategy", value="SEMAPHORE")
 }
)
...

The same thing applies if you are using @SessionScope or @RequestScope. If you encounter a runtime

https://github.com/Netflix/Hystrix/tree/master/hystrix-contrib/hystrix-javanica
https://github.com/Netflix/Hystrix/tree/master/hystrix-contrib/hystrix-javanica#configuration
https://github.com/Netflix/Hystrix/wiki/Configuration

exception that says it cannot find the scoped context, you need to use the same thread.

You also have the option to set the hystrix.shareSecurityContext property to true. Doing so auto-
configures a Hystrix concurrency strategy plugin hook to transfer the SecurityContext from your
main thread to the one used by the Hystrix command. Hystrix does not let multiple Hystrix
concurrency strategy be registered so an extension mechanism is available by declaring your own
HystrixConcurrencyStrategy as a Spring bean. Spring Cloud looks for your implementation within
the Spring context and wrap it inside its own plugin.

5.4.3. Health Indicator

The state of the connected circuit breakers are also exposed in the /health endpoint of the calling
application, as shown in the following example:

{
 "hystrix": {
 "openCircuitBreakers": [
 "StoreIntegration::getStoresByLocationLink"
],
 "status": "CIRCUIT_OPEN"
 },
 "status": "UP"
}

5.4.4. Hystrix Metrics Stream

To enable the Hystrix metrics stream, include a dependency on spring-boot-starter-actuator and
set management.endpoints.web.exposure.include: hystrix.stream. Doing so exposes the
/actuator/hystrix.stream as a management endpoint, as shown in the following example:

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>

5.5. Circuit Breaker: Hystrix Dashboard
One of the main benefits of Hystrix is the set of metrics it gathers about each HystrixCommand. The
Hystrix Dashboard displays the health of each circuit breaker in an efficient manner.

Figure 3. Hystrix Dashboard

5.6. Hystrix Timeouts And Ribbon Clients
When using Hystrix commands that wrap Ribbon clients you want to make sure your Hystrix
timeout is configured to be longer than the configured Ribbon timeout, including any potential
retries that might be made. For example, if your Ribbon connection timeout is one second and the
Ribbon client might retry the request three times, than your Hystrix timeout should be slightly
more than three seconds.

5.6.1. How to Include the Hystrix Dashboard

To include the Hystrix Dashboard in your project, use the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-netflix-hystrix-dashboard.
See the Spring Cloud Project page for details on setting up your build system with the current
Spring Cloud Release Train.

To run the Hystrix Dashboard, annotate your Spring Boot main class with @EnableHystrixDashboard.
Then visit /hystrix and point the dashboard to an individual instance’s /hystrix.stream endpoint in
a Hystrix client application.

https://projects.spring.io/spring-cloud/

When connecting to a /hystrix.stream endpoint that uses HTTPS, the certificate
used by the server must be trusted by the JVM. If the certificate is not trusted, you
must import the certificate into the JVM in order for the Hystrix Dashboard to
make a successful connection to the stream endpoint.

5.6.2. Turbine

Looking at an individual instance’s Hystrix data is not very useful in terms of the overall health of
the system. Turbine is an application that aggregates all of the relevant /hystrix.stream endpoints
into a combined /turbine.stream for use in the Hystrix Dashboard. Individual instances are located
through Eureka. Running Turbine requires annotating your main class with the @EnableTurbine
annotation (for example, by using spring-cloud-starter-netflix-turbine to set up the classpath). All of
the documented configuration properties from the Turbine 1 wiki apply. The only difference is that
the turbine.instanceUrlSuffix does not need the port prepended, as this is handled automatically
unless turbine.instanceInsertPort=false.

By default, Turbine looks for the /hystrix.stream endpoint on a registered instance
by looking up its hostName and port entries in Eureka and then appending
/hystrix.stream to it. If the instance’s metadata contains management.port, it is used
instead of the port value for the /hystrix.stream endpoint. By default, the metadata
entry called management.port is equal to the management.port configuration property.
It can be overridden though with following configuration:

eureka:
 instance:
 metadata-map:
 management.port: ${management.port:8081}

The turbine.appConfig configuration key is a list of Eureka serviceIds that turbine uses to lookup
instances. The turbine stream is then used in the Hystrix dashboard with a URL similar to the
following:

my.turbine.server:8080/turbine.stream?cluster=CLUSTERNAME

The cluster parameter can be omitted if the name is default. The cluster parameter must match an
entry in turbine.aggregator.clusterConfig. Values returned from Eureka are upper-case.
Consequently, the following example works if there is an application called customers registered
with Eureka:

turbine:
 aggregator:
 clusterConfig: CUSTOMERS
 appConfig: customers

If you need to customize which cluster names should be used by Turbine (because you do not want
to store cluster names in turbine.aggregator.clusterConfig configuration), provide a bean of type

https://github.com/Netflix/Turbine
https://github.com/Netflix/Turbine/wiki/Configuration-(1.x)
https://my.turbine.server:8080/turbine.stream?cluster=CLUSTERNAME
https://my.turbine.server:8080/turbine.stream?cluster=CLUSTERNAME
https://my.turbine.server:8080/turbine.stream?cluster=CLUSTERNAME
https://my.turbine.server:8080/turbine.stream?cluster=CLUSTERNAME
https://my.turbine.server:8080/turbine.stream?cluster=CLUSTERNAME

TurbineClustersProvider.

The clusterName can be customized by a SPEL expression in turbine.clusterNameExpression with
root as an instance of InstanceInfo. The default value is appName, which means that the Eureka
serviceId becomes the cluster key (that is, the InstanceInfo for customers has an appName of
CUSTOMERS). A different example is turbine.clusterNameExpression=aSGName, which gets the cluster
name from the AWS ASG name. The following listing shows another example:

turbine:
 aggregator:
 clusterConfig: SYSTEM,USER
 appConfig: customers,stores,ui,admin
 clusterNameExpression: metadata['cluster']

In the preceding example, the cluster name from four services is pulled from their metadata map
and is expected to have values that include SYSTEM and USER.

To use the “default” cluster for all apps, you need a string literal expression (with single quotes and
escaped with double quotes if it is in YAML as well):

turbine:
 appConfig: customers,stores
 clusterNameExpression: "'default'"

Spring Cloud provides a spring-cloud-starter-netflix-turbine that has all the dependencies you
need to get a Turbine server running. To add Turbine, create a Spring Boot application and
annotate it with @EnableTurbine.

By default, Spring Cloud lets Turbine use the host and port to allow multiple
processes per host, per cluster. If you want the native Netflix behavior built into
Turbine to not allow multiple processes per host, per cluster (the key to the
instance ID is the hostname), set turbine.combineHostPort=false.

Clusters Endpoint

In some situations it might be useful for other applications to know what custers have been
configured in Turbine. To support this you can use the /clusters endpoint which will return a JSON
array of all the configured clusters.

GET /clusters

[
 {
 "name": "RACES",
 "link": "http://localhost:8383/turbine.stream?cluster=RACES"
 },
 {
 "name": "WEB",
 "link": "http://localhost:8383/turbine.stream?cluster=WEB"
 }
]

This endpoint can be disabled by setting turbine.endpoints.clusters.enabled to false.

5.6.3. Turbine Stream

In some environments (such as in a PaaS setting), the classic Turbine model of pulling metrics from
all the distributed Hystrix commands does not work. In that case, you might want to have your
Hystrix commands push metrics to Turbine. Spring Cloud enables that with messaging. To do so on
the client, add a dependency to spring-cloud-netflix-hystrix-stream and the spring-cloud-starter-
stream-* of your choice. See the Spring Cloud Stream documentation for details on the brokers and
how to configure the client credentials. It should work out of the box for a local broker.

On the server side, create a Spring Boot application and annotate it with @EnableTurbineStream. The
Turbine Stream server requires the use of Spring Webflux, therefore spring-boot-starter-webflux
needs to be included in your project. By default spring-boot-starter-webflux is included when
adding spring-cloud-starter-netflix-turbine-stream to your application.

You can then point the Hystrix Dashboard to the Turbine Stream Server instead of individual
Hystrix streams. If Turbine Stream is running on port 8989 on myhost, then put myhost:8989 in the
stream input field in the Hystrix Dashboard. Circuits are prefixed by their respective serviceId,
followed by a dot (.), and then the circuit name.

Spring Cloud provides a spring-cloud-starter-netflix-turbine-stream that has all the dependencies
you need to get a Turbine Stream server running. You can then add the Stream binder of your
choice — such as spring-cloud-starter-stream-rabbit.

Turbine Stream server also supports the cluster parameter. Unlike Turbine server, Turbine Stream
uses eureka serviceIds as cluster names and these are not configurable.

If Turbine Stream server is running on port 8989 on my.turbine.server and you have two eureka
serviceIds customers and products in your environment, the following URLs will be available on
your Turbine Stream server. default and empty cluster name will provide all metrics that Turbine
Stream server receives.

https://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/
https://myhost:8989

https://my.turbine.sever:8989/turbine.stream?cluster=customers
https://my.turbine.sever:8989/turbine.stream?cluster=products
https://my.turbine.sever:8989/turbine.stream?cluster=default
https://my.turbine.sever:8989/turbine.stream

So, you can use eureka serviceIds as cluster names for your Turbine dashboard (or any compatible
dashboard). You don’t need to configure any properties like turbine.appConfig,
turbine.clusterNameExpression and turbine.aggregator.clusterConfig for your Turbine Stream
server.

Turbine Stream server gathers all metrics from the configured input channel with
Spring Cloud Stream. It means that it doesn’t gather Hystrix metrics actively from
each instance. It just can provide metrics that were already gathered into the input
channel by each instance.

5.7. Client Side Load Balancer: Ribbon
Ribbon is a client-side load balancer that gives you a lot of control over the behavior of HTTP and
TCP clients. Feign already uses Ribbon, so, if you use @FeignClient, this section also applies.

A central concept in Ribbon is that of the named client. Each load balancer is part of an ensemble of
components that work together to contact a remote server on demand, and the ensemble has a
name that you give it as an application developer (for example, by using the @FeignClient
annotation). On demand, Spring Cloud creates a new ensemble as an ApplicationContext for each
named client by using RibbonClientConfiguration. This contains (amongst other things) an
ILoadBalancer, a RestClient, and a ServerListFilter.

5.7.1. How to Include Ribbon

To include Ribbon in your project, use the starter with a group ID of org.springframework.cloud and
an artifact ID of spring-cloud-starter-netflix-ribbon. See the Spring Cloud Project page for details
on setting up your build system with the current Spring Cloud Release Train.

5.7.2. Customizing the Ribbon Client

You can configure some bits of a Ribbon client by using external properties in <client>.ribbon.*,
which is similar to using the Netflix APIs natively, except that you can use Spring Boot
configuration files. The native options can be inspected as static fields in CommonClientConfigKey
(part of ribbon-core).

Spring Cloud also lets you take full control of the client by declaring additional configuration (on
top of the RibbonClientConfiguration) using @RibbonClient, as shown in the following example:

https://projects.spring.io/spring-cloud/
https://github.com/Netflix/ribbon/blob/master/ribbon-core/src/main/java/com/netflix/client/config/CommonClientConfigKey.java

@Configuration
@RibbonClient(name = "custom", configuration = CustomConfiguration.class)
public class TestConfiguration {
}

In this case, the client is composed from the components already in RibbonClientConfiguration,
together with any in CustomConfiguration (where the latter generally overrides the former).

The CustomConfiguration class must be a @Configuration class, but take care that it
is not in a @ComponentScan for the main application context. Otherwise, it is shared
by all the @RibbonClients. If you use @ComponentScan (or @SpringBootApplication),
you need to take steps to avoid it being included (for instance, you can put it in a
separate, non-overlapping package or specify the packages to scan explicitly in the
@ComponentScan).

The following table shows the beans that Spring Cloud Netflix provides by default for Ribbon:

Bean Type Bean Name Class Name

IClientConfig ribbonClientConfig DefaultClientConfi
gImpl

IRule ribbonRule ZoneAvoidanceRule

IPing ribbonPing DummyPing

ServerList<Server> ribbonServerList ConfigurationBased
ServerList

ServerListFilter<S
erver>

ribbonServerListFi
lter

ZonePreferenceServ
erListFilter

ILoadBalancer ribbonLoadBalancer ZoneAwareLoadBalan
cer

ServerListUpdater ribbonServerListUp
dater

PollingServerListU
pdater

Creating a bean of one of those type and placing it in a @RibbonClient configuration (such as
FooConfiguration above) lets you override each one of the beans described, as shown in the
following example:

@Configuration(proxyBeanMethods = false)
protected static class FooConfiguration {

 @Bean
 public ZonePreferenceServerListFilter serverListFilter() {
 ZonePreferenceServerListFilter filter = new ZonePreferenceServerListFilter();
 filter.setZone("myTestZone");
 return filter;
 }

 @Bean
 public IPing ribbonPing() {
 return new PingUrl();
 }

}

The include statement in the preceding example replaces NoOpPing with PingUrl and provides a
custom serverListFilter.

5.7.3. Customizing the Default for All Ribbon Clients

A default configuration can be provided for all Ribbon Clients by using the @RibbonClients
annotation and registering a default configuration, as shown in the following example:

@RibbonClients(defaultConfiguration = DefaultRibbonConfig.class)
public class RibbonClientDefaultConfigurationTestsConfig {

 public static class BazServiceList extends ConfigurationBasedServerList {

 public BazServiceList(IClientConfig config) {
 super.initWithNiwsConfig(config);
 }

 }

}

@Configuration(proxyBeanMethods = false)
class DefaultRibbonConfig {

 @Bean
 public IRule ribbonRule() {
 return new BestAvailableRule();
 }

 @Bean
 public IPing ribbonPing() {
 return new PingUrl();
 }

 @Bean
 public ServerList<Server> ribbonServerList(IClientConfig config) {
 return new RibbonClientDefaultConfigurationTestsConfig.BazServiceList(config);
 }

 @Bean
 public ServerListSubsetFilter serverListFilter() {
 ServerListSubsetFilter filter = new ServerListSubsetFilter();
 return filter;
 }

}

5.7.4. Customizing the Ribbon Client by Setting Properties

Starting with version 1.2.0, Spring Cloud Netflix now supports customizing Ribbon clients by setting
properties to be compatible with the Ribbon documentation.

This lets you change behavior at start up time in different environments.

The following list shows the supported properties>:

• <clientName>.ribbon.NFLoadBalancerClassName: Should implement ILoadBalancer

https://github.com/Netflix/ribbon/wiki/Working-with-load-balancers#components-of-load-balancer

• <clientName>.ribbon.NFLoadBalancerRuleClassName: Should implement IRule

• <clientName>.ribbon.NFLoadBalancerPingClassName: Should implement IPing

• <clientName>.ribbon.NIWSServerListClassName: Should implement ServerList

• <clientName>.ribbon.NIWSServerListFilterClassName: Should implement ServerListFilter

Classes defined in these properties have precedence over beans defined by using
@RibbonClient(configuration=MyRibbonConfig.class) and the defaults provided by
Spring Cloud Netflix.

To set the IRule for a service name called users, you could set the following properties:

application.yml

users:
 ribbon:
 NIWSServerListClassName: com.netflix.loadbalancer.ConfigurationBasedServerList
 NFLoadBalancerRuleClassName: com.netflix.loadbalancer.WeightedResponseTimeRule

See the Ribbon documentation for implementations provided by Ribbon.

5.7.5. Using Ribbon with Eureka

When Eureka is used in conjunction with Ribbon (that is, both are on the classpath), the
ribbonServerList is overridden with an extension of DiscoveryEnabledNIWSServerList, which
populates the list of servers from Eureka. It also replaces the IPing interface with NIWSDiscoveryPing,
which delegates to Eureka to determine if a server is up. The ServerList that is installed by default
is a DomainExtractingServerList. Its purpose is to make metadata available to the load balancer
without using AWS AMI metadata (which is what Netflix relies on). By default, the server list is
constructed with “zone” information, as provided in the instance metadata (so, on the remote
clients, set eureka.instance.metadataMap.zone). If that is missing and if the
approximateZoneFromHostname flag is set, it can use the domain name from the server hostname as a
proxy for the zone. Once the zone information is available, it can be used in a ServerListFilter. By
default, it is used to locate a server in the same zone as the client, because the default is a
ZonePreferenceServerListFilter. By default, the zone of the client is determined in the same way as
the remote instances (that is, through eureka.instance.metadataMap.zone).

The orthodox “archaius” way to set the client zone is through a configuration
property called "@zone". If it is available, Spring Cloud uses that in preference to
all other settings (note that the key must be quoted in YAML configuration).

If there is no other source of zone data, then a guess is made, based on the client
configuration (as opposed to the instance configuration). We take
eureka.client.availabilityZones, which is a map from region name to a list of
zones, and pull out the first zone for the instance’s own region (that is, the
eureka.client.region, which defaults to "us-east-1", for compatibility with native
Netflix).

https://github.com/Netflix/ribbon/wiki/Working-with-load-balancers

5.7.6. Example: How to Use Ribbon Without Eureka

Eureka is a convenient way to abstract the discovery of remote servers so that you do not have to
hard code their URLs in clients. However, if you prefer not to use Eureka, Ribbon and Feign also
work. Suppose you have declared a @RibbonClient for "stores", and Eureka is not in use (and not
even on the classpath). The Ribbon client defaults to a configured server list. You can supply the
configuration as follows:

application.yml

stores:
 ribbon:
 listOfServers: example.com,google.com

5.7.7. Example: Disable Eureka Use in Ribbon

Setting the ribbon.eureka.enabled property to false explicitly disables the use of Eureka in Ribbon,
as shown in the following example:

application.yml

ribbon:
 eureka:
 enabled: false

5.7.8. Using the Ribbon API Directly

You can also use the LoadBalancerClient directly, as shown in the following example:

public class MyClass {
 @Autowired
 private LoadBalancerClient loadBalancer;

 public void doStuff() {
 ServiceInstance instance = loadBalancer.choose("stores");
 URI storesUri = URI.create(String.format("https://%s:%s", instance.getHost(),
instance.getPort()));
 // ... do something with the URI
 }
}

5.7.9. Caching of Ribbon Configuration

Each Ribbon named client has a corresponding child application Context that Spring Cloud
maintains. This application context is lazily loaded on the first request to the named client. This
lazy loading behavior can be changed to instead eagerly load these child application contexts at
startup, by specifying the names of the Ribbon clients, as shown in the following example:

application.yml

ribbon:
 eager-load:
 enabled: true
 clients: client1, client2, client3

5.7.10. How to Configure Hystrix Thread Pools

If you change zuul.ribbonIsolationStrategy to THREAD, the thread isolation strategy for Hystrix is
used for all routes. In that case, the HystrixThreadPoolKey is set to RibbonCommand as the default. It
means that HystrixCommands for all routes are executed in the same Hystrix thread pool. This
behavior can be changed with the following configuration:

application.yml

zuul:
 threadPool:
 useSeparateThreadPools: true

The preceding example results in HystrixCommands being executed in the Hystrix thread pool for
each route.

In this case, the default HystrixThreadPoolKey is the same as the service ID for each route. To add a
prefix to HystrixThreadPoolKey, set zuul.threadPool.threadPoolKeyPrefix to the value that you want
to add, as shown in the following example:

application.yml

zuul:
 threadPool:
 useSeparateThreadPools: true
 threadPoolKeyPrefix: zuulgw

5.7.11. How to Provide a Key to Ribbon’s IRule

If you need to provide your own IRule implementation to handle a special routing requirement like
a “canary” test, pass some information to the choose method of IRule.

com.netflix.loadbalancer.IRule.java

public interface IRule{
 public Server choose(Object key);
 :

You can provide some information that is used by your IRule implementation to choose a target
server, as shown in the following example:

RequestContext.getCurrentContext()
 .set(FilterConstants.LOAD_BALANCER_KEY, "canary-test");

If you put any object into the RequestContext with a key of FilterConstants.LOAD_BALANCER_KEY, it is
passed to the choose method of the IRule implementation. The code shown in the preceding
example must be executed before RibbonRoutingFilter is executed. Zuul’s pre filter is the best place
to do that. You can access HTTP headers and query parameters through the RequestContext in pre
filter, so it can be used to determine the LOAD_BALANCER_KEY that is passed to Ribbon. If you do not
put any value with LOAD_BALANCER_KEY in RequestContext, null is passed as a parameter of the choose
method.

5.8. External Configuration: Archaius
Archaius is the Netflix client-side configuration library. It is the library used by all of the Netflix OSS
components for configuration. Archaius is an extension of the Apache Commons Configuration
project. It allows updates to configuration by either polling a source for changes or by letting a
source push changes to the client. Archaius uses Dynamic<Type>Property classes as handles to
properties, as shown in the following example:

Archaius Example

class ArchaiusTest {
 DynamicStringProperty myprop = DynamicPropertyFactory
 .getInstance()
 .getStringProperty("my.prop");

 void doSomething() {
 OtherClass.someMethod(myprop.get());
 }
}

Archaius has its own set of configuration files and loading priorities. Spring applications should
generally not use Archaius directly, but the need to configure the Netflix tools natively remains.
Spring Cloud has a Spring Environment Bridge so that Archaius can read properties from the
Spring Environment. This bridge allows Spring Boot projects to use the normal configuration
toolchain while letting them configure the Netflix tools as documented (for the most part).

5.9. Router and Filter: Zuul
Routing is an integral part of a microservice architecture. For example, / may be mapped to your
web application, /api/users is mapped to the user service and /api/shop is mapped to the shop
service. Zuul is a JVM-based router and server-side load balancer from Netflix.

Netflix uses Zuul for the following:

• Authentication

• Insights

https://github.com/Netflix/archaius
https://commons.apache.org/proper/commons-configuration
https://github.com/Netflix/zuul
https://www.slideshare.net/MikeyCohen1/edge-architecture-ieee-international-conference-on-cloud-engineering-32240146/27

• Stress Testing

• Canary Testing

• Dynamic Routing

• Service Migration

• Load Shedding

• Security

• Static Response handling

• Active/Active traffic management

Zuul’s rule engine lets rules and filters be written in essentially any JVM language, with built-in
support for Java and Groovy.

The configuration property zuul.max.host.connections has been replaced by two
new properties, zuul.host.maxTotalConnections and
zuul.host.maxPerRouteConnections, which default to 200 and 20 respectively.

The default Hystrix isolation pattern (ExecutionIsolationStrategy) for all routes is
SEMAPHORE. zuul.ribbonIsolationStrategy can be changed to THREAD if that isolation
pattern is preferred.

5.9.1. How to Include Zuul

To include Zuul in your project, use the starter with a group ID of org.springframework.cloud and a
artifact ID of spring-cloud-starter-netflix-zuul. See the Spring Cloud Project page for details on
setting up your build system with the current Spring Cloud Release Train.

5.9.2. Embedded Zuul Reverse Proxy

Spring Cloud has created an embedded Zuul proxy to ease the development of a common use case
where a UI application wants to make proxy calls to one or more back end services. This feature is
useful for a user interface to proxy to the back end services it requires, avoiding the need to
manage CORS and authentication concerns independently for all the back ends.

To enable it, annotate a Spring Boot main class with @EnableZuulProxy. Doing so causes local calls to
be forwarded to the appropriate service. By convention, a service with an ID of users receives
requests from the proxy located at /users (with the prefix stripped). The proxy uses Ribbon to
locate an instance to which to forward through discovery. All requests are executed in a hystrix
command, so failures appear in Hystrix metrics. Once the circuit is open, the proxy does not try to
contact the service.

the Zuul starter does not include a discovery client, so, for routes based on service
IDs, you need to provide one of those on the classpath as well (Eureka is one
choice).

To skip having a service automatically added, set zuul.ignored-services to a list of service ID

https://projects.spring.io/spring-cloud/

patterns. If a service matches a pattern that is ignored but is also included in the explicitly
configured routes map, it is unignored, as shown in the following example:

application.yml

 zuul:
 ignoredServices: '*'
 routes:
 users: /myusers/**

In the preceding example, all services are ignored, except for users.

To augment or change the proxy routes, you can add external configuration, as follows:

application.yml

 zuul:
 routes:
 users: /myusers/**

The preceding example means that HTTP calls to /myusers get forwarded to the users service (for
example /myusers/101 is forwarded to /101).

To get more fine-grained control over a route, you can specify the path and the serviceId
independently, as follows:

application.yml

 zuul:
 routes:
 users:
 path: /myusers/**
 serviceId: users_service

The preceding example means that HTTP calls to /myusers get forwarded to the users_service
service. The route must have a path that can be specified as an ant-style pattern, so /myusers/* only
matches one level, but /myusers/** matches hierarchically.

The location of the back end can be specified as either a serviceId (for a service from discovery) or
a url (for a physical location), as shown in the following example:

application.yml

 zuul:
 routes:
 users:
 path: /myusers/**
 url: https://example.com/users_service

These simple url-routes do not get executed as a HystrixCommand, nor do they load-balance multiple
URLs with Ribbon. To achieve those goals, you can specify a serviceId with a static list of servers, as
follows:

application.yml

zuul:
 routes:
 echo:
 path: /myusers/**
 serviceId: myusers-service
 stripPrefix: true

hystrix:
 command:
 myusers-service:
 execution:
 isolation:
 thread:
 timeoutInMilliseconds: ...

myusers-service:
 ribbon:
 NIWSServerListClassName: com.netflix.loadbalancer.ConfigurationBasedServerList
 listOfServers: https://example1.com,http://example2.com
 ConnectTimeout: 1000
 ReadTimeout: 3000
 MaxTotalHttpConnections: 500
 MaxConnectionsPerHost: 100

Another method is specifiying a service-route and configuring a Ribbon client for the serviceId
(doing so requires disabling Eureka support in Ribbon — see above for more information), as
shown in the following example:

application.yml

zuul:
 routes:
 users:
 path: /myusers/**
 serviceId: users

ribbon:
 eureka:
 enabled: false

users:
 ribbon:
 listOfServers: example.com,google.com

You can provide a convention between serviceId and routes by using regexmapper. It uses regular-
expression named groups to extract variables from serviceId and inject them into a route pattern,
as shown in the following example:

ApplicationConfiguration.java

@Bean
public PatternServiceRouteMapper serviceRouteMapper() {
 return new PatternServiceRouteMapper(
 "(?<name>^.+)-(?<version>v.+$)",
 "${version}/${name}");
}

The preceding example means that a serviceId of myusers-v1 is mapped to route /v1/myusers/**.
Any regular expression is accepted, but all named groups must be present in both servicePattern
and routePattern. If servicePattern does not match a serviceId, the default behavior is used. In the
preceding example, a serviceId of myusers is mapped to the "/myusers/**" route (with no version
detected). This feature is disabled by default and only applies to discovered services.

To add a prefix to all mappings, set zuul.prefix to a value, such as /api. By default, the proxy prefix
is stripped from the request before the request is forwarded by (you can switch this behavior off
with zuul.stripPrefix=false). You can also switch off the stripping of the service-specific prefix
from individual routes, as shown in the following example:

application.yml

 zuul:
 routes:
 users:
 path: /myusers/**
 stripPrefix: false

zuul.stripPrefix only applies to the prefix set in zuul.prefix. It does not have any
effect on prefixes defined within a given route’s path.

In the preceding example, requests to /myusers/101 are forwarded to /myusers/101 on the users
service.

The zuul.routes entries actually bind to an object of type ZuulProperties. If you look at the
properties of that object, you can see that it also has a retryable flag. Set that flag to true to have the
Ribbon client automatically retry failed requests. You can also set that flag to true when you need to
modify the parameters of the retry operations that use the Ribbon client configuration.

By default, the X-Forwarded-Host header is added to the forwarded requests. To turn it off, set
zuul.addProxyHeaders = false. By default, the prefix path is stripped, and the request to the back
end picks up a X-Forwarded-Prefix header (/myusers in the examples shown earlier).

If you set a default route (/), an application with @EnableZuulProxy could act as a standalone server.
For example, zuul.route.home: / would route all traffic ("/**") to the "home" service.

If more fine-grained ignoring is needed, you can specify specific patterns to ignore. These patterns
are evaluated at the start of the route location process, which means prefixes should be included in
the pattern to warrant a match. Ignored patterns span all services and supersede any other route
specification. The following example shows how to create ignored patterns:

application.yml

 zuul:
 ignoredPatterns: /**/admin/**
 routes:
 users: /myusers/**

The preceding example means that all calls (such as /myusers/101) are forwarded to /101 on the
users service. However, calls including /admin/ do not resolve.

If you need your routes to have their order preserved, you need to use a YAML file,
as the ordering is lost when using a properties file. The following example shows
such a YAML file:

application.yml

 zuul:
 routes:
 users:
 path: /myusers/**
 legacy:
 path: /**

If you were to use a properties file, the legacy path might end up in front of the users path,
rendering the users path unreachable.

5.9.3. Zuul Http Client

The default HTTP client used by Zuul is now backed by the Apache HTTP Client instead of the
deprecated Ribbon RestClient. To use RestClient or okhttp3.OkHttpClient, set
ribbon.restclient.enabled=true or ribbon.okhttp.enabled=true, respectively. If you would like to
customize the Apache HTTP client or the OK HTTP client, provide a bean of type
CloseableHttpClient or OkHttpClient.

5.9.4. Cookies and Sensitive Headers

You can share headers between services in the same system, but you probably do not want
sensitive headers leaking downstream into external servers. You can specify a list of ignored
headers as part of the route configuration. Cookies play a special role, because they have well
defined semantics in browsers, and they are always to be treated as sensitive. If the consumer of
your proxy is a browser, then cookies for downstream services also cause problems for the user,
because they all get jumbled up together (all downstream services look like they come from the
same place).

If you are careful with the design of your services, (for example, if only one of the downstream
services sets cookies), you might be able to let them flow from the back end all the way up to the
caller. Also, if your proxy sets cookies and all your back-end services are part of the same system, it
can be natural to simply share them (and, for instance, use Spring Session to link them up to some
shared state). Other than that, any cookies that get set by downstream services are likely to be not
useful to the caller, so it is recommended that you make (at least) Set-Cookie and Cookie into
sensitive headers for routes that are not part of your domain. Even for routes that are part of your
domain, try to think carefully about what it means before letting cookies flow between them and
the proxy.

The sensitive headers can be configured as a comma-separated list per route, as shown in the
following example:

application.yml

 zuul:
 routes:
 users:
 path: /myusers/**
 sensitiveHeaders: Cookie,Set-Cookie,Authorization
 url: https://downstream

This is the default value for sensitiveHeaders, so you need not set it unless you
want it to be different. This is new in Spring Cloud Netflix 1.1 (in 1.0, the user had
no control over headers, and all cookies flowed in both directions).

The sensitiveHeaders are a blacklist, and the default is not empty. Consequently, to make Zuul send
all headers (except the ignored ones), you must explicitly set it to the empty list. Doing so is
necessary if you want to pass cookie or authorization headers to your back end. The following
example shows how to use sensitiveHeaders:

application.yml

 zuul:
 routes:
 users:
 path: /myusers/**
 sensitiveHeaders:
 url: https://downstream

You can also set sensitive headers, by setting zuul.sensitiveHeaders. If sensitiveHeaders is set on a
route, it overrides the global sensitiveHeaders setting.

5.9.5. Ignored Headers

In addition to the route-sensitive headers, you can set a global value called zuul.ignoredHeaders for
values (both request and response) that should be discarded during interactions with downstream
services. By default, if Spring Security is not on the classpath, these are empty. Otherwise, they are

initialized to a set of well known “security” headers (for example, involving caching) as specified by
Spring Security. The assumption in this case is that the downstream services might add these
headers, too, but we want the values from the proxy. To not discard these well known security
headers when Spring Security is on the classpath, you can set zuul.ignoreSecurityHeaders to false.
Doing so can be useful if you disabled the HTTP Security response headers in Spring Security and
want the values provided by downstream services.

5.9.6. Management Endpoints

By default, if you use @EnableZuulProxy with the Spring Boot Actuator, you enable two additional
endpoints:

• Routes

• Filters

Routes Endpoint

A GET to the routes endpoint at /routes returns a list of the mapped routes:

GET /routes

{
 /stores/**: "http://localhost:8081"
}

Additional route details can be requested by adding the ?format=details query string to /routes.
Doing so produces the following output:

GET /routes/details

{
 "/stores/**": {
 "id": "stores",
 "fullPath": "/stores/**",
 "location": "http://localhost:8081",
 "path": "/**",
 "prefix": "/stores",
 "retryable": false,
 "customSensitiveHeaders": false,
 "prefixStripped": true
 }
}

A POST to /routes forces a refresh of the existing routes (for example, when there have been changes
in the service catalog). You can disable this endpoint by setting endpoints.routes.enabled to false.

the routes should respond automatically to changes in the service catalog, but the
POST to /routes is a way to force the change to happen immediately.

Filters Endpoint

A GET to the filters endpoint at /filters returns a map of Zuul filters by type. For each filter type in
the map, you get a list of all the filters of that type, along with their details.

5.9.7. Strangulation Patterns and Local Forwards

A common pattern when migrating an existing application or API is to “strangle” old endpoints,
slowly replacing them with different implementations. The Zuul proxy is a useful tool for this
because you can use it to handle all traffic from the clients of the old endpoints but redirect some of
the requests to new ones.

The following example shows the configuration details for a “strangle” scenario:

application.yml

 zuul:
 routes:
 first:
 path: /first/**
 url: https://first.example.com
 second:
 path: /second/**
 url: forward:/second
 third:
 path: /third/**
 url: forward:/3rd
 legacy:
 path: /**
 url: https://legacy.example.com

In the preceding example, we are strangle the “legacy” application, which is mapped to all requests
that do not match one of the other patterns. Paths in /first/** have been extracted into a new
service with an external URL. Paths in /second/** are forwarded so that they can be handled locally
(for example, with a normal Spring @RequestMapping). Paths in /third/** are also forwarded but
with a different prefix (/third/foo is forwarded to /3rd/foo).

The ignored patterns aren’t completely ignored, they just are not handled by the
proxy (so they are also effectively forwarded locally).

5.9.8. Uploading Files through Zuul

If you use @EnableZuulProxy, you can use the proxy paths to upload files and it should work, so long
as the files are small. For large files there is an alternative path that bypasses the Spring
DispatcherServlet (to avoid multipart processing) in "/zuul/*". In other words, if you have
zuul.routes.customers=/customers/**, then you can POST large files to /zuul/customers/*. The servlet
path is externalized via zuul.servletPath. If the proxy route takes you through a Ribbon load
balancer, extremely large files also require elevated timeout settings, as shown in the following
example:

application.yml

hystrix.command.default.execution.isolation.thread.timeoutInMilliseconds: 60000
ribbon:
 ConnectTimeout: 3000
 ReadTimeout: 60000

Note that, for streaming to work with large files, you need to use chunked encoding in the request
(which some browsers do not do by default), as shown in the following example:

$ curl -v -H "Transfer-Encoding: chunked" \
 -F "file=@mylarge.iso" localhost:9999/zuul/simple/file

5.9.9. Query String Encoding

When processing the incoming request, query params are decoded so that they can be available for
possible modifications in Zuul filters. They are then re-encoded the back end request is rebuilt in
the route filters. The result can be different than the original input if (for example) it was encoded
with Javascript’s encodeURIComponent() method. While this causes no issues in most cases, some web
servers can be picky with the encoding of complex query string.

To force the original encoding of the query string, it is possible to pass a special flag to
ZuulProperties so that the query string is taken as is with the HttpServletRequest::getQueryString
method, as shown in the following example:

application.yml

 zuul:
 forceOriginalQueryStringEncoding: true

This special flag works only with SimpleHostRoutingFilter. Also, you loose the
ability to easily override query parameters with
RequestContext.getCurrentContext().setRequestQueryParams(someOverriddenParamete

rs), because the query string is now fetched directly on the original
HttpServletRequest.

5.9.10. Request URI Encoding

When processing the incoming request, request URI is decoded before matching them to routes.
The request URI is then re-encoded when the back end request is rebuilt in the route filters. This
can cause some unexpected behavior if your URI includes the encoded "/" character.

To use the original request URI, it is possible to pass a special flag to 'ZuulProperties' so that the URI
will be taken as is with the HttpServletRequest::getRequestURI method, as shown in the following
example:

application.yml

 zuul:
 decodeUrl: false

If you are overriding request URI using requestURI RequestContext attribute and
this flag is set to false, then the URL set in the request context will not be encoded.
It will be your responsibility to make sure the URL is already encoded.

5.9.11. Plain Embedded Zuul

If you use @EnableZuulServer (instead of @EnableZuulProxy), you can also run a Zuul server without
proxying or selectively switch on parts of the proxying platform. Any beans that you add to the
application of type ZuulFilter are installed automatically (as they are with @EnableZuulProxy) but
without any of the proxy filters being added automatically.

In that case, the routes into the Zuul server are still specified by configuring "zuul.routes.*", but
there is no service discovery and no proxying. Consequently, the "serviceId" and "url" settings are
ignored. The following example maps all paths in "/api/**" to the Zuul filter chain:

application.yml

 zuul:
 routes:
 api: /api/**

5.9.12. Disable Zuul Filters

Zuul for Spring Cloud comes with a number of ZuulFilter beans enabled by default in both proxy
and server mode. See the Zuul filters package for the list of filters that you can enable. If you want
to disable one, set zuul.<SimpleClassName>.<filterType>.disable=true. By convention, the package
after filters is the Zuul filter type. For example to disable
org.springframework.cloud.netflix.zuul.filters.post.SendResponseFilter, set
zuul.SendResponseFilter.post.disable=true.

5.9.13. Providing Hystrix Fallbacks For Routes

When a circuit for a given route in Zuul is tripped, you can provide a fallback response by creating
a bean of type FallbackProvider. Within this bean, you need to specify the route ID the fallback is
for and provide a ClientHttpResponse to return as a fallback. The following example shows a
relatively simple FallbackProvider implementation:

class MyFallbackProvider implements FallbackProvider {

 @Override
 public String getRoute() {
 return "customers";

https://github.com/spring-cloud/spring-cloud-netflix/tree/master/spring-cloud-netflix-zuul/src/main/java/org/springframework/cloud/netflix/zuul/filters

 }

 @Override
 public ClientHttpResponse fallbackResponse(String route, final Throwable cause) {
 if (cause instanceof HystrixTimeoutException) {
 return response(HttpStatus.GATEWAY_TIMEOUT);
 } else {
 return response(HttpStatus.INTERNAL_SERVER_ERROR);
 }
 }

 private ClientHttpResponse response(final HttpStatus status) {
 return new ClientHttpResponse() {
 @Override
 public HttpStatus getStatusCode() throws IOException {
 return status;
 }

 @Override
 public int getRawStatusCode() throws IOException {
 return status.value();
 }

 @Override
 public String getStatusText() throws IOException {
 return status.getReasonPhrase();
 }

 @Override
 public void close() {
 }

 @Override
 public InputStream getBody() throws IOException {
 return new ByteArrayInputStream("fallback".getBytes());
 }

 @Override
 public HttpHeaders getHeaders() {
 HttpHeaders headers = new HttpHeaders();
 headers.setContentType(MediaType.APPLICATION_JSON);
 return headers;
 }
 };
 }
}

The following example shows how the route configuration for the previous example might appear:

zuul:
 routes:
 customers: /customers/**

If you would like to provide a default fallback for all routes, you can create a bean of type
FallbackProvider and have the getRoute method return * or null, as shown in the following
example:

class MyFallbackProvider implements FallbackProvider {
 @Override
 public String getRoute() {
 return "*";
 }

 @Override
 public ClientHttpResponse fallbackResponse(String route, Throwable throwable) {
 return new ClientHttpResponse() {
 @Override
 public HttpStatus getStatusCode() throws IOException {
 return HttpStatus.OK;
 }

 @Override
 public int getRawStatusCode() throws IOException {
 return 200;
 }

 @Override
 public String getStatusText() throws IOException {
 return "OK";
 }

 @Override
 public void close() {

 }

 @Override
 public InputStream getBody() throws IOException {
 return new ByteArrayInputStream("fallback".getBytes());
 }

 @Override
 public HttpHeaders getHeaders() {
 HttpHeaders headers = new HttpHeaders();
 headers.setContentType(MediaType.APPLICATION_JSON);
 return headers;
 }
 };
 }
}

5.9.14. Zuul Timeouts

If you want to configure the socket timeouts and read timeouts for requests proxied through Zuul,
you have two options, based on your configuration:

• If Zuul uses service discovery, you need to configure these timeouts with the ribbon.ReadTimeout
and ribbon.SocketTimeout Ribbon properties.

If you have configured Zuul routes by specifying URLs, you need to use zuul.host.connect-timeout-
millis and zuul.host.socket-timeout-millis.

5.9.15. Rewriting the Location header

If Zuul is fronting a web application, you may need to re-write the Location header when the web
application redirects through a HTTP status code of 3XX. Otherwise, the browser redirects to the
web application’s URL instead of the Zuul URL. You can configure a LocationRewriteFilter Zuul
filter to re-write the Location header to the Zuul’s URL. It also adds back the stripped global and
route-specific prefixes. The following example adds a filter by using a Spring Configuration file:

import org.springframework.cloud.netflix.zuul.filters.post.LocationRewriteFilter;
...

@Configuration
@EnableZuulProxy
public class ZuulConfig {
 @Bean
 public LocationRewriteFilter locationRewriteFilter() {
 return new LocationRewriteFilter();
 }
}

Use this filter carefully. The filter acts on the Location header of ALL 3XX response
codes, which may not be appropriate in all scenarios, such as when redirecting the
user to an external URL.

5.9.16. Enabling Cross Origin Requests

By default Zuul routes all Cross Origin requests (CORS) to the services. If you want instead Zuul to
handle these requests it can be done by providing custom WebMvcConfigurer bean:

@Bean
public WebMvcConfigurer corsConfigurer() {
 return new WebMvcConfigurer() {
 public void addCorsMappings(CorsRegistry registry) {
 registry.addMapping("/path-1/**")
 .allowedOrigins("https://allowed-origin.com")
 .allowedMethods("GET", "POST");
 }
 };
}

In the example above, we allow GET and POST methods from allowed-origin.com to send cross-origin

https://allowed-origin.com

requests to the endpoints starting with path-1. You can apply CORS configuration to a specific path
pattern or globally for the whole application, using /** mapping. You can customize properties:
allowedOrigins,allowedMethods,allowedHeaders,exposedHeaders,allowCredentials and maxAge via this
configuration.

5.9.17. Metrics

Zuul will provide metrics under the Actuator metrics endpoint for any failures that might occur
when routing requests. These metrics can be viewed by hitting /actuator/metrics. The metrics will
have a name that has the format ZUUL::EXCEPTION:errorCause:statusCode.

5.9.18. Zuul Developer Guide

For a general overview of how Zuul works, see the Zuul Wiki.

The Zuul Servlet

Zuul is implemented as a Servlet. For the general cases, Zuul is embedded into the Spring Dispatch
mechanism. This lets Spring MVC be in control of the routing. In this case, Zuul buffers requests. If
there is a need to go through Zuul without buffering requests (for example, for large file uploads),
the Servlet is also installed outside of the Spring Dispatcher. By default, the servlet has an address
of /zuul. This path can be changed with the zuul.servlet-path property.

Zuul RequestContext

To pass information between filters, Zuul uses a RequestContext. Its data is held in a ThreadLocal
specific to each request. Information about where to route requests, errors, and the actual
HttpServletRequest and HttpServletResponse are stored there. The RequestContext extends
ConcurrentHashMap, so anything can be stored in the context. FilterConstants contains the keys used
by the filters installed by Spring Cloud Netflix (more on these later).

@EnableZuulProxy vs. @EnableZuulServer

Spring Cloud Netflix installs a number of filters, depending on which annotation was used to enable
Zuul. @EnableZuulProxy is a superset of @EnableZuulServer. In other words, @EnableZuulProxy contains
all the filters installed by @EnableZuulServer. The additional filters in the “proxy” enable routing
functionality. If you want a “blank” Zuul, you should use @EnableZuulServer.

@EnableZuulServer Filters

@EnableZuulServer creates a SimpleRouteLocator that loads route definitions from Spring Boot
configuration files.

The following filters are installed (as normal Spring Beans):

• Pre filters:

◦ ServletDetectionFilter: Detects whether the request is through the Spring Dispatcher. Sets a
boolean with a key of FilterConstants.IS_DISPATCHER_SERVLET_REQUEST_KEY.

◦ FormBodyWrapperFilter: Parses form data and re-encodes it for downstream requests.

https://github.com/Netflix/zuul/wiki/How-it-Works
https://github.com/Netflix/zuul/blob/1.x/zuul-core/src/main/java/com/netflix/zuul/context/RequestContext.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-zuul/src/main/java/org/springframework/cloud/netflix/zuul/filters/support/FilterConstants.java

◦ DebugFilter: If the debug request parameter is set, sets RequestContext.setDebugRouting() and
RequestContext.setDebugRequest() to true.

• Route filters:

◦ SendForwardFilter: Forwards requests by using the Servlet RequestDispatcher. The
forwarding location is stored in the RequestContext attribute,
FilterConstants.FORWARD_TO_KEY. This is useful for forwarding to endpoints in the current
application.

• Post filters:

◦ SendResponseFilter: Writes responses from proxied requests to the current response.

• Error filters:

◦ SendErrorFilter: Forwards to /error (by default) if RequestContext.getThrowable() is not null.
You can change the default forwarding path (/error) by setting the error.path property.

@EnableZuulProxy Filters

Creates a DiscoveryClientRouteLocator that loads route definitions from a DiscoveryClient (such as
Eureka) as well as from properties. A route is created for each serviceId from the DiscoveryClient.
As new services are added, the routes are refreshed.

In addition to the filters described earlier, the following filters are installed (as normal Spring
Beans):

• Pre filters:

◦ PreDecorationFilter: Determines where and how to route, depending on the supplied
RouteLocator. It also sets various proxy-related headers for downstream requests.

• Route filters:

◦ RibbonRoutingFilter: Uses Ribbon, Hystrix, and pluggable HTTP clients to send requests.
Service IDs are found in the RequestContext attribute, FilterConstants.SERVICE_ID_KEY. This
filter can use different HTTP clients:

▪ Apache HttpClient: The default client.

▪ Squareup OkHttpClient v3: Enabled by having the com.squareup.okhttp3:okhttp library on
the classpath and setting ribbon.okhttp.enabled=true.

▪ Netflix Ribbon HTTP client: Enabled by setting ribbon.restclient.enabled=true. This
client has limitations, including that it does not support the PATCH method, but it also
has built-in retry.

◦ SimpleHostRoutingFilter: Sends requests to predetermined URLs through an Apache
HttpClient. URLs are found in RequestContext.getRouteHost().

Custom Zuul Filter Examples

Most of the following "How to Write" examples below are included Sample Zuul Filters project.
There are also examples of manipulating the request or response body in that repository.

This section includes the following examples:

https://github.com/spring-cloud-samples/sample-zuul-filters

• How to Write a Pre Filter

• How to Write a Route Filter

• How to Write a Post Filter

How to Write a Pre Filter

Pre filters set up data in the RequestContext for use in filters downstream. The main use case is to
set information required for route filters. The following example shows a Zuul pre filter:

public class QueryParamPreFilter extends ZuulFilter {
 @Override
 public int filterOrder() {
 return PRE_DECORATION_FILTER_ORDER - 1; // run before PreDecoration
 }

 @Override
 public String filterType() {
 return PRE_TYPE;
 }

 @Override
 public boolean shouldFilter() {
 RequestContext ctx = RequestContext.getCurrentContext();
 return !ctx.containsKey(FORWARD_TO_KEY) // a filter has already forwarded
 && !ctx.containsKey(SERVICE_ID_KEY); // a filter has already
determined serviceId
 }
 @Override
 public Object run() {
 RequestContext ctx = RequestContext.getCurrentContext();
 HttpServletRequest request = ctx.getRequest();
 if (request.getParameter("sample") != null) {
 // put the serviceId in `RequestContext`
 ctx.put(SERVICE_ID_KEY, request.getParameter("foo"));
 }
 return null;
 }
}

The preceding filter populates SERVICE_ID_KEY from the sample request parameter. In practice, you
should not do that kind of direct mapping. Instead, the service ID should be looked up from the
value of sample instead.

Now that SERVICE_ID_KEY is populated, PreDecorationFilter does not run and RibbonRoutingFilter
runs.

 If you want to route to a full URL, call ctx.setRouteHost(url) instead.

To modify the path to which routing filters forward, set the REQUEST_URI_KEY.

How to Write a Route Filter

Route filters run after pre filters and make requests to other services. Much of the work here is to
translate request and response data to and from the model required by the client. The following
example shows a Zuul route filter:

public class OkHttpRoutingFilter extends ZuulFilter {
 @Autowired
 private ProxyRequestHelper helper;

 @Override
 public String filterType() {
 return ROUTE_TYPE;
 }

 @Override
 public int filterOrder() {
 return SIMPLE_HOST_ROUTING_FILTER_ORDER - 1;
 }

 @Override
 public boolean shouldFilter() {
 return RequestContext.getCurrentContext().getRouteHost() != null
 && RequestContext.getCurrentContext().sendZuulResponse();
 }

 @Override
 public Object run() {
 OkHttpClient httpClient = new OkHttpClient.Builder()
 // customize
 .build();

 RequestContext context = RequestContext.getCurrentContext();
 HttpServletRequest request = context.getRequest();

 String method = request.getMethod();

 String uri = this.helper.buildZuulRequestURI(request);

 Headers.Builder headers = new Headers.Builder();
 Enumeration<String> headerNames = request.getHeaderNames();
 while (headerNames.hasMoreElements()) {
 String name = headerNames.nextElement();
 Enumeration<String> values = request.getHeaders(name);

 while (values.hasMoreElements()) {
 String value = values.nextElement();
 headers.add(name, value);

 }
 }

 InputStream inputStream = request.getInputStream();

 RequestBody requestBody = null;
 if (inputStream != null && HttpMethod.permitsRequestBody(method)) {
 MediaType mediaType = null;
 if (headers.get("Content-Type") != null) {
 mediaType = MediaType.parse(headers.get("Content-Type"));
 }
 requestBody = RequestBody.create(mediaType,
StreamUtils.copyToByteArray(inputStream));
 }

 Request.Builder builder = new Request.Builder()
 .headers(headers.build())
 .url(uri)
 .method(method, requestBody);

 Response response = httpClient.newCall(builder.build()).execute();

 LinkedMultiValueMap<String, String> responseHeaders = new
LinkedMultiValueMap<>();

 for (Map.Entry<String, List<String>> entry :
response.headers().toMultimap().entrySet()) {
 responseHeaders.put(entry.getKey(), entry.getValue());
 }

 this.helper.setResponse(response.code(), response.body().byteStream(),
 responseHeaders);
 context.setRouteHost(null); // prevent SimpleHostRoutingFilter from running
 return null;
 }
}

The preceding filter translates Servlet request information into OkHttp3 request information,
executes an HTTP request, and translates OkHttp3 response information to the Servlet response.

How to Write a Post Filter

Post filters typically manipulate the response. The following filter adds a random UUID as the X-
Sample header:

public class AddResponseHeaderFilter extends ZuulFilter {
 @Override
 public String filterType() {
 return POST_TYPE;
 }

 @Override
 public int filterOrder() {
 return SEND_RESPONSE_FILTER_ORDER - 1;
 }

 @Override
 public boolean shouldFilter() {
 return true;
 }

 @Override
 public Object run() {
 RequestContext context = RequestContext.getCurrentContext();
 HttpServletResponse servletResponse = context.getResponse();
 servletResponse.addHeader("X-Sample", UUID.randomUUID().toString());
 return null;
 }
}

Other manipulations, such as transforming the response body, are much more
complex and computationally intensive.

How Zuul Errors Work

If an exception is thrown during any portion of the Zuul filter lifecycle, the error filters are
executed. The SendErrorFilter is only run if RequestContext.getThrowable() is not null. It then sets
specific javax.servlet.error.* attributes in the request and forwards the request to the Spring Boot
error page.

Zuul Eager Application Context Loading

Zuul internally uses Ribbon for calling the remote URLs. By default, Ribbon clients are lazily loaded
by Spring Cloud on first call. This behavior can be changed for Zuul by using the following
configuration, which results eager loading of the child Ribbon related Application contexts at
application startup time. The following example shows how to enable eager loading:

application.yml

zuul:
 ribbon:
 eager-load:
 enabled: true

5.10. Polyglot support with Sidecar
Do you have non-JVM languages with which you want to take advantage of Eureka, Ribbon, and
Config Server? The Spring Cloud Netflix Sidecar was inspired by Netflix Prana. It includes an HTTP
API to get all of the instances (by host and port) for a given service. You can also proxy service calls
through an embedded Zuul proxy that gets its route entries from Eureka. The Spring Cloud Config
Server can be accessed directly through host lookup or through the Zuul Proxy. The non-JVM
application should implement a health check so the Sidecar can report to Eureka whether the app is
up or down.

To include Sidecar in your project, use the dependency with a group ID of
org.springframework.cloud and artifact ID or spring-cloud-netflix-sidecar.

To enable the Sidecar, create a Spring Boot application with @EnableSidecar. This annotation
includes @EnableCircuitBreaker, @EnableDiscoveryClient, and @EnableZuulProxy. Run the resulting
application on the same host as the non-JVM application.

To configure the side car, add sidecar.port and sidecar.health-uri to application.yml. The
sidecar.port property is the port on which the non-JVM application listens. This is so the Sidecar
can properly register the application with Eureka. The sidecar.secure-port-enabled options
provides a way to enable secure port for traffic. The sidecar.health-uri is a URI accessible on the
non-JVM application that mimics a Spring Boot health indicator. It should return a JSON document
that resembles the following:

health-uri-document

{
 "status":"UP"
}

The following application.yml example shows sample configuration for a Sidecar application:

application.yml

server:
 port: 5678
spring:
 application:
 name: sidecar

sidecar:
 port: 8000
 health-uri: http://localhost:8000/health.json

The API for the DiscoveryClient.getInstances() method is /hosts/{serviceId}. The following
example response for /hosts/customers returns two instances on different hosts:

https://github.com/Netflix/Prana

/hosts/customers

[
 {
 "host": "myhost",
 "port": 9000,
 "uri": "https://myhost:9000",
 "serviceId": "CUSTOMERS",
 "secure": false
 },
 {
 "host": "myhost2",
 "port": 9000,
 "uri": "https://myhost2:9000",
 "serviceId": "CUSTOMERS",
 "secure": false
 }
]

This API is accessible to the non-JVM application (if the sidecar is on port 5678) at localhost:5678/
hosts/{serviceId}.

The Zuul proxy automatically adds routes for each service known in Eureka to /<serviceId>, so the
customers service is available at /customers. The non-JVM application can access the customer
service at localhost:5678/customers (assuming the sidecar is listening on port 5678).

If the Config Server is registered with Eureka, the non-JVM application can access it through the
Zuul proxy. If the serviceId of the ConfigServer is configserver and the Sidecar is on port 5678, then
it can be accessed at localhost:5678/configserver.

Non-JVM applications can take advantage of the Config Server’s ability to return YAML documents.
For example, a call to sidecar.local.spring.io:5678/configserver/default-master.yml might result in a
YAML document resembling the following:

eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
 password: password
info:
 description: Spring Cloud Samples
 url: https://github.com/spring-cloud-samples

To enable the health check request to accept all certificates when using HTTPs set sidecar.accept-
all-ssl-certificates to `true.

http://localhost:5678/hosts/{serviceId}
http://localhost:5678/hosts/{serviceId}
http://localhost:5678/hosts/{serviceId}
http://localhost:5678/hosts/{serviceId}
http://localhost:5678/hosts/{serviceId}
http://localhost:5678/customers
http://localhost:5678/customers
http://localhost:5678/customers
http://localhost:5678/configserver
https://sidecar.local.spring.io:5678/configserver/default-master.yml

5.11. Retrying Failed Requests
Spring Cloud Netflix offers a variety of ways to make HTTP requests. You can use a load balanced
RestTemplate, Ribbon, or Feign. No matter how you choose to create your HTTP requests, there is
always a chance that a request may fail. When a request fails, you may want to have the request be
retried automatically. To do so when using Sping Cloud Netflix, you need to include Spring Retry on
your application’s classpath. When Spring Retry is present, load-balanced RestTemplates, Feign, and
Zuul automatically retry any failed requests (assuming your configuration allows doing so).

5.11.1. BackOff Policies

By default, no backoff policy is used when retrying requests. If you would like to configure a
backoff policy, you need to create a bean of type LoadBalancedRetryFactory and override the
createBackOffPolicy method for a given service, as shown in the following example:

@Configuration
public class MyConfiguration {
 @Bean
 LoadBalancedRetryFactory retryFactory() {
 return new LoadBalancedRetryFactory() {
 @Override
 public BackOffPolicy createBackOffPolicy(String service) {
 return new ExponentialBackOffPolicy();
 }
 };
 }
}

5.11.2. Configuration

When you use Ribbon with Spring Retry, you can control the retry functionality by configuring
certain Ribbon properties. To do so, set the client.ribbon.MaxAutoRetries,
client.ribbon.MaxAutoRetriesNextServer, and client.ribbon.OkToRetryOnAllOperations properties.
See the Ribbon documentation for a description of what these properties do.

Enabling client.ribbon.OkToRetryOnAllOperations includes retrying POST requests,
which can have an impact on the server’s resources, due to the buffering of the
request body.

The property names are case-sensitive, and since some of these properties are
defined in the Netflix Ribbon project, they are in Pascal Case and the ones from
Spring Cloud are in Camel Case.

In addition, you may want to retry requests when certain status codes are returned in the response.
You can list the response codes you would like the Ribbon client to retry by setting the
clientName.ribbon.retryableStatusCodes property, as shown in the following example:

https://github.com/spring-projects/spring-retry
https://github.com/Netflix/ribbon/wiki/Getting-Started#the-properties-file-sample-clientproperties

clientName:
 ribbon:
 retryableStatusCodes: 404,502

You can also create a bean of type LoadBalancedRetryPolicy and implement the retryableStatusCode
method to retry a request given the status code.

Zuul

You can turn off Zuul’s retry functionality by setting zuul.retryable to false. You can also disable
retry functionality on a route-by-route basis by setting zuul.routes.routename.retryable to false.

5.12. HTTP Clients
Spring Cloud Netflix automatically creates the HTTP client used by Ribbon, Feign, and Zuul for you.
However, you can also provide your own HTTP clients customized as you need them to be. To do so,
you can create a bean of type CloseableHttpClient if you are using the Apache HTTP Client or
OkHttpClient if you are using OK HTTP.

When you create your own HTTP client, you are also responsible for implementing
the correct connection management strategies for these clients. Doing so
improperly can result in resource management issues.

5.13. Modules In Maintenance Mode
Placing a module in maintenance mode means that the Spring Cloud team will no longer be adding
new features to the module. We will fix blocker bugs and security issues, and we will also consider
and review small pull requests from the community.

We intend to continue to support these modules for a period of at least a year from the general
availability of the Greenwich release train.

The following Spring Cloud Netflix modules and corresponding starters will be placed into
maintenance mode:

• spring-cloud-netflix-archaius

• spring-cloud-netflix-concurrency-limits

• spring-cloud-netflix-hystrix-contract

• spring-cloud-netflix-hystrix-dashboard

• spring-cloud-netflix-hystrix-stream

• spring-cloud-netflix-hystrix

• spring-cloud-netflix-ribbon

• spring-cloud-netflix-turbine-stream

• spring-cloud-netflix-turbine

• spring-cloud-netflix-zuul

 This does not include the Eureka modules.

5.14. Configuration properties
To see the list of all Spring Cloud Netflix related configuration properties please check the Appendix
page.

appendix.html
appendix.html

Chapter 6. Spring Cloud OpenFeign
Hoxton.SR5

This project provides OpenFeign integrations for Spring Boot apps through autoconfiguration and
binding to the Spring Environment and other Spring programming model idioms.

6.1. Declarative REST Client: Feign
Feign is a declarative web service client. It makes writing web service clients easier. To use Feign
create an interface and annotate it. It has pluggable annotation support including Feign
annotations and JAX-RS annotations. Feign also supports pluggable encoders and decoders. Spring
Cloud adds support for Spring MVC annotations and for using the same HttpMessageConverters used
by default in Spring Web. Spring Cloud integrates Ribbon and Eureka, as well as Spring Cloud
LoadBalancer to provide a load-balanced http client when using Feign.

6.1.1. How to Include Feign

To include Feign in your project use the starter with group org.springframework.cloud and artifact
id spring-cloud-starter-openfeign. See the Spring Cloud Project page for details on setting up your
build system with the current Spring Cloud Release Train.

Example spring boot app

@SpringBootApplication
@EnableFeignClients
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}

https://github.com/OpenFeign/feign
https://projects.spring.io/spring-cloud/

StoreClient.java

@FeignClient("stores")
public interface StoreClient {
 @RequestMapping(method = RequestMethod.GET, value = "/stores")
 List<Store> getStores();

 @RequestMapping(method = RequestMethod.GET, value = "/stores")
 Page<Store> getStores(Pageable pageable);

 @RequestMapping(method = RequestMethod.POST, value = "/stores/{storeId}", consumes
= "application/json")
 Store update(@PathVariable("storeId") Long storeId, Store store);
}

In the @FeignClient annotation the String value ("stores" above) is an arbitrary client name, which
is used to create either a Ribbon load-balancer (see below for details of Ribbon support) or Spring
Cloud LoadBalancer. You can also specify a URL using the url attribute (absolute value or just a
hostname). The name of the bean in the application context is the fully qualified name of the
interface. To specify your own alias value you can use the qualifier value of the @FeignClient
annotation.

The load-balancer client above will want to discover the physical addresses for the "stores" service.
If your application is a Eureka client then it will resolve the service in the Eureka service registry. If
you don’t want to use Eureka, you can simply configure a list of servers in your external
configuration using SimpleDiscoveryClient.

In order to maintain backward compatibility, is used as the default load-balancer
implementation. However, Spring Cloud Netflix Ribbon is now in maintenance
mode, so we recommend using Spring Cloud LoadBalancer instead. To do this, set
the value of spring.cloud.loadbalancer.ribbon.enabled to false.

6.1.2. Overriding Feign Defaults

A central concept in Spring Cloud’s Feign support is that of the named client. Each feign client is
part of an ensemble of components that work together to contact a remote server on demand, and
the ensemble has a name that you give it as an application developer using the @FeignClient
annotation. Spring Cloud creates a new ensemble as an ApplicationContext on demand for each
named client using FeignClientsConfiguration. This contains (amongst other things) an
feign.Decoder, a feign.Encoder, and a feign.Contract. It is possible to override the name of that
ensemble by using the contextId attribute of the @FeignClient annotation.

Spring Cloud lets you take full control of the feign client by declaring additional configuration (on
top of the FeignClientsConfiguration) using @FeignClient. Example:

https://github.com/Netflix/ribbon
https://github.com/spring-cloud/spring-cloud-commons/blob/master/spring-cloud-commons/src/main/java/org/springframework/cloud/client/loadbalancer/reactive/ReactiveLoadBalancer.java
https://github.com/spring-cloud/spring-cloud-commons/blob/master/spring-cloud-commons/src/main/java/org/springframework/cloud/client/loadbalancer/reactive/ReactiveLoadBalancer.java
https://cloud.spring.io/spring-cloud-static/spring-cloud-commons/current/reference/html/#simplediscoveryclient

@FeignClient(name = "stores", configuration = FooConfiguration.class)
public interface StoreClient {
 //..
}

In this case the client is composed from the components already in FeignClientsConfiguration
together with any in FooConfiguration (where the latter will override the former).

FooConfiguration does not need to be annotated with @Configuration. However, if it
is, then take care to exclude it from any @ComponentScan that would otherwise
include this configuration as it will become the default source for feign.Decoder,
feign.Encoder, feign.Contract, etc., when specified. This can be avoided by putting
it in a separate, non-overlapping package from any @ComponentScan or
@SpringBootApplication, or it can be explicitly excluded in @ComponentScan.

 The serviceId attribute is now deprecated in favor of the name attribute.

Using contextId attribute of the @FeignClient annotation in addition to changing
the name of the ApplicationContext ensemble, it will override the alias of the client
name and it will be used as part of the name of the configuration bean created for
that client.

Previously, using the url attribute, did not require the name attribute. Using name is
now required.

Placeholders are supported in the name and url attributes.

@FeignClient(name = "${feign.name}", url = "${feign.url}")
public interface StoreClient {
 //..
}

Spring Cloud Netflix provides the following beans by default for feign (BeanType beanName:
ClassName):

• Decoder feignDecoder: ResponseEntityDecoder (which wraps a SpringDecoder)

• Encoder feignEncoder: SpringEncoder

• Logger feignLogger: Slf4jLogger

• Contract feignContract: SpringMvcContract

• Feign.Builder feignBuilder: HystrixFeign.Builder

• Client feignClient: if Ribbon is in the classpath and is enabled it is a LoadBalancerFeignClient,
otherwise if Spring Cloud LoadBalancer is in the classpath, FeignBlockingLoadBalancerClient is
used. If none of them is in the classpath, the default feign client is used.

spring-cloud-starter-openfeign contains both spring-cloud-starter-netflix-ribbon
and spring-cloud-starter-loadbalancer.

The OkHttpClient and ApacheHttpClient feign clients can be used by setting feign.okhttp.enabled or
feign.httpclient.enabled to true, respectively, and having them on the classpath. You can customize
the HTTP client used by providing a bean of either
org.apache.http.impl.client.CloseableHttpClient when using Apache or okhttp3.OkHttpClient

when using OK HTTP.

Spring Cloud OpenFeign does not provide the following beans by default for feign, but still looks up
beans of these types from the application context to create the feign client:

• Logger.Level

• Retryer

• ErrorDecoder

• Request.Options

• Collection<RequestInterceptor>

• SetterFactory

• QueryMapEncoder

Creating a bean of one of those type and placing it in a @FeignClient configuration (such as
FooConfiguration above) allows you to override each one of the beans described. Example:

@Configuration
public class FooConfiguration {
 @Bean
 public Contract feignContract() {
 return new feign.Contract.Default();
 }

 @Bean
 public BasicAuthRequestInterceptor basicAuthRequestInterceptor() {
 return new BasicAuthRequestInterceptor("user", "password");
 }
}

This replaces the SpringMvcContract with feign.Contract.Default and adds a RequestInterceptor to
the collection of RequestInterceptor.

@FeignClient also can be configured using configuration properties.

application.yml

feign:
 client:
 config:
 feignName:
 connectTimeout: 5000
 readTimeout: 5000
 loggerLevel: full
 errorDecoder: com.example.SimpleErrorDecoder
 retryer: com.example.SimpleRetryer
 requestInterceptors:
 - com.example.FooRequestInterceptor
 - com.example.BarRequestInterceptor
 decode404: false
 encoder: com.example.SimpleEncoder
 decoder: com.example.SimpleDecoder
 contract: com.example.SimpleContract

Default configurations can be specified in the @EnableFeignClients attribute defaultConfiguration in
a similar manner as described above. The difference is that this configuration will apply to all feign
clients.

If you prefer using configuration properties to configured all @FeignClient, you can create
configuration properties with default feign name.

application.yml

feign:
 client:
 config:
 default:
 connectTimeout: 5000
 readTimeout: 5000
 loggerLevel: basic

If we create both @Configuration bean and configuration properties, configuration properties will
win. It will override @Configuration values. But if you want to change the priority to @Configuration,
you can change feign.client.default-to-properties to false.

If you need to use ThreadLocal bound variables in your RequestInterceptor`s you
will need to either set the thread isolation strategy for Hystrix to `SEMAPHORE

or disable Hystrix in Feign.

application.yml

To disable Hystrix in Feign
feign:
 hystrix:
 enabled: false

To set thread isolation to SEMAPHORE
hystrix:
 command:
 default:
 execution:
 isolation:
 strategy: SEMAPHORE

If we want to create multiple feign clients with the same name or url so that they would point to the
same server but each with a different custom configuration then we have to use contextId attribute
of the @FeignClient in order to avoid name collision of these configuration beans.

@FeignClient(contextId = "fooClient", name = "stores", configuration =
FooConfiguration.class)
public interface FooClient {
 //..
}

@FeignClient(contextId = "barClient", name = "stores", configuration =
BarConfiguration.class)
public interface BarClient {
 //..
}

It is also possible to configure FeignClient not to inherit beans from the parent context. You can do
this by overriding the inheritParentConfiguration() in a FeignClientConfigurer bean to return
false:

@Configuration
public class CustomConfiguration{

@Bean
public FeignClientConfigurer feignClientConfigurer() {
 return new FeignClientConfigurer() {

 @Override
 public boolean inheritParentConfiguration() {
 return false;
 }
 };

 }
}

6.1.3. Creating Feign Clients Manually

In some cases it might be necessary to customize your Feign Clients in a way that is not possible
using the methods above. In this case you can create Clients using the Feign Builder API. Below is
an example which creates two Feign Clients with the same interface but configures each one with a
separate request interceptor.

@Import(FeignClientsConfiguration.class)
class FooController {

 private FooClient fooClient;

 private FooClient adminClient;

 @Autowired
 public FooController(Decoder decoder, Encoder encoder, Client client, Contract
contract) {
 this.fooClient = Feign.builder().client(client)
 .encoder(encoder)
 .decoder(decoder)
 .contract(contract)
 .requestInterceptor(new BasicAuthRequestInterceptor("user", "user"))
 .target(FooClient.class, "https://PROD-SVC");

 this.adminClient = Feign.builder().client(client)
 .encoder(encoder)
 .decoder(decoder)
 .contract(contract)
 .requestInterceptor(new BasicAuthRequestInterceptor("admin", "admin"))
 .target(FooClient.class, "https://PROD-SVC");
 }
}

https://github.com/OpenFeign/feign/#basics

In the above example FeignClientsConfiguration.class is the default configuration
provided by Spring Cloud Netflix.

 PROD-SVC is the name of the service the Clients will be making requests to.

The Feign Contract object defines what annotations and values are valid on
interfaces. The autowired Contract bean provides supports for SpringMVC
annotations, instead of the default Feign native annotations.

You can also use the Builder`to configure FeignClient not to inherit beans from the parent
context. You can do this by overriding calling `inheritParentContext(false) on the Builder.

6.1.4. Feign Hystrix Support

If Hystrix is on the classpath and feign.hystrix.enabled=true, Feign will wrap all methods with a
circuit breaker. Returning a com.netflix.hystrix.HystrixCommand is also available. This lets you use
reactive patterns (with a call to .toObservable() or .observe() or asynchronous use (with a call to
.queue()).

To disable Hystrix support on a per-client basis create a vanilla Feign.Builder with the "prototype"
scope, e.g.:

@Configuration
public class FooConfiguration {
 @Bean
 @Scope("prototype")
 public Feign.Builder feignBuilder() {
 return Feign.builder();
 }
}

Prior to the Spring Cloud Dalston release, if Hystrix was on the classpath Feign
would have wrapped all methods in a circuit breaker by default. This default
behavior was changed in Spring Cloud Dalston in favor for an opt-in approach.

6.1.5. Feign Hystrix Fallbacks

Hystrix supports the notion of a fallback: a default code path that is executed when they circuit is
open or there is an error. To enable fallbacks for a given @FeignClient set the fallback attribute to
the class name that implements the fallback. You also need to declare your implementation as a
Spring bean.

@FeignClient(name = "hello", fallback = HystrixClientFallback.class)
protected interface HystrixClient {
 @RequestMapping(method = RequestMethod.GET, value = "/hello")
 Hello iFailSometimes();
}

static class HystrixClientFallback implements HystrixClient {
 @Override
 public Hello iFailSometimes() {
 return new Hello("fallback");
 }
}

If one needs access to the cause that made the fallback trigger, one can use the fallbackFactory
attribute inside @FeignClient.

@FeignClient(name = "hello", fallbackFactory = HystrixClientFallbackFactory.class)
protected interface HystrixClient {
 @RequestMapping(method = RequestMethod.GET, value = "/hello")
 Hello iFailSometimes();
}

@Component
static class HystrixClientFallbackFactory implements FallbackFactory<HystrixClient> {
 @Override
 public HystrixClient create(Throwable cause) {
 return new HystrixClient() {
 @Override
 public Hello iFailSometimes() {
 return new Hello("fallback; reason was: " + cause.getMessage());
 }
 };
 }
}

There is a limitation with the implementation of fallbacks in Feign and how
Hystrix fallbacks work. Fallbacks are currently not supported for methods that
return com.netflix.hystrix.HystrixCommand and rx.Observable.

6.1.6. Feign and @Primary

When using Feign with Hystrix fallbacks, there are multiple beans in the ApplicationContext of the
same type. This will cause @Autowired to not work because there isn’t exactly one bean, or one
marked as primary. To work around this, Spring Cloud Netflix marks all Feign instances as @Primary,
so Spring Framework will know which bean to inject. In some cases, this may not be desirable. To
turn off this behavior set the primary attribute of @FeignClient to false.

@FeignClient(name = "hello", primary = false)
public interface HelloClient {
 // methods here
}

6.1.7. Feign Inheritance Support

Feign supports boilerplate apis via single-inheritance interfaces. This allows grouping common
operations into convenient base interfaces.

UserService.java

public interface UserService {

 @RequestMapping(method = RequestMethod.GET, value ="/users/{id}")
 User getUser(@PathVariable("id") long id);
}

UserResource.java

@RestController
public class UserResource implements UserService {

}

UserClient.java

package project.user;

@FeignClient("users")
public interface UserClient extends UserService {

}

It is generally not advisable to share an interface between a server and a client. It
introduces tight coupling, and also actually doesn’t work with Spring MVC in its
current form (method parameter mapping is not inherited).

6.1.8. Feign request/response compression

You may consider enabling the request or response GZIP compression for your Feign requests. You
can do this by enabling one of the properties:

feign.compression.request.enabled=true
feign.compression.response.enabled=true

Feign request compression gives you settings similar to what you may set for your web server:

feign.compression.request.enabled=true
feign.compression.request.mime-types=text/xml,application/xml,application/json
feign.compression.request.min-request-size=2048

These properties allow you to be selective about the compressed media types and minimum request
threshold length.

For http clients except OkHttpClient, default gzip decoder can be enabled to decode gzip response in
UTF-8 encoding:

feign.compression.response.enabled=true
feign.compression.response.useGzipDecoder=true

6.1.9. Feign logging

A logger is created for each Feign client created. By default the name of the logger is the full class
name of the interface used to create the Feign client. Feign logging only responds to the DEBUG level.

application.yml

logging.level.project.user.UserClient: DEBUG

The Logger.Level object that you may configure per client, tells Feign how much to log. Choices are:

• NONE, No logging (DEFAULT).

• BASIC, Log only the request method and URL and the response status code and execution time.

• HEADERS, Log the basic information along with request and response headers.

• FULL, Log the headers, body, and metadata for both requests and responses.

For example, the following would set the Logger.Level to FULL:

@Configuration
public class FooConfiguration {
 @Bean
 Logger.Level feignLoggerLevel() {
 return Logger.Level.FULL;
 }
}

6.1.10. Feign @QueryMap support

The OpenFeign @QueryMap annotation provides support for POJOs to be used as GET parameter
maps. Unfortunately, the default OpenFeign QueryMap annotation is incompatible with Spring

because it lacks a value property.

Spring Cloud OpenFeign provides an equivalent @SpringQueryMap annotation, which is used to
annotate a POJO or Map parameter as a query parameter map.

For example, the Params class defines parameters param1 and param2:

// Params.java
public class Params {
 private String param1;
 private String param2;

 // [Getters and setters omitted for brevity]
}

The following feign client uses the Params class by using the @SpringQueryMap annotation:

@FeignClient("demo")
public interface DemoTemplate {

 @GetMapping(path = "/demo")
 String demoEndpoint(@SpringQueryMap Params params);
}

If you need more control over the generated query parameter map, you can implement a custom
QueryMapEncoder bean.

6.1.11. HATEOAS support

Spring provides some APIs to create REST representations that follow the HATEOAS principle,
Spring Hateoas and Spring Data REST.

If your project use the org.springframework.boot:spring-boot-starter-hateoas starter or the
org.springframework.boot:spring-boot-starter-data-rest starter, Feign HATEOAS support is
enabled by default.

When HATEOAS support is enabled, Feign clients are allowed to serialize and deserialize HATEOAS
representation models: EntityModel, CollectionModel and PagedModel.

@FeignClient("demo")
public interface DemoTemplate {

 @GetMapping(path = "/stores")
 CollectionModel<Store> getStores();
}

https://en.wikipedia.org/wiki/HATEOAS
https://spring.io/projects/spring-hateoas
https://spring.io/projects/spring-data-rest
https://docs.spring.io/spring-hateoas/docs/1.0.0.M1/apidocs/org/springframework/hateoas/EntityModel.html
https://docs.spring.io/spring-hateoas/docs/1.0.0.M1/apidocs/org/springframework/hateoas/CollectionModel.html
https://docs.spring.io/spring-hateoas/docs/1.0.0.M1/apidocs/org/springframework/hateoas/PagedModel.html

6.1.12. Spring @MatrixVariable Support

Spring Cloud OpenFeign provides support for the Spring @MatrixVariable annotation.

If a map is passed as the method argument, the @MatrixVariable path segment is created by joining
key-value pairs from the map with a =.

If a different object is passed, either the name provided in the @MatrixVariable annotation (if defined)
or the annotated variable name is joined with the provided method argument using =.

IMPORTANT

Even though, on the server side, Spring does not require the users to name the path segment
placeholder same as the matrix variable name, since it would be too ambiguous on the client
side, Sprig Cloud OpenFeign requires that you add a path segment placeholder with a name
matching either the name provided in the @MatrixVariable annotation (if defined) or the
annotated variable name.

For example:

@GetMapping("/objects/links/{matrixVars}")
Map<String, List<String>> getObjects(@MatrixVariable Map<String, List<String>>
matrixVars);

Note that both variable name and the path segment placeholder are called matrixVars.

@FeignClient("demo")
public interface DemoTemplate {

 @GetMapping(path = "/stores")
 CollectionModel<Store> getStores();
}

6.1.13. Reactive Support

As the OpenFeign project does not currently support reactive clients, such as Spring WebClient,
neither does Spring Cloud OpenFeign. We will add support for it here as soon as it becomes
available in the core project.

Until that is done, we recommend using feign-reactive for Spring WebClient support.

Early Initialization Errors

Depending on how you are using your Feign clients you may see initialization errors when starting
your application. To work around this problem you can use an ObjectProvider when autowiring
your client.

https://github.com/OpenFeign/feign
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/reactive/function/client/WebClient.html
https://github.com/Playtika/feign-reactive

@Autowired
ObjectProvider<TestFeginClient> testFeginClient;

6.2. Configuration properties
To see the list of all Sleuth related configuration properties please check the Appendix page.

appendix.html

Chapter 7. Spring Cloud Bus
Spring Cloud Bus links the nodes of a distributed system with a lightweight message broker. This
broker can then be used to broadcast state changes (such as configuration changes) or other
management instructions. A key idea is that the bus is like a distributed actuator for a Spring Boot
application that is scaled out. However, it can also be used as a communication channel between
apps. This project provides starters for either an AMQP broker or Kafka as the transport.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

7.1. Quick Start
Spring Cloud Bus works by adding Spring Boot autconfiguration if it detects itself on the classpath.
To enable the bus, add spring-cloud-starter-bus-amqp or spring-cloud-starter-bus-kafka to your
dependency management. Spring Cloud takes care of the rest. Make sure the broker (RabbitMQ or
Kafka) is available and configured. When running on localhost, you need not do anything. If you
run remotely, use Spring Cloud Connectors or Spring Boot conventions to define the broker
credentials, as shown in the following example for Rabbit:

application.yml

spring:
 rabbitmq:
 host: mybroker.com
 port: 5672
 username: user
 password: secret

The bus currently supports sending messages to all nodes listening or all nodes for a particular
service (as defined by Eureka). The /bus/* actuator namespace has some HTTP endpoints.
Currently, two are implemented. The first, /bus/env, sends key/value pairs to update each node’s
Spring Environment. The second, /bus/refresh, reloads each application’s configuration, as though
they had all been pinged on their /refresh endpoint.

The Spring Cloud Bus starters cover Rabbit and Kafka, because those are the two
most common implementations. However, Spring Cloud Stream is quite flexible,
and the binder works with spring-cloud-bus.

7.2. Bus Endpoints
Spring Cloud Bus provides two endpoints, /actuator/bus-refresh and /actuator/bus-env that
correspond to individual actuator endpoints in Spring Cloud Commons, /actuator/refresh and
/actuator/env respectively.

https://github.com/spring-cloud/spring-cloud-config/tree/master/docs/src/main/asciidoc

7.2.1. Bus Refresh Endpoint

The /actuator/bus-refresh endpoint clears the RefreshScope cache and rebinds
@ConfigurationProperties. See the Refresh Scope documentation for more information.

To expose the /actuator/bus-refresh endpoint, you need to add following configuration to your
application:

management.endpoints.web.exposure.include=bus-refresh

7.2.2. Bus Env Endpoint

The /actuator/bus-env endpoint updates each instances environment with the specified key/value
pair across multiple instances.

To expose the /actuator/bus-env endpoint, you need to add following configuration to your
application:

management.endpoints.web.exposure.include=bus-env

The /actuator/bus-env endpoint accepts POST requests with the following shape:

{
 "name": "key1",
 "value": "value1"
}

7.3. Addressing an Instance
Each instance of the application has a service ID, whose value can be set with spring.cloud.bus.id
and whose value is expected to be a colon-separated list of identifiers, in order from least specific to
most specific. The default value is constructed from the environment as a combination of the
spring.application.name and server.port (or spring.application.index, if set). The default value of
the ID is constructed in the form of app:index:id, where:

• app is the vcap.application.name, if it exists, or spring.application.name

• index is the vcap.application.instance_index, if it exists, spring.application.index,
local.server.port, server.port, or 0 (in that order).

• id is the vcap.application.instance_id, if it exists, or a random value.

The HTTP endpoints accept a “destination” path parameter, such as /bus-refresh/customers:9000,
where destination is a service ID. If the ID is owned by an instance on the bus, it processes the
message, and all other instances ignore it.

7.4. Addressing All Instances of a Service
The “destination” parameter is used in a Spring PathMatcher (with the path separator as a colon — :)
to determine if an instance processes the message. Using the example from earlier, /bus-
env/customers:** targets all instances of the “customers” service regardless of the rest of the service
ID.

7.5. Service ID Must Be Unique
The bus tries twice to eliminate processing an event — once from the original ApplicationEvent and
once from the queue. To do so, it checks the sending service ID against the current service ID. If
multiple instances of a service have the same ID, events are not processed. When running on a local
machine, each service is on a different port, and that port is part of the ID. Cloud Foundry supplies
an index to differentiate. To ensure that the ID is unique outside Cloud Foundry, set
spring.application.index to something unique for each instance of a service.

7.6. Customizing the Message Broker
Spring Cloud Bus uses Spring Cloud Stream to broadcast the messages. So, to get messages to flow,
you need only include the binder implementation of your choice in the classpath. There are
convenient starters for the bus with AMQP (RabbitMQ) and Kafka (spring-cloud-starter-bus-
[amqp|kafka]). Generally speaking, Spring Cloud Stream relies on Spring Boot autoconfiguration
conventions for configuring middleware. For instance, the AMQP broker address can be changed
with spring.rabbitmq.* configuration properties. Spring Cloud Bus has a handful of native
configuration properties in spring.cloud.bus.* (for example, spring.cloud.bus.destination is the
name of the topic to use as the external middleware). Normally, the defaults suffice.

To learn more about how to customize the message broker settings, consult the Spring Cloud
Stream documentation.

7.7. Tracing Bus Events
Bus events (subclasses of RemoteApplicationEvent) can be traced by setting
spring.cloud.bus.trace.enabled=true. If you do so, the Spring Boot TraceRepository (if it is present)
shows each event sent and all the acks from each service instance. The following example comes
from the /trace endpoint:

https://cloud.spring.io/spring-cloud-stream

{
 "timestamp": "2015-11-26T10:24:44.411+0000",
 "info": {
 "signal": "spring.cloud.bus.ack",
 "type": "RefreshRemoteApplicationEvent",
 "id": "c4d374b7-58ea-4928-a312-31984def293b",
 "origin": "stores:8081",
 "destination": "*:**"
 }
 },
 {
 "timestamp": "2015-11-26T10:24:41.864+0000",
 "info": {
 "signal": "spring.cloud.bus.sent",
 "type": "RefreshRemoteApplicationEvent",
 "id": "c4d374b7-58ea-4928-a312-31984def293b",
 "origin": "customers:9000",
 "destination": "*:**"
 }
 },
 {
 "timestamp": "2015-11-26T10:24:41.862+0000",
 "info": {
 "signal": "spring.cloud.bus.ack",
 "type": "RefreshRemoteApplicationEvent",
 "id": "c4d374b7-58ea-4928-a312-31984def293b",
 "origin": "customers:9000",
 "destination": "*:**"
 }
}

The preceding trace shows that a RefreshRemoteApplicationEvent was sent from customers:9000,
broadcast to all services, and received (acked) by customers:9000 and stores:8081.

To handle the ack signals yourself, you could add an @EventListener for the
AckRemoteApplicationEvent and SentApplicationEvent types to your app (and enable tracing).
Alternatively, you could tap into the TraceRepository and mine the data from there.

Any Bus application can trace acks. However, sometimes, it is useful to do this in a
central service that can do more complex queries on the data or forward it to a
specialized tracing service.

7.8. Broadcasting Your Own Events
The Bus can carry any event of type RemoteApplicationEvent. The default transport is JSON, and the
deserializer needs to know which types are going to be used ahead of time. To register a new type,
you must put it in a subpackage of org.springframework.cloud.bus.event.

To customise the event name, you can use @JsonTypeName on your custom class or rely on the default
strategy, which is to use the simple name of the class.

 Both the producer and the consumer need access to the class definition.

7.8.1. Registering events in custom packages

If you cannot or do not want to use a subpackage of org.springframework.cloud.bus.event for your
custom events, you must specify which packages to scan for events of type RemoteApplicationEvent
by using the @RemoteApplicationEventScan annotation. Packages specified with
@RemoteApplicationEventScan include subpackages.

For example, consider the following custom event, called MyEvent:

package com.acme;

public class MyEvent extends RemoteApplicationEvent {
 ...
}

You can register that event with the deserializer in the following way:

package com.acme;

@Configuration
@RemoteApplicationEventScan
public class BusConfiguration {
 ...
}

Without specifying a value, the package of the class where @RemoteApplicationEventScan is used is
registered. In this example, com.acme is registered by using the package of BusConfiguration.

You can also explicitly specify the packages to scan by using the value, basePackages or
basePackageClasses properties on @RemoteApplicationEventScan, as shown in the following example:

package com.acme;

@Configuration
//@RemoteApplicationEventScan({"com.acme", "foo.bar"})
//@RemoteApplicationEventScan(basePackages = {"com.acme", "foo.bar", "fizz.buzz"})
@RemoteApplicationEventScan(basePackageClasses = BusConfiguration.class)
public class BusConfiguration {
 ...
}

All of the preceding examples of @RemoteApplicationEventScan are equivalent, in that the com.acme

package is registered by explicitly specifying the packages on @RemoteApplicationEventScan.

 You can specify multiple base packages to scan.

7.9. Configuration properties
To see the list of all Bus related configuration properties please check the Appendix page.

appendix.html

Chapter 8. Spring Cloud Sleuth
Adrian Cole, Spencer Gibb, Marcin Grzejszczak, Dave Syer, Jay Bryant

Hoxton.SR5

8.1. Introduction
Spring Cloud Sleuth implements a distributed tracing solution for Spring Cloud.

8.1.1. Terminology

Spring Cloud Sleuth borrows Dapper’s terminology.

Span: The basic unit of work. For example, sending an RPC is a new span, as is sending a response
to an RPC. Spans are identified by a unique 64-bit ID for the span and another 64-bit ID for the trace
the span is a part of. Spans also have other data, such as descriptions, timestamped events, key-
value annotations (tags), the ID of the span that caused them, and process IDs (normally IP
addresses).

Spans can be started and stopped, and they keep track of their timing information. Once you create
a span, you must stop it at some point in the future.

The initial span that starts a trace is called a root span. The value of the ID of that
span is equal to the trace ID.

Trace: A set of spans forming a tree-like structure. For example, if you run a distributed big-data
store, a trace might be formed by a PUT request.

Annotation: Used to record the existence of an event in time. With Brave instrumentation, we no
longer need to set special events for Zipkin to understand who the client and server are, where the
request started, and where it ended. For learning purposes, however, we mark these events to
highlight what kind of an action took place.

• cs: Client Sent. The client has made a request. This annotation indicates the start of the span.

• sr: Server Received: The server side got the request and started processing it. Subtracting the cs
timestamp from this timestamp reveals the network latency.

• ss: Server Sent. Annotated upon completion of request processing (when the response got sent
back to the client). Subtracting the sr timestamp from this timestamp reveals the time needed
by the server side to process the request.

• cr: Client Received. Signifies the end of the span. The client has successfully received the
response from the server side. Subtracting the cs timestamp from this timestamp reveals the
whole time needed by the client to receive the response from the server.

The following image shows how Span and Trace look in a system, together with the Zipkin
annotations:

https://cloud.spring.io
https://research.google.com/pubs/pub36356.html
https://github.com/openzipkin/brave
https://zipkin.io/

[Trace Info propagation] | https://raw.githubusercontent.com/spring-cloud/spring-cloud-

sleuth/master/docs/src/main/asciidoc/images/trace-id.png

Each color of a note signifies a span (there are seven spans - from A to G). Consider the following
note:

Trace Id = X
Span Id = D
Client Sent

This note indicates that the current span has Trace Id set to X and Span Id set to D. Also, the Client
Sent event took place.

The following image shows how parent-child relationships of spans look:

[Parent child relationship] | https://raw.githubusercontent.com/spring-cloud/spring-cloud-

sleuth/master/docs/src/main/asciidoc/images/parents.png

8.1.2. Purpose

The following sections refer to the example shown in the preceding image.

Distributed Tracing with Zipkin

This example has seven spans. If you go to traces in Zipkin, you can see this number in the second
trace, as shown in the following image:

[Traces] | https://raw.githubusercontent.com/spring-cloud/spring-cloud-

sleuth/master/docs/src/main/asciidoc/images/zipkin-traces.png

However, if you pick a particular trace, you can see four spans, as shown in the following image:

[Traces Info propagation] | https://raw.githubusercontent.com/spring-cloud/spring-cloud-

sleuth/master/docs/src/main/asciidoc/images/zipkin-ui.png

When you pick a particular trace, you see merged spans. That means that, if there
were two spans sent to Zipkin with Server Received and Server Sent or Client
Received and Client Sent annotations, they are presented as a single span.

Why is there a difference between the seven and four spans in this case?

• One span comes from the http:/start span. It has the Server Received (sr) and Server Sent (ss)
annotations.

• Two spans come from the RPC call from service1 to service2 to the http:/foo endpoint. The
Client Sent (cs) and Client Received (cr) events took place on the service1 side. Server Received
(sr) and Server Sent (ss) events took place on the service2 side. These two spans form one
logical span related to an RPC call.

• Two spans come from the RPC call from service2 to service3 to the http:/bar endpoint. The
Client Sent (cs) and Client Received (cr) events took place on the service2 side. The Server
Received (sr) and Server Sent (ss) events took place on the service3 side. These two spans form
one logical span related to an RPC call.

• Two spans come from the RPC call from service2 to service4 to the http:/baz endpoint. The
Client Sent (cs) and Client Received (cr) events took place on the service2 side. Server Received
(sr) and Server Sent (ss) events took place on the service4 side. These two spans form one
logical span related to an RPC call.

So, if we count the physical spans, we have one from http:/start, two from service1 calling
service2, two from service2 calling service3, and two from service2 calling service4. In sum, we
have a total of seven spans.

Logically, we see the information of four total Spans because we have one span related to the
incoming request to service1 and three spans related to RPC calls.

Visualizing errors

Zipkin lets you visualize errors in your trace. When an exception was thrown and was not caught,
we set proper tags on the span, which Zipkin can then properly colorize. You could see in the list of
traces one trace that is red. That appears because an exception was thrown.

If you click that trace, you see a similar picture, as follows:

If you then click on one of the spans, you see the following

The span shows the reason for the error and the whole stack trace related to it.

Distributed Tracing with Brave

Starting with version 2.0.0, Spring Cloud Sleuth uses Brave as the tracing library. Consequently,
Sleuth no longer takes care of storing the context but delegates that work to Brave.

Due to the fact that Sleuth had different naming and tagging conventions than Brave, we decided to
follow Brave’s conventions from now on. However, if you want to use the legacy Sleuth approaches,
you can set the spring.sleuth.http.legacy.enabled property to true.

Live examples

[Zipkin deployed on Pivotal Web Services] | https://raw.githubusercontent.com/spring-cloud/spring-

https://github.com/openzipkin/brave
https://docssleuth-zipkin-server.cfapps.io/

cloud-sleuth/master/docs/src/main/asciidoc/images/pws.png

Click the Pivotal Web Services icon to see it live!Click the Pivotal Web Services icon to see it live!

Click here to see it live!

The dependency graph in Zipkin should resemble the following image:

[Dependencies] | https://raw.githubusercontent.com/spring-cloud/spring-cloud-

https://docssleuth-zipkin-server.cfapps.io/

sleuth/master/docs/src/main/asciidoc/images/dependencies.png

[Zipkin deployed on Pivotal Web Services] | https://raw.githubusercontent.com/spring-cloud/spring-

https://docssleuth-zipkin-server.cfapps.io/dependency

cloud-sleuth/master/docs/src/main/asciidoc/images/pws.png

Click the Pivotal Web Services icon to see it live!Click the Pivotal Web Services icon to see it live!

Click here to see it live!

Log correlation

When using grep to read the logs of those four applications by scanning for a trace ID equal to (for
example) 2485ec27856c56f4, you get output resembling the following:

service1.log:2016-02-26 11:15:47.561 INFO
[service1,2485ec27856c56f4,2485ec27856c56f4,true] 68058 --- [nio-8081-exec-1]
i.s.c.sleuth.docs.service1.Application : Hello from service1. Calling service2
service2.log:2016-02-26 11:15:47.710 INFO
[service2,2485ec27856c56f4,9aa10ee6fbde75fa,true] 68059 --- [nio-8082-exec-1]
i.s.c.sleuth.docs.service2.Application : Hello from service2. Calling service3 and
then service4
service3.log:2016-02-26 11:15:47.895 INFO
[service3,2485ec27856c56f4,1210be13194bfe5,true] 68060 --- [nio-8083-exec-1]
i.s.c.sleuth.docs.service3.Application : Hello from service3
service2.log:2016-02-26 11:15:47.924 INFO
[service2,2485ec27856c56f4,9aa10ee6fbde75fa,true] 68059 --- [nio-8082-exec-1]
i.s.c.sleuth.docs.service2.Application : Got response from service3 [Hello from
service3]
service4.log:2016-02-26 11:15:48.134 INFO
[service4,2485ec27856c56f4,1b1845262ffba49d,true] 68061 --- [nio-8084-exec-1]
i.s.c.sleuth.docs.service4.Application : Hello from service4
service2.log:2016-02-26 11:15:48.156 INFO
[service2,2485ec27856c56f4,9aa10ee6fbde75fa,true] 68059 --- [nio-8082-exec-1]
i.s.c.sleuth.docs.service2.Application : Got response from service4 [Hello from
service4]
service1.log:2016-02-26 11:15:48.182 INFO
[service1,2485ec27856c56f4,2485ec27856c56f4,true] 68058 --- [nio-8081-exec-1]
i.s.c.sleuth.docs.service1.Application : Got response from service2 [Hello from
service2, response from service3 [Hello from service3] and from service4 [Hello from
service4]]

If you use a log aggregating tool (such as Kibana, Splunk, and others), you can order the events that
took place. An example from Kibana would resemble the following image:

https://docssleuth-zipkin-server.cfapps.io/dependency
https://www.elastic.co/products/kibana
https://www.splunk.com/

If you want to use Logstash, the following listing shows the Grok pattern for Logstash:

filter {
 # pattern matching logback pattern
 grok {
 match => { "message" =>
"%{TIMESTAMP_ISO8601:timestamp}\s+%{LOGLEVEL:severity}\s+\[%{DATA:service},%{DATA:trac
e},%{DATA:span},%{DATA:exportable}\]\s+%{DATA:pid}\s+---
\s+\[%{DATA:thread}\]\s+%{DATA:class}\s+:\s+%{GREEDYDATA:rest}" }
 }
 date {
 match => ["timestamp", "ISO8601"]
 }
 mutate {
 remove_field => ["timestamp"]
 }
}

If you want to use Grok together with the logs from Cloud Foundry, you have to use
the following pattern:

https://www.elastic.co/guide/en/logstash/current/index.html

filter {
 # pattern matching logback pattern
 grok {
 match => { "message" =>
"(?m)OUT\s+%{TIMESTAMP_ISO8601:timestamp}\s+%{LOGLEVEL:severity}\s+\[%{DATA:service},%
{DATA:trace},%{DATA:span},%{DATA:exportable}\]\s+%{DATA:pid}\s+---
\s+\[%{DATA:thread}\]\s+%{DATA:class}\s+:\s+%{GREEDYDATA:rest}" }
 }
 date {
 match => ["timestamp", "ISO8601"]
 }
 mutate {
 remove_field => ["timestamp"]
 }
}

JSON Logback with Logstash

Often, you do not want to store your logs in a text file but in a JSON file that Logstash can
immediately pick. To do so, you have to do the following (for readability, we pass the dependencies
in the groupId:artifactId:version notation).

Dependencies Setup

1. Ensure that Logback is on the classpath (ch.qos.logback:logback-core).

2. Add Logstash Logback encode. For example, to use version 4.6, add
net.logstash.logback:logstash-logback-encoder:4.6.

Logback Setup

Consider the following example of a Logback configuration file (named logback-spring.xml).

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <include resource="org/springframework/boot/logging/logback/defaults.xml"/>

 <springProperty scope="context" name="springAppName"
source="spring.application.name"/>
 <!-- Example for logging into the build folder of your project -->
 <property name="LOG_FILE" value="${BUILD_FOLDER:-build}/${springAppName}"/>

 <!-- You can override this to have a custom pattern -->
 <property name="CONSOLE_LOG_PATTERN"
 value="%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint}
%clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta} %clr(---){faint}
%clr([%15.15t]){faint} %clr(%-40.40logger{39}){cyan} %clr(:){faint}
%m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}"/>

 <!-- Appender to log to console -->

https://github.com/spring-cloud-samples/sleuth-documentation-apps/blob/master/service1/src/main/resources/logback-spring.xml

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">
 <filter class="ch.qos.logback.classic.filter.ThresholdFilter">
 <!-- Minimum logging level to be presented in the console logs-->
 <level>DEBUG</level>
 </filter>
 <encoder>
 <pattern>${CONSOLE_LOG_PATTERN}</pattern>
 <charset>utf8</charset>
 </encoder>
 </appender>

 <!-- Appender to log to file -->
 <appender name="flatfile" class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>${LOG_FILE}</file>
 <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <fileNamePattern>${LOG_FILE}.%d{yyyy-MM-dd}.gz</fileNamePattern>
 <maxHistory>7</maxHistory>
 </rollingPolicy>
 <encoder>
 <pattern>${CONSOLE_LOG_PATTERN}</pattern>
 <charset>utf8</charset>
 </encoder>
 </appender>

 <!-- Appender to log to file in a JSON format -->
 <appender name="logstash" class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>${LOG_FILE}.json</file>
 <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <fileNamePattern>${LOG_FILE}.json.%d{yyyy-MM-dd}.gz</fileNamePattern>
 <maxHistory>7</maxHistory>
 </rollingPolicy>
 <encoder
class="net.logstash.logback.encoder.LoggingEventCompositeJsonEncoder">
 <providers>
 <timestamp>
 <timeZone>UTC</timeZone>
 </timestamp>
 <pattern>
 <pattern>
 {
 "severity": "%level",
 "service": "${springAppName:-}",
 "trace": "%X{traceId:-}",
 "span": "%X{spanId:-}",
 "baggage": "%X{key:-}",
 "pid": "${PID:-}",
 "thread": "%thread",
 "class": "%logger{40}",
 "rest": "%message"
 }
 </pattern>

 </pattern>
 </providers>
 </encoder>
 </appender>

 <root level="INFO">
 <appender-ref ref="console"/>
 <!-- uncomment this to have also JSON logs -->
 <!--<appender-ref ref="logstash"/>-->
 <!--<appender-ref ref="flatfile"/>-->
 </root>
</configuration>

That Logback configuration file:

• Logs information from the application in a JSON format to a
build/${spring.application.name}.json file.

• Has commented out two additional appenders: console and standard log file.

• Has the same logging pattern as the one presented in the previous section.

If you use a custom logback-spring.xml, you must pass the spring.application.name
in the bootstrap rather than the application property file. Otherwise, your custom
logback file does not properly read the property.

Propagating Span Context

The span context is the state that must get propagated to any child spans across process boundaries.
Part of the Span Context is the Baggage. The trace and span IDs are a required part of the span
context. Baggage is an optional part.

Baggage is a set of key:value pairs stored in the span context. Baggage travels together with the
trace and is attached to every span. Spring Cloud Sleuth understands that a header is baggage-
related if the HTTP header is prefixed with baggage- and, for messaging, it starts with baggage_.

There is currently no limitation of the count or size of baggage items. However,
keep in mind that too many can decrease system throughput or increase RPC
latency. In extreme cases, too much baggage can crash the application, due to
exceeding transport-level message or header capacity.

The following example shows setting baggage on a span:

Span initialSpan = this.tracer.nextSpan().name("span").start();
ExtraFieldPropagation.set(initialSpan.context(), "foo", "bar");
ExtraFieldPropagation.set(initialSpan.context(), "UPPER_CASE", "someValue");

Baggage versus Span Tags

Baggage travels with the trace (every child span contains the baggage of its parent). Zipkin has no
knowledge of baggage and does not receive that information.

Starting from Sleuth 2.0.0 you have to pass the baggage key names explicitly in
your project configuration. Read more about that setup here

Tags are attached to a specific span. In other words, they are presented only for that particular
span. However, you can search by tag to find the trace, assuming a span having the searched tag
value exists.

If you want to be able to lookup a span based on baggage, you should add a corresponding entry as
a tag in the root span.

 The span must be in scope.

The following listing shows integration tests that use baggage:

The setup

spring.sleuth:
 baggage-keys:
 - baz
 - bizarrecase
 propagation-keys:
 - foo
 - upper_case

The code

initialSpan.tag("foo",
 ExtraFieldPropagation.get(initialSpan.context(), "foo"));
initialSpan.tag("UPPER_CASE",
 ExtraFieldPropagation.get(initialSpan.context(), "UPPER_CASE"));

8.1.3. Adding Sleuth to the Project

This section addresses how to add Sleuth to your project with either Maven or Gradle.

To ensure that your application name is properly displayed in Zipkin, set the
spring.application.name property in bootstrap.yml.

Only Sleuth (log correlation)

If you want to use only Spring Cloud Sleuth without the Zipkin integration, add the spring-cloud-
starter-sleuth module to your project.

The following example shows how to add Sleuth with Maven:

Maven

<dependencyManagement> ①
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${release.train.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependency> ②
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>

① We recommend that you add the dependency management through the Spring BOM so that you
need not manage versions yourself.

② Add the dependency to spring-cloud-starter-sleuth.

The following example shows how to add Sleuth with Gradle:

Gradle

dependencyManagement { ①
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${releaseTrainVersion}"
 }
}

dependencies { ②
 compile "org.springframework.cloud:spring-cloud-starter-sleuth"
}

① We recommend that you add the dependency management through the Spring BOM so that you
need not manage versions yourself.

② Add the dependency to spring-cloud-starter-sleuth.

Sleuth with Zipkin via HTTP

If you want both Sleuth and Zipkin, add the spring-cloud-starter-zipkin dependency.

The following example shows how to do so for Maven:

Maven

<dependencyManagement> ①
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${release.train.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependency> ②
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>

① We recommend that you add the dependency management through the Spring BOM so that you
need not manage versions yourself.

② Add the dependency to spring-cloud-starter-zipkin.

The following example shows how to do so for Gradle:

Gradle

dependencyManagement { ①
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${releaseTrainVersion}"
 }
}

dependencies { ②
 compile "org.springframework.cloud:spring-cloud-starter-zipkin"
}

① We recommend that you add the dependency management through the Spring BOM so that you
need not manage versions yourself.

② Add the dependency to spring-cloud-starter-zipkin.

Sleuth with Zipkin over RabbitMQ or Kafka

If you want to use RabbitMQ or Kafka instead of HTTP, add the spring-rabbit or spring-kafka
dependency. The default destination name is zipkin.

If using Kafka, you must set the property spring.zipkin.sender.type property accordingly:

spring.zipkin.sender.type: kafka

spring-cloud-sleuth-stream is deprecated and incompatible with these
destinations.

If you want Sleuth over RabbitMQ, add the spring-cloud-starter-zipkin and spring-rabbit

dependencies.

The following example shows how to do so for Gradle:

Maven

<dependencyManagement> ①
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${release.train.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependency> ②
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>
<dependency> ③
 <groupId>org.springframework.amqp</groupId>
 <artifactId>spring-rabbit</artifactId>
</dependency>

① We recommend that you add the dependency management through the Spring BOM so that you
need not manage versions yourself.

② Add the dependency to spring-cloud-starter-zipkin. That way, all nested dependencies get
downloaded.

③ To automatically configure RabbitMQ, add the spring-rabbit dependency.

Gradle

dependencyManagement { ①
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${releaseTrainVersion}"
 }
}

dependencies {
 compile "org.springframework.cloud:spring-cloud-starter-zipkin" ②
 compile "org.springframework.amqp:spring-rabbit" ③
}

① We recommend that you add the dependency management through the Spring BOM so that you
need not manage versions yourself.

② Add the dependency to spring-cloud-starter-zipkin. That way, all nested dependencies get
downloaded.

③ To automatically configure RabbitMQ, add the spring-rabbit dependency.

8.1.4. Overriding the auto-configuration of Zipkin

Spring Cloud Sleuth supports sending traces to multiple tracing systems as of version 2.1.0. In order
to get this to work, every tracing system needs to have a Reporter and Sender. If you want to
override the provided beans you need to give them a specific name. To do this you can use
respectively ZipkinAutoConfiguration.REPORTER_BEAN_NAME and
ZipkinAutoConfiguration.SENDER_BEAN_NAME.

@Configuration
protected static class MyConfig {

 @Bean(ZipkinAutoConfiguration.REPORTER_BEAN_NAME)
 Reporter<zipkin2.Span> myReporter() {
 return AsyncReporter.create(mySender());
 }

 @Bean(ZipkinAutoConfiguration.SENDER_BEAN_NAME)
 MySender mySender() {
 return new MySender();
 }

 static class MySender extends Sender {

 private boolean spanSent = false;

 boolean isSpanSent() {
 return this.spanSent;
 }

 @Override
 public Encoding encoding() {
 return Encoding.JSON;
 }

 @Override
 public int messageMaxBytes() {
 return Integer.MAX_VALUE;
 }

 @Override
 public int messageSizeInBytes(List<byte[]> encodedSpans) {
 return encoding().listSizeInBytes(encodedSpans);
 }

 @Override
 public Call<Void> sendSpans(List<byte[]> encodedSpans) {
 this.spanSent = true;
 return Call.create(null);
 }

 }

}

8.2. Additional Resources
You can watch a video of Reshmi Krishna and Marcin Grzejszczak talking about Spring Cloud

https://twitter.com/reshmi9k
https://twitter.com/mgrzejszczak

Sleuth and Zipkin by clicking here.

You can check different setups of Sleuth and Brave in the openzipkin/sleuth-webmvc-example
repository.

8.3. Features
• Adds trace and span IDs to the Slf4J MDC, so you can extract all the logs from a given trace or

span in a log aggregator, as shown in the following example logs:

2016-02-02 15:30:57.902 INFO [bar,6bfd228dc00d216b,6bfd228dc00d216b,false] 23030
--- [nio-8081-exec-3] ...
2016-02-02 15:30:58.372 ERROR [bar,6bfd228dc00d216b,6bfd228dc00d216b,false] 23030
--- [nio-8081-exec-3] ...
2016-02-02 15:31:01.936 INFO [bar,46ab0d418373cbc9,46ab0d418373cbc9,false] 23030
--- [nio-8081-exec-4] ...

Notice the [appname,traceId,spanId,exportable] entries from the MDC:

◦ spanId: The ID of a specific operation that took place.

◦ appname: The name of the application that logged the span.

◦ traceId: The ID of the latency graph that contains the span.

◦ exportable: Whether the log should be exported to Zipkin. When would you like the span not
to be exportable? When you want to wrap some operation in a Span and have it written to
the logs only.

• Provides an abstraction over common distributed tracing data models: traces, spans (forming a
DAG), annotations, and key-value annotations. Spring Cloud Sleuth is loosely based on HTrace
but is compatible with Zipkin (Dapper).

• Sleuth records timing information to aid in latency analysis. By using sleuth, you can pinpoint
causes of latency in your applications.

• Sleuth is written to not log too much and to not cause your production application to crash. To
that end, Sleuth:

◦ Propagates structural data about your call graph in-band and the rest out-of-band.

◦ Includes opinionated instrumentation of layers such as HTTP.

◦ Includes a sampling policy to manage volume.

◦ Can report to a Zipkin system for query and visualization.

• Instruments common ingress and egress points from Spring applications (servlet filter, async
endpoints, rest template, scheduled actions, message channels, Zuul filters, and Feign client).

• Sleuth includes default logic to join a trace across HTTP or messaging boundaries. For example,
HTTP propagation works over Zipkin-compatible request headers.

• Sleuth can propagate context (also known as baggage) between processes. Consequently, if you
set a baggage element on a Span, it is sent downstream to other processes over either HTTP or

https://content.pivotal.io/springone-platform-2017/distributed-tracing-latency-analysis-for-your-microservices-grzejszczak-krishna
https://github.com/openzipkin/sleuth-webmvc-example
https://github.com/openzipkin/sleuth-webmvc-example

messaging.

• Provides a way to create or continue spans and add tags and logs through annotations.

• If spring-cloud-sleuth-zipkin is on the classpath, the app generates and collects Zipkin-
compatible traces. By default, it sends them over HTTP to a Zipkin server on localhost (port
9411). You can configure the location of the service by setting spring.zipkin.baseUrl.

◦ If you depend on spring-rabbit, your app sends traces to a RabbitMQ broker instead of
HTTP.

◦ If you depend on spring-kafka, and set spring.zipkin.sender.type: kafka, your app sends
traces to a Kafka broker instead of HTTP.

 spring-cloud-sleuth-stream is deprecated and should no longer be used.

• Spring Cloud Sleuth is OpenTracing compatible.

The SLF4J MDC is always set and logback users immediately see the trace and span
IDs in logs per the example shown earlier. Other logging systems have to configure
their own formatter to get the same result. The default is as follows:
logging.pattern.level set to %5p
[${spring.zipkin.service.name:${spring.application.name:-}},%X{X-B3-TraceId:-

},%X{X-B3-SpanId:-},%X{X-Span-Export:-}] (this is a Spring Boot feature for logback
users). If you do not use SLF4J, this pattern is NOT automatically applied.

8.3.1. Introduction to Brave

Starting with version 2.0.0, Spring Cloud Sleuth uses Brave as the tracing library.
For your convenience, we embed part of the Brave’s docs here.

In the vast majority of cases you need to just use the Tracer or SpanCustomizer
beans from Brave that Sleuth provides. The documentation below contains a high
overview of what Brave is and how it works.

Brave is a library used to capture and report latency information about distributed operations to
Zipkin. Most users do not use Brave directly. They use libraries or frameworks rather than employ
Brave on their behalf.

This module includes a tracer that creates and joins spans that model the latency of potentially
distributed work. It also includes libraries to propagate the trace context over network boundaries
(for example, with HTTP headers).

Tracing

Most importantly, you need a brave.Tracer, configured to report to Zipkin.

The following example setup sends trace data (spans) to Zipkin over HTTP (as opposed to Kafka):

https://opentracing.io/
https://github.com/openzipkin/brave
https://github.com/openzipkin/zipkin-reporter-java

class MyClass {

 private final Tracer tracer;

 // Tracer will be autowired
 MyClass(Tracer tracer) {
 this.tracer = tracer;
 }

 void doSth() {
 Span span = tracer.newTrace().name("encode").start();
 // ...
 }
}

If your span contains a name longer than 50 chars, then that name is truncated to
50 chars. Your names have to be explicit and concrete. Big names lead to latency
issues and sometimes even thrown exceptions.

The tracer creates and joins spans that model the latency of potentially distributed work. It can
employ sampling to reduce overhead during the process, to reduce the amount of data sent to
Zipkin, or both.

Spans returned by a tracer report data to Zipkin when finished or do nothing if unsampled. After
starting a span, you can annotate events of interest or add tags containing details or lookup keys.

Spans have a context that includes trace identifiers that place the span at the correct spot in the tree
representing the distributed operation.

Local Tracing

When tracing code that never leaves your process, run it inside a scoped span.

@Autowired Tracer tracer;

// Start a new trace or a span within an existing trace representing an operation
ScopedSpan span = tracer.startScopedSpan("encode");
try {
 // The span is in "scope" meaning downstream code such as loggers can see trace IDs
 return encoder.encode();
} catch (RuntimeException | Error e) {
 span.error(e); // Unless you handle exceptions, you might not know the operation
failed!
 throw e;
} finally {
 span.finish(); // always finish the span
}

When you need more features, or finer control, use the Span type:

@Autowired Tracer tracer;

// Start a new trace or a span within an existing trace representing an operation
Span span = tracer.nextSpan().name("encode").start();
// Put the span in "scope" so that downstream code such as loggers can see trace IDs
try (SpanInScope ws = tracer.withSpanInScope(span)) {
 return encoder.encode();
} catch (RuntimeException | Error e) {
 span.error(e); // Unless you handle exceptions, you might not know the operation
failed!
 throw e;
} finally {
 span.finish(); // note the scope is independent of the span. Always finish a span.
}

Both of the above examples report the exact same span on finish!

In the above example, the span will be either a new root span or the next child in an existing trace.

Customizing Spans

Once you have a span, you can add tags to it. The tags can be used as lookup keys or details. For
example, you might add a tag with your runtime version, as shown in the following example:

span.tag("clnt/finagle.version", "6.36.0");

When exposing the ability to customize spans to third parties, prefer brave.SpanCustomizer as
opposed to brave.Span. The former is simpler to understand and test and does not tempt users with
span lifecycle hooks.

interface MyTraceCallback {
 void request(Request request, SpanCustomizer customizer);
}

Since brave.Span implements brave.SpanCustomizer, you can pass it to users, as shown in the
following example:

for (MyTraceCallback callback : userCallbacks) {
 callback.request(request, span);
}

Implicitly Looking up the Current Span

Sometimes, you do not know if a trace is in progress or not, and you do not want users to do null

checks. brave.CurrentSpanCustomizer handles this problem by adding data to any span that’s in
progress or drops, as shown in the following example:

Ex.

// The user code can then inject this without a chance of it being null.
@Autowired SpanCustomizer span;

void userCode() {
 span.annotate("tx.started");
 ...
}

RPC tracing

Check for instrumentation written here and Zipkin’s list before rolling your own
RPC instrumentation.

RPC tracing is often done automatically by interceptors. Behind the scenes, they add tags and events
that relate to their role in an RPC operation.

The following example shows how to add a client span:

@Autowired Tracing tracing;
@Autowired Tracer tracer;

// before you send a request, add metadata that describes the operation
span = tracer.nextSpan().name(service + "/" + method).kind(CLIENT);
span.tag("myrpc.version", "1.0.0");
span.remoteServiceName("backend");
span.remoteIpAndPort("172.3.4.1", 8108);

// Add the trace context to the request, so it can be propagated in-band
tracing.propagation().injector(Request::addHeader)
 .inject(span.context(), request);

// when the request is scheduled, start the span
span.start();

// if there is an error, tag the span
span.tag("error", error.getCode());
// or if there is an exception
span.error(exception);

// when the response is complete, finish the span
span.finish();

https://github.com/openzipkin/brave/tree/master/instrumentation
https://zipkin.io/pages/existing_instrumentations.html

One-Way tracing

Sometimes, you need to model an asynchronous operation where there is a request but no
response. In normal RPC tracing, you use span.finish() to indicate that the response was received.
In one-way tracing, you use span.flush() instead, as you do not expect a response.

The following example shows how a client might model a one-way operation:

@Autowired Tracing tracing;
@Autowired Tracer tracer;

// start a new span representing a client request
oneWaySend = tracer.nextSpan().name(service + "/" + method).kind(CLIENT);

// Add the trace context to the request, so it can be propagated in-band
tracing.propagation().injector(Request::addHeader)
 .inject(oneWaySend.context(), request);

// fire off the request asynchronously, totally dropping any response
request.execute();

// start the client side and flush instead of finish
oneWaySend.start().flush();

The following example shows how a server might handle a one-way operation:

@Autowired Tracing tracing;
@Autowired Tracer tracer;

// pull the context out of the incoming request
extractor = tracing.propagation().extractor(Request::getHeader);

// convert that context to a span which you can name and add tags to
oneWayReceive = nextSpan(tracer, extractor.extract(request))
 .name("process-request")
 .kind(SERVER)
 ... add tags etc.

// start the server side and flush instead of finish
oneWayReceive.start().flush();

// you should not modify this span anymore as it is complete. However,
// you can create children to represent follow-up work.
next = tracer.newSpan(oneWayReceive.context()).name("step2").start();

8.4. Sampling
Sampling may be employed to reduce the data collected and reported out of process. When a span

is not sampled, it adds no overhead (a noop).

Sampling is an up-front decision, meaning that the decision to report data is made at the first
operation in a trace and that decision is propagated downstream.

By default, a global sampler applies a single rate to all traced operations. Tracer.Builder.sampler
controls this setting, and it defaults to tracing every request.

8.4.1. Declarative sampling

Some applications need to sample based on the type or annotations of a java method.

Most users use a framework interceptor to automate this sort of policy. The following example
shows how that might work internally:

@Autowired Tracer tracer;

// derives a sample rate from an annotation on a java method
DeclarativeSampler<Traced> sampler = DeclarativeSampler.create(Traced::sampleRate);

@Around("@annotation(traced)")
public Object traceThing(ProceedingJoinPoint pjp, Traced traced) throws Throwable {
 // When there is no trace in progress, this decides using an annotation
 Sampler decideUsingAnnotation = declarativeSampler.toSampler(traced);
 Tracer tracer = tracer.withSampler(decideUsingAnnotation);

 // This code looks the same as if there was no declarative override
 ScopedSpan span = tracer.startScopedSpan(spanName(pjp));
 try {
 return pjp.proceed();
 } catch (RuntimeException | Error e) {
 span.error(e);
 throw e;
 } finally {
 span.finish();
 }
}

8.4.2. Custom sampling

Depending on what the operation is, you may want to apply different policies. For example, you
might not want to trace requests to static resources such as images, or you might want to trace all
requests to a new api.

Most users use a framework interceptor to automate this sort of policy. The following example
shows how that might work internally:

@Autowired Tracer tracer;
@Autowired Sampler fallback;

Span nextSpan(final Request input) {
 Sampler requestBased = Sampler() {
 @Override public boolean isSampled(long traceId) {
 if (input.url().startsWith("/experimental")) {
 return true;
 } else if (input.url().startsWith("/static")) {
 return false;
 }
 return fallback.isSampled(traceId);
 }
 };
 return tracer.withSampler(requestBased).nextSpan();
}

8.4.3. Sampling in Spring Cloud Sleuth

Sampling only applies to tracing backends, such as Zipkin. Trace IDs appear in logs regardless of
sample rate. Sampling is a way to prevent overloading the system, by consistently tracing some, but
not all requests.

The default rate of 10 traces per second is controlled by the spring.sleuth.sampler.rate property
and applies when we know Sleuth is used for reasons besides logging. Use a rate above 100 traces
per second with extreme caution as it can overload your tracing system.

The sampler can be set by Java Config also, as shown in the following example:

@Bean
public Sampler defaultSampler() {
 return Sampler.ALWAYS_SAMPLE;
}

You can set the HTTP header X-B3-Flags to 1, or, when doing messaging, you can
set the spanFlags header to 1. Doing so forces the corresponding trace to be
sampled regardless of the sampling configuration.

8.5. Propagation
Propagation is needed to ensure activities originating from the same root are collected together in
the same trace. The most common propagation approach is to copy a trace context from a client by
sending an RPC request to a server receiving it.

For example, when a downstream HTTP call is made, its trace context is encoded as request
headers and sent along with it, as shown in the following image:

 Client Span Server Span
┌──────────────────┐
┌──────────────────┐
│ │ │ │
│ TraceContext │ Http Request Headers │ TraceContext │
│ ┌──────────────┐ │
┌───────────────────┐ │ ┌──────────────┐
│
│ │ TraceId │ │ │ X─B3─TraceId │ │ │ TraceId
│ │
│ │ │ │ │ │ │ │ │
│
│ │ ParentSpanId │ │ Extract │ X─B3─ParentSpanId │ Inject │ │ ParentSpanId
│ │
│ │ ├─┼─────────>│
├────────┼>│ │ │
│ │ SpanId │ │ │ X─B3─SpanId │ │ │ SpanId
│ │
│ │ │ │ │ │ │ │ │
│
│ │ Sampled │ │ │ X─B3─Sampled │ │ │ Sampled
│ │
│ └──────────────┘ │
└───────────────────┘ │ └──────────────┘
│
│ │ │ │
└──────────────────┘
└──────────────────┘

The names above are from B3 Propagation, which is built-in to Brave and has implementations in
many languages and frameworks.

Most users use a framework interceptor to automate propagation. The next two examples show
how that might work for a client and a server.

The following example shows how client-side propagation might work:

@Autowired Tracing tracing;

// configure a function that injects a trace context into a request
injector = tracing.propagation().injector(Request.Builder::addHeader);

// before a request is sent, add the current span's context to it
injector.inject(span.context(), request);

The following example shows how server-side propagation might work:

https://github.com/openzipkin/b3-propagation

@Autowired Tracing tracing;
@Autowired Tracer tracer;

// configure a function that extracts the trace context from a request
extractor = tracing.propagation().extractor(Request::getHeader);

// when a server receives a request, it joins or starts a new trace
span = tracer.nextSpan(extractor.extract(request));

8.5.1. Propagating extra fields

Sometimes you need to propagate extra fields, such as a request ID or an alternate trace context.
For example, if you are in a Cloud Foundry environment, you might want to pass the request ID, as
shown in the following example:

// when you initialize the builder, define the extra field you want to propagate
Tracing.newBuilder().propagationFactory(
 ExtraFieldPropagation.newFactory(B3Propagation.FACTORY, "x-vcap-request-id")
);

// later, you can tag that request ID or use it in log correlation
requestId = ExtraFieldPropagation.get("x-vcap-request-id");

You may also need to propagate a trace context that you are not using. For example, you may be in
an Amazon Web Services environment but not be reporting data to X-Ray. To ensure X-Ray can co-
exist correctly, pass-through its tracing header, as shown in the following example:

tracingBuilder.propagationFactory(
 ExtraFieldPropagation.newFactory(B3Propagation.FACTORY, "x-amzn-trace-id")
);

In Spring Cloud Sleuth all elements of the tracing builder Tracing.newBuilder() are
defined as beans. So if you want to pass a custom PropagationFactory, it’s enough
for you to create a bean of that type and we will set it in the Tracing bean.

Prefixed fields

If they follow a common pattern, you can also prefix fields. The following example shows how to
propagate x-vcap-request-id the field as-is but send the country-code and user-id fields on the wire
as x-baggage-country-code and x-baggage-user-id, respectively:

Tracing.newBuilder().propagationFactory(
 ExtraFieldPropagation.newFactoryBuilder(B3Propagation.FACTORY)
 .addField("x-vcap-request-id")
 .addPrefixedFields("x-baggage-", Arrays.asList("country-code",
"user-id"))
 .build()
);

Later, you can call the following code to affect the country code of the current trace context:

ExtraFieldPropagation.set("x-country-code", "FO");
String countryCode = ExtraFieldPropagation.get("x-country-code");

Alternatively, if you have a reference to a trace context, you can use it explicitly, as shown in the
following example:

ExtraFieldPropagation.set(span.context(), "x-country-code", "FO");
String countryCode = ExtraFieldPropagation.get(span.context(), "x-country-code");

A difference from previous versions of Sleuth is that, with Brave, you must pass
the list of baggage keys. There are the following properties to achieve this. With
the spring.sleuth.baggage-keys, you set keys that get prefixed with baggage- for
HTTP calls and baggage_ for messaging. You can also use the
spring.sleuth.propagation-keys property to pass a list of prefixed keys that are
propagated to remote services without any prefix. You can also use the
spring.sleuth.local-keys property to pass a list keys that will be propagated
locally but will not be propagated over the wire. Notice that there’s no x- in front
of the header keys.

In order to automatically set the baggage values to Slf4j’s MDC, you have to set the
spring.sleuth.log.slf4j.whitelisted-mdc-keys property with a list of whitelisted baggage and
propagation keys. E.g. spring.sleuth.log.slf4j.whitelisted-mdc-keys=foo will set the value of the
foo baggage into MDC.

Remember that adding entries to MDC can drastically decrease the performance of
your application!

If you want to add the baggage entries as tags, to make it possible to search for spans via the
baggage entries, you can set the value of spring.sleuth.propagation.tag.whitelisted-keys with a list
of whitelisted baggage keys. To disable the feature you have to pass the
spring.sleuth.propagation.tag.enabled=false property.

Extracting a Propagated Context

The TraceContext.Extractor<C> reads trace identifiers and sampling status from an incoming

request or message. The carrier is usually a request object or headers.

This utility is used in standard instrumentation (such as HttpServerHandler) but can also be used for
custom RPC or messaging code.

TraceContextOrSamplingFlags is usually used only with Tracer.nextSpan(extracted), unless you are
sharing span IDs between a client and a server.

Sharing span IDs between Client and Server

A normal instrumentation pattern is to create a span representing the server side of an RPC.
Extractor.extract might return a complete trace context when applied to an incoming client
request. Tracer.joinSpan attempts to continue this trace, using the same span ID if supported or
creating a child span if not. When the span ID is shared, the reported data includes a flag saying so.

The following image shows an example of B3 propagation:

 ┌───────────────────┐
┌───────────────────┐
 Incoming Headers │ TraceContext │ │ TraceContext │
┌───────────────────┐(extract)│
┌───────────────┐ │(join)│ ┌───────────────┐ │
│ X─B3-TraceId │─────────┼─┼> TraceId │
│──────┼─┼> TraceId │ │
│ │ │ │ │ │ │ │ │
│
│ X─B3-ParentSpanId │─────────┼─┼> ParentSpanId │
│──────┼─┼> ParentSpanId │ │
│ │ │ │ │ │ │ │ │
│
│ X─B3-SpanId │─────────┼─┼> SpanId │
│──────┼─┼> SpanId │ │
└───────────────────┘ │ │ │ │ │
│ │ │
 │ │ │ │ │ │ Shared: true │ │
 │ └───────────────┘ │ │
└───────────────┘ │
 └───────────────────┘
└───────────────────┘

Some propagation systems forward only the parent span ID, detected when
Propagation.Factory.supportsJoin() == false. In this case, a new span ID is always provisioned, and
the incoming context determines the parent ID.

The following image shows an example of AWS propagation:

 ┌───────────────────┐
┌───────────────────┐
 x-amzn-trace-id │ TraceContext │ │ TraceContext │
┌───────────────────┐(extract)│
┌───────────────┐ │(join)│ ┌───────────────┐ │
│ Root │─────────┼─┼> TraceId │ │──────┼─┼>
TraceId │ │
│ │ │ │ │ │ │ │ │
│
│ Parent │─────────┼─┼> SpanId │ │──────┼─┼>
ParentSpanId │ │
└───────────────────┘ │
└───────────────┘ │ │ │ │ │
 └───────────────────┘ │ │
SpanId: New │ │
 │
└───────────────┘ │

└───────────────────┘

Note: Some span reporters do not support sharing span IDs. For example, if you set
Tracing.Builder.spanReporter(amazonXrayOrGoogleStackdrive), you should disable join by setting
Tracing.Builder.supportsJoin(false). Doing so forces a new child span on Tracer.joinSpan().

Implementing Propagation

TraceContext.Extractor<C> is implemented by a Propagation.Factory plugin. Internally, this code
creates the union type, TraceContextOrSamplingFlags, with one of the following: * TraceContext if
trace and span IDs were present. * TraceIdContext if a trace ID was present but span IDs were not
present. * SamplingFlags if no identifiers were present.

Some Propagation implementations carry extra data from the point of extraction (for example,
reading incoming headers) to injection (for example, writing outgoing headers). For example, it
might carry a request ID. When implementations have extra data, they handle it as follows: * If a
TraceContext were extracted, add the extra data as TraceContext.extra(). * Otherwise, add it as
TraceContextOrSamplingFlags.extra(), which Tracer.nextSpan handles.

8.6. Current Tracing Component
Brave supports a “current tracing component” concept, which should only be used when you have
no other way to get a reference. This was made for JDBC connections, as they often initialize prior
to the tracing component.

The most recent tracing component instantiated is available through Tracing.current(). You can
also use Tracing.currentTracer() to get only the tracer. If you use either of these methods, do not
cache the result. Instead, look them up each time you need them.

8.7. Current Span
Brave supports a “current span” concept which represents the in-flight operation. You can use
Tracer.currentSpan() to add custom tags to a span and Tracer.nextSpan() to create a child of
whatever is in-flight.

In Sleuth, you can autowire the Tracer bean to retrieve the current span via
tracer.currentSpan() method. To retrieve the current context just call
tracer.currentSpan().context(). To get the current trace id as String you can use
the traceIdString() method like this:
tracer.currentSpan().context().traceIdString().

8.7.1. Setting a span in scope manually

When writing new instrumentation, it is important to place a span you created in scope as the
current span. Not only does doing so let users access it with Tracer.currentSpan(), but it also allows
customizations such as SLF4J MDC to see the current trace IDs.

Tracer.withSpanInScope(Span) facilitates this and is most conveniently employed by using the try-
with-resources idiom. Whenever external code might be invoked (such as proceeding an
interceptor or otherwise), place the span in scope, as shown in the following example:

@Autowired Tracer tracer;

try (SpanInScope ws = tracer.withSpanInScope(span)) {
 return inboundRequest.invoke();
} finally { // note the scope is independent of the span
 span.finish();
}

In edge cases, you may need to clear the current span temporarily (for example, launching a task
that should not be associated with the current request). To do tso, pass null to withSpanInScope, as
shown in the following example:

@Autowired Tracer tracer;

try (SpanInScope cleared = tracer.withSpanInScope(null)) {
 startBackgroundThread();
}

8.8. Instrumentation
Spring Cloud Sleuth automatically instruments all your Spring applications, so you should not have
to do anything to activate it. The instrumentation is added by using a variety of technologies
according to the stack that is available. For example, for a servlet web application, we use a Filter,
and, for Spring Integration, we use ChannelInterceptors.

You can customize the keys used in span tags. To limit the volume of span data, an HTTP request is,
by default, tagged only with a handful of metadata, such as the status code, the host, and the URL.
You can add request headers by configuring spring.sleuth.keys.http.headers (a list of header
names).

Tags are collected and exported only if there is a Sampler that allows it. By default,
there is no such Sampler, to ensure that there is no danger of accidentally collecting
too much data without configuring something).

8.9. Span lifecycle
You can do the following operations on the Span by means of brave.Tracer:

• start: When you start a span, its name is assigned and the start timestamp is recorded.

• close: The span gets finished (the end time of the span is recorded) and, if the span is sampled, it
is eligible for collection (for example, to Zipkin).

• continue: A new instance of span is created. It is a copy of the one that it continues.

• detach: The span does not get stopped or closed. It only gets removed from the current thread.

• create with explicit parent: You can create a new span and set an explicit parent for it.

Spring Cloud Sleuth creates an instance of Tracer for you. In order to use it, you
can autowire it.

8.9.1. Creating and finishing spans

You can manually create spans by using the Tracer, as shown in the following example:

// Start a span. If there was a span present in this thread it will become
// the `newSpan`'s parent.
Span newSpan = this.tracer.nextSpan().name("calculateTax");
try (Tracer.SpanInScope ws = this.tracer.withSpanInScope(newSpan.start())) {
 // ...
 // You can tag a span
 newSpan.tag("taxValue", taxValue);
 // ...
 // You can log an event on a span
 newSpan.annotate("taxCalculated");
}
finally {
 // Once done remember to finish the span. This will allow collecting
 // the span to send it to Zipkin
 newSpan.finish();
}

In the preceding example, we could see how to create a new instance of the span. If there is already
a span in this thread, it becomes the parent of the new span.

Always clean after you create a span. Also, always finish any span that you want to
send to Zipkin.

If your span contains a name greater than 50 chars, that name is truncated to 50
chars. Your names have to be explicit and concrete. Big names lead to latency
issues and sometimes even exceptions.

8.9.2. Continuing Spans

Sometimes, you do not want to create a new span but you want to continue one. An example of
such a situation might be as follows:

• AOP: If there was already a span created before an aspect was reached, you might not want to
create a new span.

• Hystrix: Executing a Hystrix command is most likely a logical part of the current processing. It
is in fact merely a technical implementation detail that you would not necessarily want to
reflect in tracing as a separate being.

To continue a span, you can use brave.Tracer, as shown in the following example:

// let's assume that we're in a thread Y and we've received
// the `initialSpan` from thread X
Span continuedSpan = this.tracer.toSpan(newSpan.context());
try {
 // ...
 // You can tag a span
 continuedSpan.tag("taxValue", taxValue);
 // ...
 // You can log an event on a span
 continuedSpan.annotate("taxCalculated");
}
finally {
 // Once done remember to flush the span. That means that
 // it will get reported but the span itself is not yet finished
 continuedSpan.flush();
}

8.9.3. Creating a Span with an explicit Parent

You might want to start a new span and provide an explicit parent of that span. Assume that the
parent of a span is in one thread and you want to start a new span in another thread. In Brave,
whenever you call nextSpan(), it creates a span in reference to the span that is currently in scope.
You can put the span in scope and then call nextSpan(), as shown in the following example:

// let's assume that we're in a thread Y and we've received
// the `initialSpan` from thread X. `initialSpan` will be the parent
// of the `newSpan`
Span newSpan = null;
try (Tracer.SpanInScope ws = this.tracer.withSpanInScope(initialSpan)) {
 newSpan = this.tracer.nextSpan().name("calculateCommission");
 // ...
 // You can tag a span
 newSpan.tag("commissionValue", commissionValue);
 // ...
 // You can log an event on a span
 newSpan.annotate("commissionCalculated");
}
finally {
 // Once done remember to finish the span. This will allow collecting
 // the span to send it to Zipkin. The tags and events set on the
 // newSpan will not be present on the parent
 if (newSpan != null) {
 newSpan.finish();
 }
}

After creating such a span, you must finish it. Otherwise it is not reported (for
example, to Zipkin).

8.10. Naming spans
Picking a span name is not a trivial task. A span name should depict an operation name. The name
should be low cardinality, so it should not include identifiers.

Since there is a lot of instrumentation going on, some span names are artificial:

• controller-method-name when received by a Controller with a method name of
controllerMethodName

• async for asynchronous operations done with wrapped Callable and Runnable interfaces.

• Methods annotated with @Scheduled return the simple name of the class.

Fortunately, for asynchronous processing, you can provide explicit naming.

8.10.1. @SpanName Annotation

You can name the span explicitly by using the @SpanName annotation, as shown in the following
example:

@SpanName("calculateTax")
class TaxCountingRunnable implements Runnable {

 @Override
 public void run() {
 // perform logic
 }

}

In this case, when processed in the following manner, the span is named calculateTax:

Runnable runnable = new TraceRunnable(this.tracing, spanNamer,
 new TaxCountingRunnable());
Future<?> future = executorService.submit(runnable);
// ... some additional logic ...
future.get();

8.10.2. toString() method

It is pretty rare to create separate classes for Runnable or Callable. Typically, one creates an
anonymous instance of those classes. You cannot annotate such classes. To overcome that
limitation, if there is no @SpanName annotation present, we check whether the class has a custom
implementation of the toString() method.

Running such code leads to creating a span named calculateTax, as shown in the following
example:

Runnable runnable = new TraceRunnable(this.tracing, spanNamer, new Runnable() {
 @Override
 public void run() {
 // perform logic
 }

 @Override
 public String toString() {
 return "calculateTax";
 }
});
Future<?> future = executorService.submit(runnable);
// ... some additional logic ...
future.get();

8.11. Managing Spans with Annotations
You can manage spans with a variety of annotations.

8.11.1. Rationale

There are a number of good reasons to manage spans with annotations, including:

• API-agnostic means to collaborate with a span. Use of annotations lets users add to a span with
no library dependency on a span api. Doing so lets Sleuth change its core API to create less
impact to user code.

• Reduced surface area for basic span operations. Without this feature, you must use the span api,
which has lifecycle commands that could be used incorrectly. By only exposing scope, tag, and
log functionality, you can collaborate without accidentally breaking span lifecycle.

• Collaboration with runtime generated code. With libraries such as Spring Data and Feign, the
implementations of interfaces are generated at runtime. Consequently, span wrapping of
objects was tedious. Now you can provide annotations over interfaces and the arguments of
those interfaces.

8.11.2. Creating New Spans

If you do not want to create local spans manually, you can use the @NewSpan annotation. Also, we
provide the @SpanTag annotation to add tags in an automated fashion.

Now we can consider some examples of usage.

@NewSpan
void testMethod();

Annotating the method without any parameter leads to creating a new span whose name equals the
annotated method name.

@NewSpan("customNameOnTestMethod4")
void testMethod4();

If you provide the value in the annotation (either directly or by setting the name parameter), the
created span has the provided value as the name.

// method declaration
@NewSpan(name = "customNameOnTestMethod5")
void testMethod5(@SpanTag("testTag") String param);

// and method execution
this.testBean.testMethod5("test");

You can combine both the name and a tag. Let’s focus on the latter. In this case, the value of the
annotated method’s parameter runtime value becomes the value of the tag. In our sample, the tag
key is testTag, and the tag value is test.

@NewSpan(name = "customNameOnTestMethod3")
@Override
public void testMethod3() {
}

You can place the @NewSpan annotation on both the class and an interface. If you override the
interface’s method and provide a different value for the @NewSpan annotation, the most concrete one
wins (in this case customNameOnTestMethod3 is set).

8.11.3. Continuing Spans

If you want to add tags and annotations to an existing span, you can use the @ContinueSpan
annotation, as shown in the following example:

// method declaration
@ContinueSpan(log = "testMethod11")
void testMethod11(@SpanTag("testTag11") String param);

// method execution
this.testBean.testMethod11("test");
this.testBean.testMethod13();

(Note that, in contrast with the @NewSpan annotation ,you can also add logs with the log parameter.)

That way, the span gets continued and:

• Log entries named testMethod11.before and testMethod11.after are created.

• If an exception is thrown, a log entry named testMethod11.afterFailure is also created.

• A tag with a key of testTag11 and a value of test is created.

8.11.4. Advanced Tag Setting

There are 3 different ways to add tags to a span. All of them are controlled by the SpanTag
annotation. The precedence is as follows:

1. Try with a bean of TagValueResolver type and a provided name.

2. If the bean name has not been provided, try to evaluate an expression. We search for a
TagValueExpressionResolver bean. The default implementation uses SPEL expression resolution.
IMPORTANT You can only reference properties from the SPEL expression. Method execution is
not allowed due to security constraints.

3. If we do not find any expression to evaluate, return the toString() value of the parameter.

Custom extractor

The value of the tag for the following method is computed by an implementation of
TagValueResolver interface. Its class name has to be passed as the value of the resolver attribute.

Consider the following annotated method:

@NewSpan
public void getAnnotationForTagValueResolver(
 @SpanTag(key = "test", resolver = TagValueResolver.class) String test) {
}

Now further consider the following TagValueResolver bean implementation:

@Bean(name = "myCustomTagValueResolver")
public TagValueResolver tagValueResolver() {
 return parameter -> "Value from myCustomTagValueResolver";
}

The two preceding examples lead to setting a tag value equal to Value from

myCustomTagValueResolver.

Resolving Expressions for a Value

Consider the following annotated method:

@NewSpan
public void getAnnotationForTagValueExpression(@SpanTag(key = "test",
 expression = "'hello' + ' characters'") String test) {
}

No custom implementation of a TagValueExpressionResolver leads to evaluation of the SPEL
expression, and a tag with a value of 4 characters is set on the span. If you want to use some other
expression resolution mechanism, you can create your own implementation of the bean.

Using the toString() method

Consider the following annotated method:

@NewSpan
public void getAnnotationForArgumentToString(@SpanTag("test") Long param) {
}

Running the preceding method with a value of 15 leads to setting a tag with a String value of "15".

8.12. Customizations

8.12.1. Customizers

With Brave 5.7 you have various options of providing customizers for your project. Brave ships

with

• TracingCustomizer - allows configuration plugins to collaborate on building an instance of
Tracing.

• CurrentTraceContextCustomizer - allows configuration plugins to collaborate on building an
instance of CurrentTraceContext.

• ExtraFieldCustomizer - allows configuration plugins to collaborate on building an instance of
ExtraFieldPropagation.Factory.

Sleuth will search for beans of those types and automatically apply customizations.

8.12.2. HTTP

Data Policy

The default span data policy for HTTP requests is described in Brave: github.com/openzipkin/brave/
tree/master/instrumentation/http#span-data-policy

To add different data to the span, you need to register a bean of type brave.http.HttpRequestParser
or brave.http.HttpResponseParser based on when the data is collected.

The bean names correspond to the request or response side, and whether it is a client or server. For
example, sleuthHttpClientRequestParser changes what is collected before a client request is sent to
the server.

For your convenience @HttpClientRequestParser, @HttpClientResponseParser and corresponding
server annotations can be used to inject the proper beans or to reference the bean names via their
static String NAME fields.

Here’s an example adding the HTTP url in addition to defaults:

@Configuration
class Config {
 @Bean(name = { HttpClientRequestParser.NAME, HttpServerRequestParser.NAME })
 HttpRequestParser sleuthHttpServerRequestParser() {
 return (req, context, span) -> {
 HttpRequestParser.DEFAULT.parse(req, context, span);
 String url = req.url();
 if (url != null) {
 span.tag("http.url", url);
 }
 };
 }
}

Sampling

If client /server sampling is required, just register a bean of type
brave.sampler.SamplerFunction<HttpRequest> and name the bean sleuthHttpClientSampler for client

https://github.com/openzipkin/brave/tree/master/instrumentation/http#span-data-policy
https://github.com/openzipkin/brave/tree/master/instrumentation/http#span-data-policy

sampler and sleuthHttpServerSampler for server sampler.

For your convenience the @HttpClientSampler and @HttpServerSampler annotations can be used to
inject the proper beans or to reference the bean names via their static String NAME fields.

Check out Brave’s code to see an example of how to make a path-based sampler github.com/
openzipkin/brave/tree/master/instrumentation/http#sampling-policy

If you want to completely rewrite the HttpTracing bean you can use the SkipPatternProvider
interface to retrieve the URL Pattern for spans that should be not sampled. Below you can see an
example of usage of SkipPatternProvider inside a server side, Sampler<HttpRequest>.

@Configuration
class Config {
 @Bean(name = HttpServerSampler.NAME)
 SamplerFunction<HttpRequest> myHttpSampler(SkipPatternProvider provider) {
 Pattern pattern = provider.skipPattern();
 return request -> {
 String url = request.path();
 boolean shouldSkip = pattern.matcher(url).matches();
 if (shouldSkip) {
 return false;
 }
 return null;
 };
 }
}

8.12.3. TracingFilter

You can also modify the behavior of the TracingFilter, which is the component that is responsible
for processing the input HTTP request and adding tags basing on the HTTP response. You can
customize the tags or modify the response headers by registering your own instance of the
TracingFilter bean.

In the following example, we register the TracingFilter bean, add the ZIPKIN-TRACE-ID response
header containing the current Span’s trace id, and add a tag with key custom and a value tag to the
span.

https://github.com/openzipkin/brave/tree/master/instrumentation/http#sampling-policy
https://github.com/openzipkin/brave/tree/master/instrumentation/http#sampling-policy

@Component
@Order(TraceWebServletAutoConfiguration.TRACING_FILTER_ORDER + 1)
class MyFilter extends GenericFilterBean {

 private final Tracer tracer;

 MyFilter(Tracer tracer) {
 this.tracer = tracer;
 }

 @Override
 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {
 Span currentSpan = this.tracer.currentSpan();
 if (currentSpan == null) {
 chain.doFilter(request, response);
 return;
 }
 // for readability we're returning trace id in a hex form
 ((HttpServletResponse) response).addHeader("ZIPKIN-TRACE-ID",
 currentSpan.context().traceIdString());
 // we can also add some custom tags
 currentSpan.tag("custom", "tag");
 chain.doFilter(request, response);
 }

}

8.12.4. Messaging

Sleuth automatically configures the MessagingTracing bean which serves as a foundation for
Messaging instrumentation such as Kafka or JMS.

If a customization of producer / consumer sampling of messaging traces is required, just register a
bean of type brave.sampler.SamplerFunction<MessagingRequest> and name the bean
sleuthProducerSampler for producer sampler and sleuthConsumerSampler for consumer sampler.

For your convenience the @ProducerSampler and @ConsumerSampler annotations can be used to inject
the proper beans or to reference the bean names via their static String NAME fields.

Ex. Here’s a sampler that traces 100 consumer requests per second, except for the "alerts" channel.
Other requests will use a global rate provided by the Tracing component.

@Configuration
class Config {
}

For more, see github.com/openzipkin/brave/tree/master/instrumentation/messaging#sampling-

https://github.com/openzipkin/brave/tree/master/instrumentation/messaging#sampling-policy

policy

8.12.5. RPC

Sleuth automatically configures the RpcTracing bean which serves as a foundation for RPC
instrumentation such as gRPC or Dubbo.

If a customization of client / server sampling of the RPC traces is required, just register a bean of
type brave.sampler.SamplerFunction<RpcRequest> and name the bean sleuthRpcClientSampler for
client sampler and sleuthRpcServerSampler for server sampler.

For your convenience the @RpcClientSampler and @RpcServerSampler annotations can be used to
inject the proper beans or to reference the bean names via their static String NAME fields.

Ex. Here’s a sampler that traces 100 "GetUserToken" server requests per second. This doesn’t start
new traces for requests to the health check service. Other requests will use the global sampling
configuration.

@Configuration
class Config {
 @Bean(name = RpcServerSampler.NAME)
 SamplerFunction<RpcRequest> myRpcSampler() {
 Matcher<RpcRequest> userAuth = and(serviceEquals("users.UserService"),
 methodEquals("GetUserToken"));
 return RpcRuleSampler.newBuilder()
 .putRule(serviceEquals("grpc.health.v1.Health"), Sampler.NEVER_SAMPLE)
 .putRule(userAuth, RateLimitingSampler.create(100)).build();
 }
}

For more, see github.com/openzipkin/brave/tree/master/instrumentation/rpc#sampling-policy

8.12.6. Custom service name

By default, Sleuth assumes that, when you send a span to Zipkin, you want the span’s service name
to be equal to the value of the spring.application.name property. That is not always the case, though.
There are situations in which you want to explicitly provide a different service name for all spans
coming from your application. To achieve that, you can pass the following property to your
application to override that value (the example is for a service named myService):

spring.zipkin.service.name: myService

8.12.7. Customization of Reported Spans

Before reporting spans (for example, to Zipkin) you may want to modify that span in some way. You
can do so by implementing a SpanHandler.

In Sleuth, we generate spans with a fixed name. Some users want to modify the name depending on

https://github.com/openzipkin/brave/tree/master/instrumentation/messaging#sampling-policy
https://github.com/openzipkin/brave/tree/master/instrumentation/rpc#sampling-policy

values of tags. You can implement the SpanHandler interface to alter that name.

The following example shows how to register two beans that implement SpanHandler:

@Bean
SpanHandler handlerOne() {
 return new SpanHandler() {
 @Override
 public boolean end(TraceContext traceContext, MutableSpan span,
 Cause cause) {
 span.name("foo");
 return true; // keep this span
 }
 };
}

@Bean
SpanHandler handlerTwo() {
 return new SpanHandler() {
 @Override
 public boolean end(TraceContext traceContext, MutableSpan span,
 Cause cause) {
 span.name(span.name() + " bar");
 return true; // keep this span
 }
 };
}

The preceding example results in changing the name of the reported span to foo bar, just before it
gets reported (for example, to Zipkin).

8.12.8. Host Locator

This section is about defining host from service discovery. It is NOT about finding
Zipkin through service discovery.

To define the host that corresponds to a particular span, we need to resolve the host name and port.
The default approach is to take these values from server properties. If those are not set, we try to
retrieve the host name from the network interfaces.

If you have the discovery client enabled and prefer to retrieve the host address from the registered
instance in a service registry, you have to set the spring.zipkin.locator.discovery.enabled property
(it is applicable for both HTTP-based and Stream-based span reporting), as follows:

spring.zipkin.locator.discovery.enabled: true

8.13. Sending Spans to Zipkin
By default, if you add spring-cloud-starter-zipkin as a dependency to your project, when the span
is closed, it is sent to Zipkin over HTTP. The communication is asynchronous. You can configure the
URL by setting the spring.zipkin.baseUrl property, as follows:

spring.zipkin.baseUrl: https://192.168.99.100:9411/

If you want to find Zipkin through service discovery, you can pass the Zipkin’s service ID inside the
URL, as shown in the following example for zipkinserver service ID:

spring.zipkin.baseUrl: https://zipkinserver/

To disable this feature just set spring.zipkin.discoveryClientEnabled to `false.

When the Discovery Client feature is enabled, Sleuth uses LoadBalancerClient to find the URL of the
Zipkin Server. It means that you can set up the load balancing configuration e.g. via Ribbon.

zipkinserver:
 ribbon:
 ListOfServers: host1,host2

If you have web, rabbit, activemq or kafka together on the classpath, you might need to pick the
means by which you would like to send spans to zipkin. To do so, set web, rabbit, activemq or kafka to
the spring.zipkin.sender.type property. The following example shows setting the sender type for
web:

spring.zipkin.sender.type: web

To customize the RestTemplate that sends spans to Zipkin via HTTP, you can register the
ZipkinRestTemplateCustomizer bean.

@Configuration
class MyConfig {
 @Bean ZipkinRestTemplateCustomizer myCustomizer() {
 return new ZipkinRestTemplateCustomizer() {
 @Override
 void customize(RestTemplate restTemplate) {
 // customize the RestTemplate
 }
 };
 }
}

If, however, you would like to control the full process of creating the RestTemplate object, you will
have to create a bean of zipkin2.reporter.Sender type.

 @Bean Sender myRestTemplateSender(ZipkinProperties zipkin,
 ZipkinRestTemplateCustomizer zipkinRestTemplateCustomizer) {
 RestTemplate restTemplate = mySuperCustomRestTemplate();
 zipkinRestTemplateCustomizer.customize(restTemplate);
 return myCustomSender(zipkin, restTemplate);
 }

8.14. Zipkin Stream Span Consumer

We recommend using Zipkin’s native support for message-based span sending.
Starting from the Edgware release, the Zipkin Stream server is deprecated. In the
Finchley release, it got removed.

If for some reason you need to create the deprecated Stream Zipkin server, see the Dalston
Documentation.

8.15. Integrations

8.15.1. OpenTracing

Spring Cloud Sleuth is compatible with OpenTracing. If you have OpenTracing on the classpath, we
automatically register the OpenTracing Tracer bean. If you wish to disable this, set
spring.sleuth.opentracing.enabled to false

8.15.2. Runnable and Callable

If you wrap your logic in Runnable or Callable, you can wrap those classes in their Sleuth
representative, as shown in the following example for Runnable:

https://cloud.spring.io/spring-cloud-static/Dalston.SR4/multi/multi__span_data_as_messages.html#_zipkin_consumer
https://cloud.spring.io/spring-cloud-static/Dalston.SR4/multi/multi__span_data_as_messages.html#_zipkin_consumer
https://opentracing.io/

Runnable runnable = new Runnable() {
 @Override
 public void run() {
 // do some work
 }

 @Override
 public String toString() {
 return "spanNameFromToStringMethod";
 }
};
// Manual `TraceRunnable` creation with explicit "calculateTax" Span name
Runnable traceRunnable = new TraceRunnable(this.tracing, spanNamer, runnable,
 "calculateTax");
// Wrapping `Runnable` with `Tracing`. That way the current span will be available
// in the thread of `Runnable`
Runnable traceRunnableFromTracer = this.tracing.currentTraceContext()
 .wrap(runnable);

The following example shows how to do so for Callable:

Callable<String> callable = new Callable<String>() {
 @Override
 public String call() throws Exception {
 return someLogic();
 }

 @Override
 public String toString() {
 return "spanNameFromToStringMethod";
 }
};
// Manual `TraceCallable` creation with explicit "calculateTax" Span name
Callable<String> traceCallable = new TraceCallable<>(this.tracing, spanNamer,
 callable, "calculateTax");
// Wrapping `Callable` with `Tracing`. That way the current span will be available
// in the thread of `Callable`
Callable<String> traceCallableFromTracer = this.tracing.currentTraceContext()
 .wrap(callable);

That way, you ensure that a new span is created and closed for each execution.

8.15.3. Spring Cloud CircuitBreaker

If you have Spring Cloud CircuitBreaker on the classpath, we will wrap the passed command
Supplier and the fallback Function in its trace representations. In order to disable this
instrumentation set spring.sleuth.circuitbreaker.enabled to false.

8.15.4. Hystrix

Custom Concurrency Strategy

We register a custom HystrixConcurrencyStrategy called TraceCallable that wraps all Callable
instances in their Sleuth representative. The strategy either starts or continues a span, depending
on whether tracing was already going on before the Hystrix command was called. Optionally, you
can set spring.sleuth.hystrix.strategy.passthrough to true to just propagate the trace context to the
Hystrix execution thread if you don’t wish to start a new span. To disable the custom Hystrix
Concurrency Strategy, set the spring.sleuth.hystrix.strategy.enabled to false.

Manual Command setting

Assume that you have the following HystrixCommand:

HystrixCommand<String> hystrixCommand = new HystrixCommand<String>(setter) {
 @Override
 protected String run() throws Exception {
 return someLogic();
 }
};

To pass the tracing information, you have to wrap the same logic in the Sleuth version of the
HystrixCommand, which is called TraceCommand, as shown in the following example:

TraceCommand<String> traceCommand = new TraceCommand<String>(tracer, setter) {
 @Override
 public String doRun() throws Exception {
 return someLogic();
 }
};

8.15.5. RxJava

We registering a custom RxJavaSchedulersHook that wraps all Action0 instances in their Sleuth
representative, which is called TraceAction. The hook either starts or continues a span, depending
on whether tracing was already going on before the Action was scheduled. To disable the custom
RxJavaSchedulersHook, set the spring.sleuth.rxjava.schedulers.hook.enabled to false.

You can define a list of regular expressions for thread names for which you do not want spans to be
created. To do so, provide a comma-separated list of regular expressions in the
spring.sleuth.rxjava.schedulers.ignoredthreads property.

The suggest approach to reactive programming and Sleuth is to use the Reactor
support.

https://github.com/Netflix/Hystrix/wiki/Plugins#concurrencystrategy
https://github.com/ReactiveX/RxJava/wiki/Plugins#rxjavaschedulershook

8.15.6. HTTP integration

Features from this section can be disabled by setting the spring.sleuth.web.enabled property with
value equal to false.

HTTP Filter

Through the TracingFilter, all sampled incoming requests result in creation of a Span. That Span’s
name is http: + the path to which the request was sent. For example, if the request was sent to
/this/that then the name will be http:/this/that. You can configure which URIs you would like to
skip by setting the spring.sleuth.web.skipPattern property. If you have ManagementServerProperties
on classpath, its value of contextPath gets appended to the provided skip pattern. If you want to
reuse the Sleuth’s default skip patterns and just append your own, pass those patterns by using the
spring.sleuth.web.additionalSkipPattern.

By default, all the spring boot actuator endpoints are automatically added to the skip pattern. If you
want to disable this behaviour set spring.sleuth.web.ignore-auto-configured-skip-patterns to true.

To change the order of tracing filter registration, please set the spring.sleuth.web.filter-order
property.

To disable the filter that logs uncaught exceptions you can disable the spring.sleuth.web.exception-
throwing-filter-enabled property.

HandlerInterceptor

Since we want the span names to be precise, we use a TraceHandlerInterceptor that either wraps an
existing HandlerInterceptor or is added directly to the list of existing HandlerInterceptors. The
TraceHandlerInterceptor adds a special request attribute to the given HttpServletRequest. If the the
TracingFilter does not see this attribute, it creates a “fallback” span, which is an additional span
created on the server side so that the trace is presented properly in the UI. If that happens, there is
probably missing instrumentation. In that case, please file an issue in Spring Cloud Sleuth.

Async Servlet support

If your controller returns a Callable or a WebAsyncTask, Spring Cloud Sleuth continues the existing
span instead of creating a new one.

WebFlux support

Through TraceWebFilter, all sampled incoming requests result in creation of a Span. That Span’s
name is http: + the path to which the request was sent. For example, if the request was sent to
/this/that, the name is http:/this/that. You can configure which URIs you would like to skip by
using the spring.sleuth.web.skipPattern property. If you have ManagementServerProperties on the
classpath, its value of contextPath gets appended to the provided skip pattern. If you want to reuse
Sleuth’s default skip patterns and append your own, pass those patterns by using the
spring.sleuth.web.additionalSkipPattern.

To change the order of tracing filter registration, please set the spring.sleuth.web.filter-order
property.

Dubbo RPC support

Via the integration with Brave, Spring Cloud Sleuth supports Dubbo. It’s enough to add the brave-
instrumentation-dubbo dependency:

<dependency>
 <groupId>io.zipkin.brave</groupId>
 <artifactId>brave-instrumentation-dubbo</artifactId>
</dependency>

You need to also set a dubbo.properties file with the following contents:

dubbo.provider.filter=tracing
dubbo.consumer.filter=tracing

You can read more about Brave - Dubbo integration here. An example of Spring Cloud Sleuth and
Dubbo can be found here.

8.15.7. HTTP Client Integration

Synchronous Rest Template

We inject a RestTemplate interceptor to ensure that all the tracing information is passed to the
requests. Each time a call is made, a new Span is created. It gets closed upon receiving the response.
To block the synchronous RestTemplate features, set spring.sleuth.web.client.enabled to false.

You have to register RestTemplate as a bean so that the interceptors get injected. If
you create a RestTemplate instance with a new keyword, the instrumentation does
NOT work.

Asynchronous Rest Template

Starting with Sleuth 2.0.0, we no longer register a bean of AsyncRestTemplate type.
It is up to you to create such a bean. Then we instrument it.

To block the AsyncRestTemplate features, set spring.sleuth.web.async.client.enabled to false. To
disable creation of the default TraceAsyncClientHttpRequestFactoryWrapper, set
spring.sleuth.web.async.client.factory.enabled to false. If you do not want to create
AsyncRestClient at all, set spring.sleuth.web.async.client.template.enabled to false.

Multiple Asynchronous Rest Templates

Sometimes you need to use multiple implementations of the Asynchronous Rest Template. In the
following snippet, you can see an example of how to set up such a custom AsyncRestTemplate:

https://dubbo.apache.org/
https://github.com/openzipkin/brave/tree/master/instrumentation/dubbo-rpc
https://github.com/openzipkin/sleuth-webmvc-example/compare/add-dubbo-tracing

@Configuration
@EnableAutoConfiguration
static class Config {

 @Bean(name = "customAsyncRestTemplate")
 public AsyncRestTemplate traceAsyncRestTemplate() {
 return new AsyncRestTemplate(asyncClientFactory(),
 clientHttpRequestFactory());
 }

 private ClientHttpRequestFactory clientHttpRequestFactory() {
 ClientHttpRequestFactory clientHttpRequestFactory = new
CustomClientHttpRequestFactory();
 // CUSTOMIZE HERE
 return clientHttpRequestFactory;
 }

 private AsyncClientHttpRequestFactory asyncClientFactory() {
 AsyncClientHttpRequestFactory factory = new
CustomAsyncClientHttpRequestFactory();
 // CUSTOMIZE HERE
 return factory;
 }

}

WebClient

We inject a ExchangeFilterFunction implementation that creates a span and, through on-success and
on-error callbacks, takes care of closing client-side spans.

To block this feature, set spring.sleuth.web.client.enabled to false.

You have to register WebClient as a bean so that the tracing instrumentation gets
applied. If you create a WebClient instance with a new keyword, the instrumentation
does NOT work.

Traverson

If you use the Traverson library, you can inject a RestTemplate as a bean into your Traverson object.
Since RestTemplate is already intercepted, you get full support for tracing in your client. The
following pseudo code shows how to do that:

https://docs.spring.io/spring-hateoas/docs/current/reference/html/#client.traverson

@Autowired RestTemplate restTemplate;

Traverson traverson = new Traverson(URI.create("https://some/address"),
 MediaType.APPLICATION_JSON,
MediaType.APPLICATION_JSON_UTF8).setRestOperations(restTemplate);
// use Traverson

Apache HttpClientBuilder and HttpAsyncClientBuilder

We instrument the HttpClientBuilder and HttpAsyncClientBuilder so that tracing context gets
injected to the sent requests.

To block these features, set spring.sleuth.web.client.enabled to false.

Netty HttpClient

We instrument the Netty’s HttpClient.

To block this feature, set spring.sleuth.web.client.enabled to false.

You have to register HttpClient as a bean so that the instrumentation happens. If
you create a HttpClient instance with a new keyword, the instrumentation does
NOT work.

UserInfoRestTemplateCustomizer

We instrument the Spring Security’s UserInfoRestTemplateCustomizer.

To block this feature, set spring.sleuth.web.client.enabled to false.

8.15.8. Feign

By default, Spring Cloud Sleuth provides integration with Feign through
TraceFeignClientAutoConfiguration. You can disable it entirely by setting
spring.sleuth.feign.enabled to false. If you do so, no Feign-related instrumentation take place.

Part of Feign instrumentation is done through a FeignBeanPostProcessor. You can disable it by
setting spring.sleuth.feign.processor.enabled to false. If you set it to false, Spring Cloud Sleuth
does not instrument any of your custom Feign components. However, all the default
instrumentation is still there.

8.15.9. gRPC

Spring Cloud Sleuth provides instrumentation for gRPC through TraceGrpcAutoConfiguration. You
can disable it entirely by setting spring.sleuth.grpc.enabled to false.

Variant 1

https://grpc.io/

Dependencies

The gRPC integration relies on two external libraries to instrument clients and
servers and both of those libraries must be on the class path to enable the
instrumentation.

Maven:

 <dependency>
 <groupId>io.github.lognet</groupId>
 <artifactId>grpc-spring-boot-starter</artifactId>
 </dependency>
 <dependency>
 <groupId>io.zipkin.brave</groupId>
 <artifactId>brave-instrumentation-grpc</artifactId>
 </dependency>

Gradle:

 compile("io.github.lognet:grpc-spring-boot-starter")
 compile("io.zipkin.brave:brave-instrumentation-grpc")

Server Instrumentation

Spring Cloud Sleuth leverages grpc-spring-boot-starter to register Brave’s gRPC server interceptor
with all services annotated with @GRpcService.

Client Instrumentation

gRPC clients leverage a ManagedChannelBuilder to construct a ManagedChannel used to communicate to
the gRPC server. The native ManagedChannelBuilder provides static methods as entry points for
construction of ManagedChannel instances, however, this mechanism is outside the influence of the
Spring application context.

Spring Cloud Sleuth provides a SpringAwareManagedChannelBuilder that can be
customized through the Spring application context and injected by gRPC clients.
This builder must be used when creating ManagedChannel instances.

Sleuth creates a TracingManagedChannelBuilderCustomizer which inject Brave’s client interceptor into
the SpringAwareManagedChannelBuilder.

Variant 2

Grpc Spring Boot Starter automatically detects the presence of Spring Cloud Sleuth and brave’s
instrumentation for gRPC and registers the necessary client and/or server tooling.

https://github.com/yidongnan/grpc-spring-boot-starter

8.15.10. Asynchronous Communication

@Async Annotated methods

In Spring Cloud Sleuth, we instrument async-related components so that the tracing information is
passed between threads. You can disable this behavior by setting the value of
spring.sleuth.async.enabled to false.

If you annotate your method with @Async, we automatically create a new Span with the following
characteristics:

• If the method is annotated with @SpanName, the value of the annotation is the Span’s name.

• If the method is not annotated with @SpanName, the Span name is the annotated method name.

• The span is tagged with the method’s class name and method name.

@Scheduled Annotated Methods

In Spring Cloud Sleuth, we instrument scheduled method execution so that the tracing information
is passed between threads. You can disable this behavior by setting the value of
spring.sleuth.scheduled.enabled to false.

If you annotate your method with @Scheduled, we automatically create a new span with the
following characteristics:

• The span name is the annotated method name.

• The span is tagged with the method’s class name and method name.

If you want to skip span creation for some @Scheduled annotated classes, you can set the
spring.sleuth.scheduled.skipPattern with a regular expression that matches the fully qualified
name of the @Scheduled annotated class. If you use spring-cloud-sleuth-stream and spring-cloud-
netflix-hystrix-stream together, a span is created for each Hystrix metrics and sent to Zipkin. This
behavior may be annoying. That’s why, by default,
spring.sleuth.scheduled.skipPattern=org.springframework.cloud.netflix.hystrix.stream.HystrixStr

eamTask.

Executor, ExecutorService, and ScheduledExecutorService

We provide LazyTraceExecutor, TraceableExecutorService, and TraceableScheduledExecutorService.
Those implementations create spans each time a new task is submitted, invoked, or scheduled.

The following example shows how to pass tracing information with TraceableExecutorService when
working with CompletableFuture:

CompletableFuture<Long> completableFuture = CompletableFuture.supplyAsync(() -> {
 // perform some logic
 return 1_000_000L;
}, new TraceableExecutorService(beanFactory, executorService,
 // 'calculateTax' explicitly names the span - this param is optional
 "calculateTax"));

Sleuth does not work with parallelStream() out of the box. If you want to have the
tracing information propagated through the stream, you have to use the approach
with supplyAsync(…), as shown earlier.

If there are beans that implement the Executor interface that you would like to exclude from span
creation, you can use the spring.sleuth.async.ignored-beans property where you can provide a list
of bean names.

Customization of Executors

Sometimes, you need to set up a custom instance of the AsyncExecutor. The following example
shows how to set up such a custom Executor:

@Configuration
@EnableAutoConfiguration
@EnableAsync
// add the infrastructure role to ensure that the bean gets auto-proxied
@Role(BeanDefinition.ROLE_INFRASTRUCTURE)
static class CustomExecutorConfig extends AsyncConfigurerSupport {

 @Autowired
 BeanFactory beanFactory;

 @Override
 public Executor getAsyncExecutor() {
 ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
 // CUSTOMIZE HERE
 executor.setCorePoolSize(7);
 executor.setMaxPoolSize(42);
 executor.setQueueCapacity(11);
 executor.setThreadNamePrefix("MyExecutor-");
 // DON'T FORGET TO INITIALIZE
 executor.initialize();
 return new LazyTraceExecutor(this.beanFactory, executor);
 }

}

To ensure that your configuration gets post processed, remember to add the
@Role(BeanDefinition.ROLE_INFRASTRUCTURE) on your @Configuration class

8.15.11. Messaging

Features from this section can be disabled by setting the spring.sleuth.messaging.enabled property
with value equal to false.

Spring Integration and Spring Cloud Stream

Spring Cloud Sleuth integrates with Spring Integration. It creates spans for publish and subscribe
events. To disable Spring Integration instrumentation, set spring.sleuth.integration.enabled to
false.

You can provide the spring.sleuth.integration.patterns pattern to explicitly provide the names of
channels that you want to include for tracing. By default, all channels but hystrixStreamOutput
channel are included.

When using the Executor to build a Spring Integration IntegrationFlow, you must
use the untraced version of the Executor. Decorating the Spring Integration
Executor Channel with TraceableExecutorService causes the spans to be
improperly closed.

If you want to customize the way tracing context is read from and written to message headers, it’s
enough for you to register beans of types:

• Propagation.Setter<MessageHeaderAccessor, String> - for writing headers to the message

• Propagation.Getter<MessageHeaderAccessor, String> - for reading headers from the message

Spring RabbitMq

We instrument the RabbitTemplate so that tracing headers get injected into the message.

To block this feature, set spring.sleuth.messaging.rabbit.enabled to false.

Spring Kafka

We instrument the Spring Kafka’s ProducerFactory and ConsumerFactory so that tracing headers get
injected into the created Spring Kafka’s Producer and Consumer.

To block this feature, set spring.sleuth.messaging.kafka.enabled to false.

Spring Kafka Streams

We instrument the KafkaStreams KafkaClientSupplier so that tracing headers get injected into the
Producer and Consumer`s. A `KafkaStreamsTracing bean allows for further instrumentation through
additional TransformerSupplier and ProcessorSupplier methods.

To block this feature, set spring.sleuth.messaging.kafka.streams.enabled to false.

Spring JMS

We instrument the JmsTemplate so that tracing headers get injected into the message. We also

https://projects.spring.io/spring-integration/

support @JmsListener annotated methods on the consumer side.

To block this feature, set spring.sleuth.messaging.jms.enabled to false.

 We don’t support baggage propagation for JMS

Spring Cloud AWS Messaging SQS

We instrument @SqsListener which is provided by org.springframework.cloud:spring-cloud-aws-
messaging so that tracing headers get extracted from the message and a trace gets put into the
context.

To block this feature, set spring.sleuth.messaging.sqs.enabled to false.

8.15.12. Zuul

We instrument the Zuul Ribbon integration by enriching the Ribbon requests with tracing
information. To disable Zuul support, set the spring.sleuth.zuul.enabled property to false.

8.15.13. Redis

We set tracing property to Lettcue ClientResources instance to enable Brave tracing built in Lettuce
. To disable Redis support, set the spring.sleuth.redis.enabled property to false.

8.15.14. Quartz

We instrument quartz jobs by adding Job/Trigger listeners to the Quartz Scheduler.

To turn off this feature, set the spring.sleuth.quartz.enabled property to false.

8.15.15. Project Reactor

For projects depending on Project Reactor such as Spring Cloud Gateway, we suggest turning the
spring.sleuth.reactor.decorate-on-each option to false. That way an increased performance gain
should be observed in comparison to the standard instrumentation mechanism. What this option
does is it will wrap decorate onLast operator instead of onEach which will result in creation of far
fewer objects. The downside of this is that when Project Reactor will change threads, the trace
propagation will continue without issues, however anything relying on the ThreadLocal such as e.g.
MDC entries can be buggy.

8.16. Configuration properties
To see the list of all Sleuth related configuration properties please check the Appendix page.

8.17. Running examples
You can see the running examples deployed in the Pivotal Web Services. Check them out at the
following links:

appendix.html
https://run.pivotal.io/

• Zipkin for apps presented in the samples to the top. First make a request to Service 1 and then
check out the trace in Zipkin.

• Zipkin for Brewery on PWS, its Github Code. Ensure that you’ve picked the lookback period of 7
days. If there are no traces, go to Presenting application and order some beers. Then check
Zipkin for traces.

https://docssleuth-zipkin-server.cfapps.io/
https://docssleuth-service1.cfapps.io/start
https://docsbrewing-zipkin-server.cfapps.io/
https://github.com/spring-cloud-samples/brewery
https://docsbrewing-presenting.cfapps.io/

Chapter 9. Spring Cloud Consul
Hoxton.SR5

This project provides Consul integrations for Spring Boot apps through autoconfiguration and
binding to the Spring Environment and other Spring programming model idioms. With a few
simple annotations you can quickly enable and configure the common patterns inside your
application and build large distributed systems with Consul based components. The patterns
provided include Service Discovery, Control Bus and Configuration. Intelligent Routing (Zuul) and
Client Side Load Balancing (Ribbon), Circuit Breaker (Hystrix) are provided by integration with
Spring Cloud Netflix.

9.1. Install Consul
Please see the installation documentation for instructions on how to install Consul.

9.2. Consul Agent
A Consul Agent client must be available to all Spring Cloud Consul applications. By default, the
Agent client is expected to be at localhost:8500. See the Agent documentation for specifics on how
to start an Agent client and how to connect to a cluster of Consul Agent Servers. For development,
after you have installed consul, you may start a Consul Agent using the following command:

./src/main/bash/local_run_consul.sh

This will start an agent in server mode on port 8500, with the ui available at localhost:8500

9.3. Service Discovery with Consul
Service Discovery is one of the key tenets of a microservice based architecture. Trying to hand
configure each client or some form of convention can be very difficult to do and can be very brittle.
Consul provides Service Discovery services via an HTTP API and DNS. Spring Cloud Consul
leverages the HTTP API for service registration and discovery. This does not prevent non-Spring
Cloud applications from leveraging the DNS interface. Consul Agents servers are run in a cluster
that communicates via a gossip protocol and uses the Raft consensus protocol.

9.3.1. How to activate

To activate Consul Service Discovery use the starter with group org.springframework.cloud and
artifact id spring-cloud-starter-consul-discovery. See the Spring Cloud Project page for details on
setting up your build system with the current Spring Cloud Release Train.

9.3.2. Registering with Consul

When a client registers with Consul, it provides meta-data about itself such as host and port, id,
name and tags. An HTTP Check is created by default that Consul hits the /health endpoint every 10

https://www.consul.io/intro/getting-started/install.html
https://consul.io/docs/agent/basics.html
http://localhost:8500
https://www.consul.io/docs/agent/http.html
https://www.consul.io/docs/agent/dns.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/consensus.html
https://projects.spring.io/spring-cloud/
https://www.consul.io/docs/agent/checks.html

seconds. If the health check fails, the service instance is marked as critical.

Example Consul client:

@SpringBootApplication
@RestController
public class Application {

 @RequestMapping("/")
 public String home() {
 return "Hello world";
 }

 public static void main(String[] args) {
 new SpringApplicationBuilder(Application.class).web(true).run(args);
 }

}

(i.e. utterly normal Spring Boot app). If the Consul client is located somewhere other than
localhost:8500, the configuration is required to locate the client. Example:

application.yml

spring:
 cloud:
 consul:
 host: localhost
 port: 8500

If you use Spring Cloud Consul Config, the above values will need to be placed in
bootstrap.yml instead of application.yml.

The default service name, instance id and port, taken from the Environment, are
${spring.application.name}, the Spring Context ID and ${server.port} respectively.

To disable the Consul Discovery Client you can set spring.cloud.consul.discovery.enabled to false.
Consul Discovery Client will also be disabled when spring.cloud.discovery.enabled is set to false.

To disable the service registration you can set spring.cloud.consul.discovery.register to false.

Registering Management as a Separate Service

When management server port is set to something different than the application port, by setting
management.server.port property, management service will be registered as a separate service than
the application service. For example:

application.yml

spring:
 application:
 name: myApp
management:
 server:
 port: 4452

Above configuration will register following 2 services:

• Application Service:

ID: myApp
Name: myApp

• Management Service:

ID: myApp-management
Name: myApp-management

Management service will inherit its instanceId and serviceName from the application service. For
example:

application.yml

spring:
 application:
 name: myApp
management:
 server:
 port: 4452
spring:
 cloud:
 consul:
 discovery:
 instance-id: custom-service-id
 serviceName: myprefix-${spring.application.name}

Above configuration will register following 2 services:

• Application Service:

ID: custom-service-id
Name: myprefix-myApp

• Management Service:

ID: custom-service-id-management
Name: myprefix-myApp-management

Further customization is possible via following properties:

/** Port to register the management service under (defaults to management port) */
spring.cloud.consul.discovery.management-port

/** Suffix to use when registering management service (defaults to "management" */
spring.cloud.consul.discovery.management-suffix

/** Tags to use when registering management service (defaults to "management" */
spring.cloud.consul.discovery.management-tags

9.3.3. HTTP Health Check

The health check for a Consul instance defaults to "/health", which is the default locations of a
useful endpoint in a Spring Boot Actuator application. You need to change these, even for an
Actuator application if you use a non-default context path or servlet path (e.g.
server.servletPath=/foo) or management endpoint path (e.g. management.server.servlet.context-
path=/admin). The interval that Consul uses to check the health endpoint may also be configured.
"10s" and "1m" represent 10 seconds and 1 minute respectively. Example:

application.yml

spring:
 cloud:
 consul:
 discovery:
 healthCheckPath: ${management.server.servlet.context-path}/health
 healthCheckInterval: 15s

You can disable the health check by setting management.health.consul.enabled=false.

Metadata and Consul tags

Consul does not yet support metadata on services. Spring Cloud’s ServiceInstance has a Map<String,
String> metadata field. Spring Cloud Consul uses Consul tags to approximate metadata until Consul
officially supports metadata. Tags with the form key=value will be split and used as a Map key and
value respectively. Tags without the equal = sign, will be used as both the key and value.

application.yml

spring:
 cloud:
 consul:
 discovery:
 tags: foo=bar, baz

The above configuration will result in a map with foo→bar and baz→baz.

Generated Metadata

The Consul Auto Registration will generate a few entries automatically.

Table 4. Auto Generated Metadata

Key Value

'group' Property
spring.cloud.consul.discovery.instance-group.
This values is only generated if instance-group is
not empty.'

'secure' True if property
spring.cloud.consul.discovery.scheme equals
'https', otherwise false.

Property
spring.cloud.consul.discovery.default-zone-

metadata-name, defaults to 'zone'

Property
spring.cloud.consul.discovery.instance-zone.
This values is only generated if instance-zone is
not empty.'

Official Consul Metadata

Consul added official support for a meta field that is a Map<String, String>. Spring Cloud Consul has
added spring.cloud.consul.discovery.metadata and spring.cloud.consul.discovery.management-

metadata properties to support it.

By default, the ServiceInstance.getMetadata() method from Spring Cloud
Commons will continue to populated by parsing the
spring.cloud.consul.discovery.tags property for backwards compatibility. To
change this behaviour set spring.cloud.consul.discovery.tags-as-metadata=false
and the metadata will be populated from spring.cloud.consul.discovery.metadata.
In a future version, parsing the tags property will be removed.

Making the Consul Instance ID Unique

By default a consul instance is registered with an ID that is equal to its Spring Application Context
ID. By default, the Spring Application Context ID is
${spring.application.name}:comma,separated,profiles:${server.port}. For most cases, this will
allow multiple instances of one service to run on one machine. If further uniqueness is required,

Using Spring Cloud you can override this by providing a unique identifier in
spring.cloud.consul.discovery.instanceId. For example:

application.yml

spring:
 cloud:
 consul:
 discovery:
 instanceId:
${spring.application.name}:${vcap.application.instance_id:${spring.application.instanc
e_id:${random.value}}}

With this metadata, and multiple service instances deployed on localhost, the random value will
kick in there to make the instance unique. In Cloudfoundry the vcap.application.instance_id will
be populated automatically in a Spring Boot application, so the random value will not be needed.

Applying Headers to Health Check Requests

Headers can be applied to health check requests. For example, if you’re trying to register a Spring
Cloud Config server that uses Vault Backend:

application.yml

spring:
 cloud:
 consul:
 discovery:
 health-check-headers:
 X-Config-Token: 6442e58b-d1ea-182e-cfa5-cf9cddef0722

According to the HTTP standard, each header can have more than one values, in which case, an
array can be supplied:

application.yml

spring:
 cloud:
 consul:
 discovery:
 health-check-headers:
 X-Config-Token:
 - "6442e58b-d1ea-182e-cfa5-cf9cddef0722"
 - "Some other value"

9.3.4. Looking up services

https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
https://github.com/spring-cloud/spring-cloud-config/blob/master/docs/src/main/asciidoc/spring-cloud-config.adoc#vault-backend

Using Load-balancer

Spring Cloud has support for Feign (a REST client builder) and also Spring RestTemplate for looking
up services using the logical service names/ids instead of physical URLs. Both Feign and the
discovery-aware RestTemplate utilize Ribbon for client-side load balancing.

If you want to access service STORES using the RestTemplate simply declare:

@LoadBalanced
@Bean
public RestTemplate loadbalancedRestTemplate() {
 return new RestTemplate();
}

and use it like this (notice how we use the STORES service name/id from Consul instead of a fully
qualified domainname):

@Autowired
RestTemplate restTemplate;

public String getFirstProduct() {
 return this.restTemplate.getForObject("https://STORES/products/1", String.class);
}

If you have Consul clusters in multiple datacenters and you want to access a service in another
datacenter a service name/id alone is not enough. In that case you use property
spring.cloud.consul.discovery.datacenters.STORES=dc-west where STORES is the service name/id and
dc-west is the datacenter where the STORES service lives.

 Spring Cloud now also offers support for Spring Cloud LoadBalancer.

As Spring Cloud Ribbon is now under maintenance, we suggest you set
spring.cloud.loadbalancer.ribbon.enabled to false, so that BlockingLoadBalancerClient is used
instead of RibbonLoadBalancerClient.

Using the DiscoveryClient

You can also use the org.springframework.cloud.client.discovery.DiscoveryClient which provides a
simple API for discovery clients that is not specific to Netflix, e.g.

https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-feign
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-ribbon
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-ribbon
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#spring-cloud-ribbon
https://cloud.spring.io/spring-cloud-commons/reference/html/#_spring_resttemplate_as_a_load_balancer_client

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
 List<ServiceInstance> list = discoveryClient.getInstances("STORES");
 if (list != null && list.size() > 0) {
 return list.get(0).getUri();
 }
 return null;
}

9.3.5. Consul Catalog Watch

The Consul Catalog Watch takes advantage of the ability of consul to watch services. The Catalog
Watch makes a blocking Consul HTTP API call to determine if any services have changed. If there is
new service data a Heartbeat Event is published.

To change the frequency of when the Config Watch is called change
spring.cloud.consul.config.discovery.catalog-services-watch-delay. The default value is 1000,
which is in milliseconds. The delay is the amount of time after the end of the previous invocation
and the start of the next.

To disable the Catalog Watch set
spring.cloud.consul.discovery.catalogServicesWatch.enabled=false.

The watch uses a Spring TaskScheduler to schedule the call to consul. By default it is a
ThreadPoolTaskScheduler with a poolSize of 1. To change the TaskScheduler, create a bean of type
TaskScheduler named with the
ConsulDiscoveryClientConfiguration.CATALOG_WATCH_TASK_SCHEDULER_NAME constant.

9.4. Distributed Configuration with Consul
Consul provides a Key/Value Store for storing configuration and other metadata. Spring Cloud
Consul Config is an alternative to the Config Server and Client. Configuration is loaded into the
Spring Environment during the special "bootstrap" phase. Configuration is stored in the /config
folder by default. Multiple PropertySource instances are created based on the application’s name
and the active profiles that mimicks the Spring Cloud Config order of resolving properties. For
example, an application with the name "testApp" and with the "dev" profile will have the following
property sources created:

config/testApp,dev/
config/testApp/
config/application,dev/
config/application/

The most specific property source is at the top, with the least specific at the bottom. Properties in
the config/application folder are applicable to all applications using consul for configuration.

https://www.consul.io/docs/agent/watches.html#services
https://consul.io/docs/agent/http/kv.html
https://github.com/spring-cloud/spring-cloud-config

Properties in the config/testApp folder are only available to the instances of the service named
"testApp".

Configuration is currently read on startup of the application. Sending a HTTP POST to /refresh will
cause the configuration to be reloaded. Config Watch will also automatically detect changes and
reload the application context.

9.4.1. How to activate

To get started with Consul Configuration use the starter with group org.springframework.cloud and
artifact id spring-cloud-starter-consul-config. See the Spring Cloud Project page for details on
setting up your build system with the current Spring Cloud Release Train.

This will enable auto-configuration that will setup Spring Cloud Consul Config.

9.4.2. Customizing

Consul Config may be customized using the following properties:

bootstrap.yml

spring:
 cloud:
 consul:
 config:
 enabled: true
 prefix: configuration
 defaultContext: apps
 profileSeparator: '::'

• enabled setting this value to "false" disables Consul Config

• prefix sets the base folder for configuration values

• defaultContext sets the folder name used by all applications

• profileSeparator sets the value of the separator used to separate the profile name in property
sources with profiles

9.4.3. Config Watch

The Consul Config Watch takes advantage of the ability of consul to watch a key prefix. The Config
Watch makes a blocking Consul HTTP API call to determine if any relevant configuration data has
changed for the current application. If there is new configuration data a Refresh Event is published.
This is equivalent to calling the /refresh actuator endpoint.

To change the frequency of when the Config Watch is called change
spring.cloud.consul.config.watch.delay. The default value is 1000, which is in milliseconds. The
delay is the amount of time after the end of the previous invocation and the start of the next.

To disable the Config Watch set spring.cloud.consul.config.watch.enabled=false.

https://projects.spring.io/spring-cloud/
https://www.consul.io/docs/agent/watches.html#keyprefix

The watch uses a Spring TaskScheduler to schedule the call to consul. By default it is a
ThreadPoolTaskScheduler with a poolSize of 1. To change the TaskScheduler, create a bean of type
TaskScheduler named with the ConsulConfigAutoConfiguration.CONFIG_WATCH_TASK_SCHEDULER_NAME

constant.

9.4.4. YAML or Properties with Config

It may be more convenient to store a blob of properties in YAML or Properties format as opposed to
individual key/value pairs. Set the spring.cloud.consul.config.format property to YAML or
PROPERTIES. For example to use YAML:

bootstrap.yml

spring:
 cloud:
 consul:
 config:
 format: YAML

YAML must be set in the appropriate data key in consul. Using the defaults above the keys would
look like:

config/testApp,dev/data
config/testApp/data
config/application,dev/data
config/application/data

You could store a YAML document in any of the keys listed above.

You can change the data key using spring.cloud.consul.config.data-key.

9.4.5. git2consul with Config

git2consul is a Consul community project that loads files from a git repository to individual keys
into Consul. By default the names of the keys are names of the files. YAML and Properties files are
supported with file extensions of .yml and .properties respectively. Set the
spring.cloud.consul.config.format property to FILES. For example:

bootstrap.yml

spring:
 cloud:
 consul:
 config:
 format: FILES

Given the following keys in /config, the development profile and an application name of foo:

.gitignore
application.yml
bar.properties
foo-development.properties
foo-production.yml
foo.properties
master.ref

the following property sources would be created:

config/foo-development.properties
config/foo.properties
config/application.yml

The value of each key needs to be a properly formatted YAML or Properties file.

9.4.6. Fail Fast

It may be convenient in certain circumstances (like local development or certain test scenarios) to
not fail if consul isn’t available for configuration. Setting
spring.cloud.consul.config.failFast=false in bootstrap.yml will cause the configuration module to
log a warning rather than throw an exception. This will allow the application to continue startup
normally.

9.5. Consul Retry
If you expect that the consul agent may occasionally be unavailable when your app starts, you can
ask it to keep trying after a failure. You need to add spring-retry and spring-boot-starter-aop to
your classpath. The default behaviour is to retry 6 times with an initial backoff interval of 1000ms
and an exponential multiplier of 1.1 for subsequent backoffs. You can configure these properties
(and others) using spring.cloud.consul.retry.* configuration properties. This works with both
Spring Cloud Consul Config and Discovery registration.

To take full control of the retry add a @Bean of type RetryOperationsInterceptor with
id "consulRetryInterceptor". Spring Retry has a RetryInterceptorBuilder that
makes it easy to create one.

9.6. Spring Cloud Bus with Consul

9.6.1. How to activate

To get started with the Consul Bus use the starter with group org.springframework.cloud and artifact
id spring-cloud-starter-consul-bus. See the Spring Cloud Project page for details on setting up your
build system with the current Spring Cloud Release Train.

See the Spring Cloud Bus documentation for the available actuator endpoints and howto send

https://projects.spring.io/spring-cloud/
https://cloud.spring.io/spring-cloud-bus/

custom messages.

9.7. Circuit Breaker with Hystrix
Applications can use the Hystrix Circuit Breaker provided by the Spring Cloud Netflix project by
including this starter in the projects pom.xml: spring-cloud-starter-hystrix. Hystrix doesn’t
depend on the Netflix Discovery Client. The @EnableHystrix annotation should be placed on a
configuration class (usually the main class). Then methods can be annotated with @HystrixCommand
to be protected by a circuit breaker. See the documentation for more details.

9.8. Hystrix metrics aggregation with Turbine and
Consul
Turbine (provided by the Spring Cloud Netflix project), aggregates multiple instances Hystrix
metrics streams, so the dashboard can display an aggregate view. Turbine uses the DiscoveryClient
interface to lookup relevant instances. To use Turbine with Spring Cloud Consul, configure the
Turbine application in a manner similar to the following examples:

pom.xml

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-netflix-turbine</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-consul-discovery</artifactId>
</dependency>

Notice that the Turbine dependency is not a starter. The turbine starter includes support for Netflix
Eureka.

application.yml

spring.application.name: turbine
applications: consulhystrixclient
turbine:
 aggregator:
 clusterConfig: ${applications}
 appConfig: ${applications}

The clusterConfig and appConfig sections must match, so it’s useful to put the comma-separated list
of service ID’s into a separate configuration property.

https://projects.spring.io/spring-cloud/spring-cloud.html#_circuit_breaker_hystrix_clients

Turbine.java

@EnableTurbine
@SpringBootApplication
public class Turbine {
 public static void main(String[] args) {
 SpringApplication.run(DemoturbinecommonsApplication.class, args);
 }
}

9.9. Configuration Properties
To see the list of all Consul related configuration properties please check the Appendix page.

appendix.html

Chapter 10. Spring Cloud Zookeeper
This project provides Zookeeper integrations for Spring Boot applications through
autoconfiguration and binding to the Spring Environment and other Spring programming model
idioms. With a few annotations, you can quickly enable and configure the common patterns inside
your application and build large distributed systems with Zookeeper based components. The
provided patterns include Service Discovery and Configuration. Integration with Spring Cloud
Netflix provides Intelligent Routing (Zuul), Client Side Load Balancing (Ribbon), and Circuit Breaker
(Hystrix).

10.1. Install Zookeeper
See the installation documentation for instructions on how to install Zookeeper.

Spring Cloud Zookeeper uses Apache Curator behind the scenes. While Zookeeper 3.5.x is still
considered "beta" by the Zookeeper development team, the reality is that it is used in production by
many users. However, Zookeeper 3.4.x is also used in production. Prior to Apache Curator 4.0, both
versions of Zookeeper were supported via two versions of Apache Curator. Starting with Curator
4.0 both versions of Zookeeper are supported via the same Curator libraries.

In case you are integrating with version 3.4 you need to change the Zookeeper dependency that
comes shipped with curator, and thus spring-cloud-zookeeper. To do so simply exclude that
dependency and add the 3.4.x version like shown below.

maven

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zookeeper-all</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.apache.zookeeper</groupId>
 <artifactId>zookeeper</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.apache.zookeeper</groupId>
 <artifactId>zookeeper</artifactId>
 <version>3.4.12</version>
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </exclusion>
 </exclusions>
</dependency>

https://zookeeper.apache.org/doc/current/zookeeperStarted.html

gradle

compile('org.springframework.cloud:spring-cloud-starter-zookeeper-all') {
 exclude group: 'org.apache.zookeeper', module: 'zookeeper'
}
compile('org.apache.zookeeper:zookeeper:3.4.12') {
 exclude group: 'org.slf4j', module: 'slf4j-log4j12'
}

10.2. Service Discovery with Zookeeper
Service Discovery is one of the key tenets of a microservice based architecture. Trying to hand-
configure each client or some form of convention can be difficult to do and can be brittle. Curator(A
Java library for Zookeeper) provides Service Discovery through a Service Discovery Extension.
Spring Cloud Zookeeper uses this extension for service registration and discovery.

10.2.1. Activating

Including a dependency on org.springframework.cloud:spring-cloud-starter-zookeeper-discovery
enables autoconfiguration that sets up Spring Cloud Zookeeper Discovery.

For web functionality, you still need to include org.springframework.boot:spring-
boot-starter-web.

When working with version 3.4 of Zookeeper you need to change the way you
include the dependency as described here.

10.2.2. Registering with Zookeeper

When a client registers with Zookeeper, it provides metadata (such as host and port, ID, and name)
about itself.

The following example shows a Zookeeper client:

https://curator.apache.org
https://curator.apache.org/curator-x-discovery/

@SpringBootApplication
@RestController
public class Application {

 @RequestMapping("/")
 public String home() {
 return "Hello world";
 }

 public static void main(String[] args) {
 new SpringApplicationBuilder(Application.class).web(true).run(args);
 }

}

 The preceding example is a normal Spring Boot application.

If Zookeeper is located somewhere other than localhost:2181, the configuration must provide the
location of the server, as shown in the following example:

application.yml

spring:
 cloud:
 zookeeper:
 connect-string: localhost:2181

If you use Spring Cloud Zookeeper Config, the values shown in the preceding
example need to be in bootstrap.yml instead of application.yml.

The default service name, instance ID, and port (taken from the Environment) are
${spring.application.name}, the Spring Context ID, and ${server.port}, respectively.

Having spring-cloud-starter-zookeeper-discovery on the classpath makes the app into both a
Zookeeper “service” (that is, it registers itself) and a “client” (that is, it can query Zookeeper to
locate other services).

If you would like to disable the Zookeeper Discovery Client, you can set
spring.cloud.zookeeper.discovery.enabled to false.

10.2.3. Using the DiscoveryClient

Spring Cloud has support for Feign (a REST client builder), Spring RestTemplate and Spring WebFlux,
using logical service names instead of physical URLs.

You can also use the org.springframework.cloud.client.discovery.DiscoveryClient, which provides a
simple API for discovery clients that is not specific to Netflix, as shown in the following example:

https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-feign
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/ascii
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/ascii
https://cloud.spring.io/spring-cloud-commons/reference/html/#loadbalanced-webclient

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
 List<ServiceInstance> list = discoveryClient.getInstances("STORES");
 if (list != null && list.size() > 0) {
 return list.get(0).getUri().toString();
 }
 return null;
}

10.3. Using Spring Cloud Zookeeper with Spring Cloud
Netflix Components
Spring Cloud Netflix supplies useful tools that work regardless of which DiscoveryClient

implementation you use. Feign, Turbine, Ribbon, and Zuul all work with Spring Cloud Zookeeper.

10.3.1. Ribbon with Zookeeper

Spring Cloud Zookeeper provides an implementation of Ribbon’s ServerList. When you use the
spring-cloud-starter-zookeeper-discovery, Ribbon is autoconfigured to use the ZookeeperServerList
by default.

10.4. Spring Cloud Zookeeper and Service Registry
Spring Cloud Zookeeper implements the ServiceRegistry interface, letting developers register
arbitrary services in a programmatic way.

The ServiceInstanceRegistration class offers a builder() method to create a Registration object that
can be used by the ServiceRegistry, as shown in the following example:

@Autowired
private ZookeeperServiceRegistry serviceRegistry;

public void registerThings() {
 ZookeeperRegistration registration = ServiceInstanceRegistration.builder()
 .defaultUriSpec()
 .address("anyUrl")
 .port(10)
 .name("/a/b/c/d/anotherservice")
 .build();
 this.serviceRegistry.register(registration);
}

10.4.1. Instance Status

Netflix Eureka supports having instances that are OUT_OF_SERVICE registered with the server. These
instances are not returned as active service instances. This is useful for behaviors such as
blue/green deployments. (Note that the Curator Service Discovery recipe does not support this
behavior.) Taking advantage of the flexible payload has let Spring Cloud Zookeeper implement
OUT_OF_SERVICE by updating some specific metadata and then filtering on that metadata in the
Ribbon ZookeeperServerList. The ZookeeperServerList filters out all non-null instance statuses that
do not equal UP. If the instance status field is empty, it is considered to be UP for backwards
compatibility. To change the status of an instance, make a POST with OUT_OF_SERVICE to the
ServiceRegistry instance status actuator endpoint, as shown in the following example:

$ http POST http://localhost:8081/service-registry status=OUT_OF_SERVICE

 The preceding example uses the http command from httpie.org.

10.5. Zookeeper Dependencies
The following topics cover how to work with Spring Cloud Zookeeper dependencies:

• Using the Zookeeper Dependencies

• Activating Zookeeper Dependencies

• Setting up Zookeeper Dependencies

• Configuring Spring Cloud Zookeeper Dependencies

10.5.1. Using the Zookeeper Dependencies

Spring Cloud Zookeeper gives you a possibility to provide dependencies of your application as
properties. As dependencies, you can understand other applications that are registered in
Zookeeper and which you would like to call through Feign (a REST client builder), Spring
RestTemplate and Spring WebFlux.

You can also use the Zookeeper Dependency Watchers functionality to control and monitor the state
of your dependencies.

10.5.2. Activating Zookeeper Dependencies

Including a dependency on org.springframework.cloud:spring-cloud-starter-zookeeper-discovery
enables autoconfiguration that sets up Spring Cloud Zookeeper Dependencies. Even if you provide
the dependencies in your properties, you can turn off the dependencies. To do so, set the
spring.cloud.zookeeper.dependency.enabled property to false (it defaults to true).

10.5.3. Setting up Zookeeper Dependencies

Consider the following example of dependency representation:

https://httpie.org
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-feign
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/ascii
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/ascii
https://cloud.spring.io/spring-cloud-commons/reference/html/#loadbalanced-webclient

application.yml

spring.application.name: yourServiceName
spring.cloud.zookeeper:
 dependencies:
 newsletter:
 path: /path/where/newsletter/has/registered/in/zookeeper
 loadBalancerType: ROUND_ROBIN
 contentTypeTemplate: application/vnd.newsletter.$version+json
 version: v1
 headers:
 header1:
 - value1
 header2:
 - value2
 required: false
 stubs: org.springframework:foo:stubs
 mailing:
 path: /path/where/mailing/has/registered/in/zookeeper
 loadBalancerType: ROUND_ROBIN
 contentTypeTemplate: application/vnd.mailing.$version+json
 version: v1
 required: true

The next few sections go through each part of the dependency one by one. The root property name
is spring.cloud.zookeeper.dependencies.

Aliases

Below the root property you have to represent each dependency as an alias. This is due to the
constraints of Ribbon, which requires that the application ID be placed in the URL. Consequently,
you cannot pass any complex path, suchas /myApp/myRoute/name). The alias is the name you use
instead of the serviceId for DiscoveryClient, Feign, or RestTemplate.

In the previous examples, the aliases are newsletter and mailing. The following example shows
Feign usage with a newsletter alias:

@FeignClient("newsletter")
public interface NewsletterService {
 @RequestMapping(method = RequestMethod.GET, value = "/newsletter")
 String getNewsletters();
}

Path

The path is represented by the path YAML property and is the path under which the dependency is
registered under Zookeeper. As described in the previous section, Ribbon operates on URLs. As a
result, this path is not compliant with its requirement. That is why Spring Cloud Zookeeper maps
the alias to the proper path.

Load Balancer Type

The load balancer type is represented by loadBalancerType YAML property.

If you know what kind of load-balancing strategy has to be applied when calling this particular
dependency, you can provide it in the YAML file, and it is automatically applied. You can choose one
of the following load balancing strategies:

• STICKY: Once chosen, the instance is always called.

• RANDOM: Picks an instance randomly.

• ROUND_ROBIN: Iterates over instances over and over again.

Content-Type Template and Version

The Content-Type template and version are represented by the contentTypeTemplate and version
YAML properties.

If you version your API in the Content-Type header, you do not want to add this header to each of
your requests. Also, if you want to call a new version of the API, you do not want to roam around
your code to bump up the API version. That is why you can provide a contentTypeTemplate with a
special $version placeholder. That placeholder will be filled by the value of the version YAML
property. Consider the following example of a contentTypeTemplate:

application/vnd.newsletter.$version+json

Further consider the following version:

v1

The combination of contentTypeTemplate and version results in the creation of a Content-Type
header for each request, as follows:

application/vnd.newsletter.v1+json

Default Headers

Default headers are represented by the headers map in YAML.

Sometimes, each call to a dependency requires setting up of some default headers. To not do that in
code, you can set them up in the YAML file, as shown in the following example headers section:

headers:
 Accept:
 - text/html
 - application/xhtml+xml
 Cache-Control:
 - no-cache

That headers section results in adding the Accept and Cache-Control headers with appropriate list of
values in your HTTP request.

Required Dependencies

Required dependencies are represented by required property in YAML.

If one of your dependencies is required to be up when your application boots, you can set the
required: true property in the YAML file.

If your application cannot localize the required dependency during boot time, it throws an
exception, and the Spring Context fails to set up. In other words, your application cannot start if the
required dependency is not registered in Zookeeper.

You can read more about Spring Cloud Zookeeper Presence Checker later in this document.

Stubs

You can provide a colon-separated path to the JAR containing stubs of the dependency, as shown in
the following example:

stubs: org.springframework:myApp:stubs

where:

• org.springframework is the groupId.

• myApp is the artifactId.

• stubs is the classifier. (Note that stubs is the default value.)

Because stubs is the default classifier, the preceding example is equal to the following example:

stubs: org.springframework:myApp

10.5.4. Configuring Spring Cloud Zookeeper Dependencies

You can set the following properties to enable or disable parts of Zookeeper Dependencies
functionalities:

• spring.cloud.zookeeper.dependencies: If you do not set this property, you cannot use Zookeeper
Dependencies.

• spring.cloud.zookeeper.dependency.ribbon.enabled (enabled by default): Ribbon requires either
explicit global configuration or a particular one for a dependency. By turning on this property,

runtime load balancing strategy resolution is possible, and you can use the loadBalancerType
section of the Zookeeper Dependencies. The configuration that needs this property has an
implementation of LoadBalancerClient that delegates to the ILoadBalancer presented in the next
bullet.

• spring.cloud.zookeeper.dependency.ribbon.loadbalancer (enabled by default): Thanks to this
property, the custom ILoadBalancer knows that the part of the URI passed to Ribbon might
actually be the alias that has to be resolved to a proper path in Zookeeper. Without this
property, you cannot register applications under nested paths.

• spring.cloud.zookeeper.dependency.headers.enabled (enabled by default): This property registers
a RibbonClient that automatically appends appropriate headers and content types with their
versions, as presented in the Dependency configuration. Without this setting, those two
parameters do not work.

• spring.cloud.zookeeper.dependency.resttemplate.enabled (enabled by default): When enabled,
this property modifies the request headers of a @LoadBalanced-annotated RestTemplate such that
it passes headers and content type with the version set in dependency configuration. Without
this setting, those two parameters do not work.

10.6. Spring Cloud Zookeeper Dependency Watcher
The Dependency Watcher mechanism lets you register listeners to your dependencies. The
functionality is, in fact, an implementation of the Observator pattern. When a dependency changes,
its state (to either UP or DOWN), some custom logic can be applied.

10.6.1. Activating

Spring Cloud Zookeeper Dependencies functionality needs to be enabled for you to use the
Dependency Watcher mechanism.

10.6.2. Registering a Listener

To register a listener, you must implement an interface called
org.springframework.cloud.zookeeper.discovery.watcher.DependencyWatcherListener and register it
as a bean. The interface gives you one method:

void stateChanged(String dependencyName, DependencyState newState);

If you want to register a listener for a particular dependency, the dependencyName would be the
discriminator for your concrete implementation. newState provides you with information about
whether your dependency has changed to CONNECTED or DISCONNECTED.

10.6.3. Using the Presence Checker

Bound with the Dependency Watcher is the functionality called Presence Checker. It lets you
provide custom behavior when your application boots, to react according to the state of your
dependencies.

The default implementation of the abstract
org.springframework.cloud.zookeeper.discovery.watcher.presence.DependencyPresenceOnStartupVerif

ier class is the
org.springframework.cloud.zookeeper.discovery.watcher.presence.DefaultDependencyPresenceOnStart

upVerifier, which works in the following way.

1. If the dependency is marked us required and is not in Zookeeper, when your application boots,
it throws an exception and shuts down.

2. If the dependency is not required, the
org.springframework.cloud.zookeeper.discovery.watcher.presence.LogMissingDependencyChecker

logs that the dependency is missing at the WARN level.

Because the DefaultDependencyPresenceOnStartupVerifier is registered only when there is no bean of
type DependencyPresenceOnStartupVerifier, this functionality can be overridden.

10.7. Distributed Configuration with Zookeeper
Zookeeper provides a hierarchical namespace that lets clients store arbitrary data, such as
configuration data. Spring Cloud Zookeeper Config is an alternative to the Config Server and Client.
Configuration is loaded into the Spring Environment during the special “bootstrap” phase.
Configuration is stored in the /config namespace by default. Multiple PropertySource instances are
created, based on the application’s name and the active profiles, to mimic the Spring Cloud Config
order of resolving properties. For example, an application with a name of testApp and with the dev
profile has the following property sources created for it:

• config/testApp,dev

• config/testApp

• config/application,dev

• config/application

The most specific property source is at the top, with the least specific at the bottom. Properties in
the config/application namespace apply to all applications that use zookeeper for configuration.
Properties in the config/testApp namespace are available only to the instances of the service named
testApp.

Configuration is currently read on startup of the application. Sending a HTTP POST request to
/refresh causes the configuration to be reloaded. Watching the configuration namespace (which
Zookeeper supports) is not currently implemented.

10.7.1. Activating

Including a dependency on org.springframework.cloud:spring-cloud-starter-zookeeper-config

enables autoconfiguration that sets up Spring Cloud Zookeeper Config.

When working with version 3.4 of Zookeeper you need to change the way you
include the dependency as described here.

https://zookeeper.apache.org/doc/current/zookeeperOver.html#sc_dataModelNameSpace
https://github.com/spring-cloud/spring-cloud-config

10.7.2. Customizing

Zookeeper Config may be customized by setting the following properties:

bootstrap.yml

spring:
 cloud:
 zookeeper:
 config:
 enabled: true
 root: configuration
 defaultContext: apps
 profileSeparator: '::'

• enabled: Setting this value to false disables Zookeeper Config.

• root: Sets the base namespace for configuration values.

• defaultContext: Sets the name used by all applications.

• profileSeparator: Sets the value of the separator used to separate the profile name in property
sources with profiles.

10.7.3. Access Control Lists (ACLs)

You can add authentication information for Zookeeper ACLs by calling the addAuthInfo method of a
CuratorFramework bean. One way to accomplish this is to provide your own CuratorFramework bean,
as shown in the following example:

@BoostrapConfiguration
public class CustomCuratorFrameworkConfig {

 @Bean
 public CuratorFramework curatorFramework() {
 CuratorFramework curator = new CuratorFramework();
 curator.addAuthInfo("digest", "user:password".getBytes());
 return curator;
 }

}

Consult the ZookeeperAutoConfiguration class to see how the CuratorFramework bean’s default
configuration.

Alternatively, you can add your credentials from a class that depends on the existing
CuratorFramework bean, as shown in the following example:

https://github.com/spring-cloud/spring-cloud-zookeeper/blob/master/spring-cloud-zookeeper-core/src/main/java/org/springframework/cloud/zookeeper/ZookeeperAutoConfiguration.java

@BoostrapConfiguration
public class DefaultCuratorFrameworkConfig {

 public ZookeeperConfig(CuratorFramework curator) {
 curator.addAuthInfo("digest", "user:password".getBytes());
 }

}

The creation of this bean must occur during the boostrapping phase. You can register configuration
classes to run during this phase by annotating them with @BootstrapConfiguration and including
them in a comma-separated list that you set as the value of the
org.springframework.cloud.bootstrap.BootstrapConfiguration property in the resources/META-

INF/spring.factories file, as shown in the following example:

resources/META-INF/spring.factories

org.springframework.cloud.bootstrap.BootstrapConfiguration=\
my.project.CustomCuratorFrameworkConfig,\
my.project.DefaultCuratorFrameworkConfig

Chapter 11. Spring Boot Cloud CLI
Spring Boot CLI provides Spring Boot command line features for Spring Cloud. You can write
Groovy scripts to run Spring Cloud component applications (e.g. @EnableEurekaServer). You can also
easily do things like encryption and decryption to support Spring Cloud Config clients with secret
configuration values. With the Launcher CLI you can launch services like Eureka, Zipkin, Config
Server conveniently all at once from the command line (very useful at development time).

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

11.1. Installation
To install, make sure you have Spring Boot CLI (2.0.0 or better):

$ spring version
Spring CLI v2.2.0.BUILD-SNAPSHOT

E.g. for SDKMan users

$ sdk install springboot 2.2.0.BUILD-SNAPSHOT
$ sdk use springboot 2.2.0.BUILD-SNAPSHOT

and install the Spring Cloud plugin

$ mvn install
$ spring install org.springframework.cloud:spring-cloud-cli:2.2.0.BUILD-SNAPSHOT

Prerequisites: to use the encryption and decryption features you need the full-
strength JCE installed in your JVM (it’s not there by default). You can download the
"Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files"
from Oracle, and follow instructions for installation (essentially replace the 2
policy files in the JRE lib/security directory with the ones that you downloaded).

11.2. Running Spring Cloud Services in Development
The Launcher CLI can be used to run common services like Eureka, Config Server etc. from the
command line. To list the available services you can do spring cloud --list, and to launch a default
set of services just spring cloud. To choose the services to deploy, just list them on the command
line, e.g.

https://projects.spring.io/spring-boot
https://github.com/spring-cloud
https://github.com/spring-cloud/spring-cloud-cli/tree/master/docs/src/main/asciidoc
https://github.com/spring-projects/spring-boot

$ spring cloud eureka configserver h2 kafka stubrunner zipkin

Summary of supported deployables:

Service Name Address Description

eureka Eureka Server localhost:8761 Eureka server for
service registration and
discovery. All the other
services show up in its
catalog by default.

configserver Config Server localhost:8888 Spring Cloud Config
Server running in the
"native" profile and
serving configuration
from the local directory
./launcher

h2 H2 Database localhost:9095
(console),
jdbc:h2:tcp://localhost:9
096/{data}

Relation database
service. Use a file path
for {data} (e.g.
./target/test) when
you connect.
Remember that you can
add ;MODE=MYSQL or
;MODE=POSTGRESQL to
connect with
compatibility to other
server types.

kafka Kafka Broker localhost:9091 (actuator
endpoints),
localhost:9092

hystrixdashboard Hystrix Dashboard localhost:7979 Any Spring Cloud app
that declares Hystrix
circuit breakers
publishes metrics on
/hystrix.stream. Type
that address into the
dashboard to visualize
all the metrics,

dataflow Dataflow Server localhost:9393 Spring Cloud Dataflow
server with UI at
/admin-ui. Connect the
Dataflow shell to target
at root path.

http://localhost:8761
http://localhost:8888
http://localhost:9095
http://localhost:9091
http://localhost:7979
http://localhost:9393

Service Name Address Description

zipkin Zipkin Server localhost:9411 Zipkin Server with UI
for visualizing traces.
Stores span data in
memory and accepts
them via HTTP POST of
JSON data.

stubrunner Stub Runner Boot localhost:8750 Downloads WireMock
stubs, starts WireMock
and feeds the started
servers with stored
stubs. Pass
stubrunner.ids to pass
stub coordinates and
then go to
localhost:8750/stubs.

Each of these apps can be configured using a local YAML file with the same name (in the current
working directory or a subdirectory called "config" or in ~/.spring-cloud). E.g. in configserver.yml
you might want to do something like this to locate a local git repository for the backend:

configserver.yml

spring:
 profiles:
 active: git
 cloud:
 config:
 server:
 git:
 uri: file://${user.home}/dev/demo/config-repo

E.g. in Stub Runner app you could fetch stubs from your local .m2 in the following way.

stubrunner.yml

stubrunner:
 workOffline: true
 ids:
 - com.example:beer-api-producer:+:9876

11.2.1. Adding Additional Applications

Additional applications can be added to ./config/cloud.yml (not ./config.yml because that would
replace the defaults), e.g. with

http://localhost:9411
http://localhost:8750
http://localhost:8750/stubs
http://localhost:8750/stubs
http://localhost:8750/stubs

config/cloud.yml

spring:
 cloud:
 launcher:
 deployables:
 source:
 coordinates: maven://com.example:source:0.0.1-SNAPSHOT
 port: 7000
 sink:
 coordinates: maven://com.example:sink:0.0.1-SNAPSHOT
 port: 7001

when you list the apps:

$ spring cloud --list
source sink configserver dataflow eureka h2 hystrixdashboard kafka stubrunner zipkin

(notice the additional apps at the start of the list).

11.3. Writing Groovy Scripts and Running Applications
Spring Cloud CLI has support for most of the Spring Cloud declarative features, such as the @Enable*
class of annotations. For example, here is a fully functional Eureka server

app.groovy

@EnableEurekaServer
class Eureka {}

which you can run from the command line like this

$ spring run app.groovy

To include additional dependencies, often it suffices just to add the appropriate feature-enabling
annotation, e.g. @EnableConfigServer, @EnableOAuth2Sso or @EnableEurekaClient. To manually include
a dependency you can use a @Grab with the special "Spring Boot" short style artifact co-ordinates, i.e.
with just the artifact ID (no need for group or version information), e.g. to set up a client app to
listen on AMQP for management events from the Spring CLoud Bus:

app.groovy

@Grab('spring-cloud-starter-bus-amqp')
@RestController
class Service {
 @RequestMapping('/')
 def home() { [message: 'Hello'] }
}

11.4. Encryption and Decryption
The Spring Cloud CLI comes with an "encrypt" and a "decrypt" command. Both accept arguments in
the same form with a key specified as a mandatory "--key", e.g.

$ spring encrypt mysecret --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
$ spring decrypt --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
mysecret

To use a key in a file (e.g. an RSA public key for encyption) prepend the key value with "@" and
provide the file path, e.g.

$ spring encrypt mysecret --key @${HOME}/.ssh/id_rsa.pub
AQAjPgt3eFZQXwt8tsHAVv/QHiY5sI2dRcR+...

Chapter 12. Spring Cloud Security
Spring Cloud Security offers a set of primitives for building secure applications and services with
minimum fuss. A declarative model which can be heavily configured externally (or centrally) lends
itself to the implementation of large systems of co-operating, remote components, usually with a
central indentity management service. It is also extremely easy to use in a service platform like
Cloud Foundry. Building on Spring Boot and Spring Security OAuth2 we can quickly create systems
that implement common patterns like single sign on, token relay and token exchange.

In a future major release, the functionality contained in this project will move to
the respective projects.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

12.1. Quickstart

12.1.1. OAuth2 Single Sign On

Here’s a Spring Cloud "Hello World" app with HTTP Basic authentication and a single user account:

app.groovy

@Grab('spring-boot-starter-security')
@Controller
class Application {

 @RequestMapping('/')
 String home() {
 'Hello World'
 }

}

You can run it with spring run app.groovy and watch the logs for the password (username is "user").
So far this is just the default for a Spring Boot app.

Here’s a Spring Cloud app with OAuth2 SSO:

https://github.com/spring-cloud/spring-cloud-security/tree/master/src/main/asciidoc

app.groovy

@Controller
@EnableOAuth2Sso
class Application {

 @RequestMapping('/')
 String home() {
 'Hello World'
 }

}

Spot the difference? This app will actually behave exactly the same as the previous one, because it
doesn’t know it’s OAuth2 credentals yet.

You can register an app in github quite easily, so try that if you want a production app on your own
domain. If you are happy to test on localhost:8080, then set up these properties in your application
configuration:

application.yml

security:
 oauth2:
 client:
 clientId: bd1c0a783ccdd1c9b9e4
 clientSecret: 1a9030fbca47a5b2c28e92f19050bb77824b5ad1
 accessTokenUri: https://github.com/login/oauth/access_token
 userAuthorizationUri: https://github.com/login/oauth/authorize
 clientAuthenticationScheme: form
 resource:
 userInfoUri: https://api.github.com/user
 preferTokenInfo: false

run the app above and it will redirect to github for authorization. If you are already signed into
github you won’t even notice that it has authenticated. These credentials will only work if your app
is running on port 8080.

To limit the scope that the client asks for when it obtains an access token you can set
security.oauth2.client.scope (comma separated or an array in YAML). By default the scope is
empty and it is up to to Authorization Server to decide what the defaults should be, usually
depending on the settings in the client registration that it holds.

The examples above are all Groovy scripts. If you want to write the same code in
Java (or Groovy) you need to add Spring Security OAuth2 to the classpath (e.g. see
the sample here).

https://github.com/spring-cloud-samples/sso

12.1.2. OAuth2 Protected Resource

You want to protect an API resource with an OAuth2 token? Here’s a simple example (paired with
the client above):

app.groovy

@Grab('spring-cloud-starter-security')
@RestController
@EnableResourceServer
class Application {

 @RequestMapping('/')
 def home() {
 [message: 'Hello World']
 }

}

and

application.yml

security:
 oauth2:
 resource:
 userInfoUri: https://api.github.com/user
 preferTokenInfo: false

12.2. More Detail

12.2.1. Single Sign On

All of the OAuth2 SSO and resource server features moved to Spring Boot in
version 1.3. You can find documentation in the Spring Boot user guide.

12.2.2. Token Relay

A Token Relay is where an OAuth2 consumer acts as a Client and forwards the incoming token to
outgoing resource requests. The consumer can be a pure Client (like an SSO application) or a
Resource Server.

Client Token Relay in Spring Cloud Gateway

If your app also has a Spring Cloud Gateway embedded reverse proxy then you can ask it to
forward OAuth2 access tokens downstream to the services it is proxying. Thus the SSO app above
can be enhanced simply like this:

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://cloud.spring.io/spring-cloud-static/current/single/spring-cloud.html#_spring_cloud_gateway

App.java

@Autowired
private TokenRelayGatewayFilterFactory filterFactory;

@Bean
public RouteLocator customRouteLocator(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("resource", r -> r.path("/resource")
 .filters(f -> f.filter(filterFactory.apply()))
 .uri("http://localhost:9000"))
 .build();
}

or this

application.yaml

spring:
 cloud:
 gateway:
 routes:
 - id: resource
 uri: http://localhost:9000
 predicates:
 - Path=/resource
 filters:
 - TokenRelay=

and it will (in addition to logging the user in and grabbing a token) pass the authentication token
downstream to the services (in this case /resource).

To enable this for Spring Cloud Gateway add the following dependencies

• org.springframework.boot:spring-boot-starter-oauth2-client

• org.springframework.cloud:spring-cloud-starter-security

How does it work? The filter extracts an access token from the currently authenticated user, and
puts it in a request header for the downstream requests.

For a full working sample see this project.

The default implementation of ReactiveOAuth2AuthorizedClientService used by
TokenRelayGatewayFilterFactory uses an in-memory data store. You will need to
provide your own implementation ReactiveOAuth2AuthorizedClientService if you
need a more robust solution.

https://github.com/spring-cloud/spring-cloud-security/tree/master/src/main/java/org/springframework/cloud/security/oauth2/gateway/TokenRelayGatewayFilterFactory.java
https://github.com/spring-cloud-samples/sample-gateway-oauth2login

Client Token Relay

If your app is a user facing OAuth2 client (i.e. has declared @EnableOAuth2Sso or @EnableOAuth2Client)
then it has an OAuth2ClientContext in request scope from Spring Boot. You can create your own
OAuth2RestTemplate from this context and an autowired OAuth2ProtectedResourceDetails, and then
the context will always forward the access token downstream, also refreshing the access token
automatically if it expires. (These are features of Spring Security and Spring Boot.)

Spring Boot (1.4.1) does not create an OAuth2ProtectedResourceDetails

automatically if you are using client_credentials tokens. In that case you need to
create your own ClientCredentialsResourceDetails and configure it with
@ConfigurationProperties("security.oauth2.client").

Client Token Relay in Zuul Proxy

If your app also has a Spring Cloud Zuul embedded reverse proxy (using @EnableZuulProxy) then you
can ask it to forward OAuth2 access tokens downstream to the services it is proxying. Thus the SSO
app above can be enhanced simply like this:

app.groovy

@Controller
@EnableOAuth2Sso
@EnableZuulProxy
class Application {

}

and it will (in addition to logging the user in and grabbing a token) pass the authentication token
downstream to the /proxy/* services. If those services are implemented with @EnableResourceServer
then they will get a valid token in the correct header.

How does it work? The @EnableOAuth2Sso annotation pulls in spring-cloud-starter-security (which
you could do manually in a traditional app), and that in turn triggers some autoconfiguration for a
ZuulFilter, which itself is activated because Zuul is on the classpath (via @EnableZuulProxy). The
filter just extracts an access token from the currently authenticated user, and puts it in a request
header for the downstream requests.

Spring Boot does not create an OAuth2RestOperations automatically which is
needed for refresh_token. In that case you need to create your own
OAuth2RestOperations so OAuth2TokenRelayFilter can refresh the token if needed.

Resource Server Token Relay

If your app has @EnableResourceServer you might want to relay the incoming token downstream to
other services. If you use a RestTemplate to contact the downstream services then this is just a
matter of how to create the template with the right context.

If your service uses UserInfoTokenServices to authenticate incoming tokens (i.e. it is using the

https://cloud.spring.io/spring-cloud.html#netflix-zuul-reverse-proxy
https://github.com/spring-cloud/spring-cloud-security/tree/master/src/main/java/org/springframework/cloud/security/oauth2/proxy/OAuth2TokenRelayFilter.java

security.oauth2.user-info-uri configuration), then you can simply create an OAuth2RestTemplate
using an autowired OAuth2ClientContext (it will be populated by the authentication process before it
hits the backend code). Equivalently (with Spring Boot 1.4), you could inject a
UserInfoRestTemplateFactory and grab its OAuth2RestTemplate in your configuration. For example:

MyConfiguration.java

@Bean
public OAuth2RestTemplate restTemplate(UserInfoRestTemplateFactory factory) {
 return factory.getUserInfoRestTemplate();
}

This rest template will then have the same OAuth2ClientContext (request-scoped) that is used by the
authentication filter, so you can use it to send requests with the same access token.

If your app is not using UserInfoTokenServices but is still a client (i.e. it declares @EnableOAuth2Client
or @EnableOAuth2Sso), then with Spring Security Cloud any OAuth2RestOperations that the user
creates from an @Autowired OAuth2Context will also forward tokens. This feature is implemented by
default as an MVC handler interceptor, so it only works in Spring MVC. If you are not using MVC
you could use a custom filter or AOP interceptor wrapping an AccessTokenContextRelay to provide
the same feature.

Here’s a basic example showing the use of an autowired rest template created elsewhere ("foo.com"
is a Resource Server accepting the same tokens as the surrounding app):

MyController.java

@Autowired
private OAuth2RestOperations restTemplate;

@RequestMapping("/relay")
public String relay() {
 ResponseEntity<String> response =
 restTemplate.getForEntity("https://foo.com/bar", String.class);
 return "Success! (" + response.getBody() + ")";
}

If you don’t want to forward tokens (and that is a valid choice, since you might want to act as
yourself, rather than the client that sent you the token), then you only need to create your own
OAuth2Context instead of autowiring the default one.

Feign clients will also pick up an interceptor that uses the OAuth2ClientContext if it is available, so
they should also do a token relay anywhere where a RestTemplate would.

12.3. Configuring Authentication Downstream of a
Zuul Proxy
You can control the authorization behaviour downstream of an @EnableZuulProxy through the

proxy.auth.* settings. Example:

application.yml

proxy:
 auth:
 routes:
 customers: oauth2
 stores: passthru
 recommendations: none

In this example the "customers" service gets an OAuth2 token relay, the "stores" service gets a
passthrough (the authorization header is just passed downstream), and the "recommendations"
service has its authorization header removed. The default behaviour is to do a token relay if there
is a token available, and passthru otherwise.

See ProxyAuthenticationProperties for full details.

https://github.com/spring-cloud/spring-cloud-security/tree/master/src/main/java/org/springframework/cloud/security/oauth2/proxy/ProxyAuthenticationProperties

Chapter 13. Spring Cloud for Cloud Foundry
Spring Cloud for Cloudfoundry makes it easy to run Spring Cloud apps in Cloud Foundry (the
Platform as a Service). Cloud Foundry has the notion of a "service", which is middlware that you
"bind" to an app, essentially providing it with an environment variable containing credentials (e.g.
the location and username to use for the service).

The spring-cloud-cloudfoundry-commons module configures the Reactor-based Cloud Foundry Java
client, v 3.0, and can be used standalone.

The spring-cloud-cloudfoundry-web project provides basic support for some enhanced features of
webapps in Cloud Foundry: binding automatically to single-sign-on services and optionally
enabling sticky routing for discovery.

The spring-cloud-cloudfoundry-discovery project provides an implementation of Spring Cloud
Commons DiscoveryClient so you can @EnableDiscoveryClient and provide your credentials as
spring.cloud.cloudfoundry.discovery.[username,password] (also *.url if you are not connecting to
Pivotal Web Services) and then you can use the DiscoveryClient directly or via a LoadBalancerClient.

The first time you use it the discovery client might be slow owing to the fact that it has to get an
access token from Cloud Foundry.

13.1. Discovery
Here’s a Spring Cloud app with Cloud Foundry discovery:

app.groovy

@Grab('org.springframework.cloud:spring-cloud-cloudfoundry')
@RestController
@EnableDiscoveryClient
class Application {

 @Autowired
 DiscoveryClient client

 @RequestMapping('/')
 String home() {
 'Hello from ' + client.getLocalServiceInstance()
 }

}

If you run it without any service bindings:

$ spring jar app.jar app.groovy
$ cf push -p app.jar

https://github.com/spring-cloud
https://github.com/cloudfoundry
https://run.pivotal.io

It will show its app name in the home page.

The DiscoveryClient can lists all the apps in a space, according to the credentials it is authenticated
with, where the space defaults to the one the client is running in (if any). If neither org nor space
are configured, they default per the user’s profile in Cloud Foundry.

13.2. Single Sign On

All of the OAuth2 SSO and resource server features moved to Spring Boot in
version 1.3. You can find documentation in the Spring Boot user guide.

This project provides automatic binding from CloudFoundry service credentials to the Spring Boot
features. If you have a CloudFoundry service called "sso", for instance, with credentials containing
"client_id", "client_secret" and "auth_domain", it will bind automatically to the Spring OAuth2 client
that you enable with @EnableOAuth2Sso (from Spring Boot). The name of the service can be
parameterized using spring.oauth2.sso.serviceId.

13.3. Configuration
To see the list of all Spring Cloud Sloud Foundry related configuration properties please check the
Appendix page.

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
appendix.html
appendix.html

Chapter 14. Spring Cloud Contract Reference
Documentation
Adam Dudczak, Mathias Düsterhöft, Marcin Grzejszczak, Dennis Kieselhorst, Jakub Kubryński,
Karol Lassak, Olga Maciaszek-Sharma, Mariusz Smykuła, Dave Syer, Jay Bryant

Legal
2.2.0.RC2

Copyright © 2012-2019

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

14.1. Getting Started
If you are getting started with Spring Cloud Contract, or Spring in general, start by reading this
section. It answers the basic “what?”, “how?” and “why?” questions. It includes an introduction to
Spring Cloud Contract, along with installation instructions. We then walk you through building
your first Spring Cloud Contract application, discussing some core principles as we go.

14.1.1. Introducing Spring Cloud Contract

Spring Cloud Contract moves TDD to the level of software architecture. It lets you perform
consumer-driven and producer-driven contract testing.

History

Before becoming Spring Cloud Contract, this project was called Accurest. It was created by Marcin
Grzejszczak and Jakub Kubrynski from (Codearte).

The 0.1.0 release took place on 26 Jan 2015 and it became stable with 1.0.0 release on 29 Feb 2016.

Why Do You Need It?

Assume that we have a system that consists of multiple microservices, as the following image
shows:

https://github.com/Codearte/accurest
https://twitter.com/mgrzejszczak
https://twitter.com/mgrzejszczak
https://twitter.com/jkubrynski
https://github.com/Codearte

Testing Issues

If we want to test the application in the top left corner of the image in the preceding section to
determine whether it can communicate with other services, we could do one of two things:

• Deploy all microservices and perform end-to-end tests.

• Mock other microservices in unit and integration tests.

Both have their advantages but also a lot of disadvantages.

Deploy all microservices and perform end to end tests

Advantages:

• Simulates production.

• Tests real communication between services.

Disadvantages:

• To test one microservice, we have to deploy six microservices, a couple of databases, and other
items.

• The environment where the tests run is locked for a single suite of tests (nobody else would be
able to run the tests in the meantime).

• They take a long time to run.

• The feedback comes very late in the process.

• They are extremely hard to debug.

Mock other microservices in unit and integration tests

Advantages:

• They provide very fast feedback.

• They have no infrastructure requirements.

Disadvantages:

• The implementor of the service creates stubs that might have nothing to do with reality.

• You can go to production with passing tests and failing production.

To solve the aforementioned issues, Spring Cloud Contract was created. The main idea is to give you
very fast feedback, without the need to set up the whole world of microservices. If you work on
stubs, then the only applications you need are those that your application directly uses. The
following image shows the relationship of stubs to an application:

Spring Cloud Contract gives you the certainty that the stubs that you use were created by the
service that you call. Also, if you can use them, it means that they were tested against the
producer’s side. In short, you can trust those stubs.

Purposes

The main purposes of Spring Cloud Contract are:

• To ensure that HTTP and Messaging stubs (used when developing the client) do exactly what the
actual server-side implementation does.

• To promote the ATDD (acceptance test-driven developement) method and the microservices
architectural style.

• To provide a way to publish changes in contracts that are immediately visible on both sides.

• To generate boilerplate test code to be used on the server side.

By default, Spring Cloud Contract integrates with Wiremock as the HTTP server stub.

Spring Cloud Contract’s purpose is NOT to start writing business features in the
contracts. Assume that we have a business use case of fraud check. If a user can be
a fraud for 100 different reasons, we would assume that you would create two
contracts, one for the positive case and one for the negative case. Contract tests are
used to test contracts between applications and not to simulate full behavior.

What Is a Contract?

As consumers of services, we need to define what exactly we want to achieve. We need to formulate
our expectations. That is why we write contracts. In other words, a contract is an agreement on
how the API or message communication should look. Consider the following example:

Assume that you want to send a request that contains the ID of a client company and the amount it
wants to borrow from us. You also want to send it to the /fraudcheck URL via the PUT method. The
following listing shows a contract to check whether a client should be marked as a fraud in both
Groovy and YAML:

groovy

/*
 * Copyright 2013-2020 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package contracts

org.springframework.cloud.contract.spec.Contract.make {
 request { // (1)
 method 'PUT' // (2)
 url '/fraudcheck' // (3)
 body([// (4)
 "client.id": $(regex('[0-9]{10}')),
 loanAmount : 99999
])
 headers { // (5)

http://wiremock.org

 contentType('application/json')
 }
 }
 response { // (6)
 status OK() // (7)
 body([// (8)
 fraudCheckStatus : "FRAUD",
 "rejection.reason": "Amount too high"
])
 headers { // (9)
 contentType('application/json')
 }
 }
}

/*
From the Consumer perspective, when shooting a request in the integration test:

(1) - If the consumer sends a request
(2) - With the "PUT" method
(3) - to the URL "/fraudcheck"
(4) - with the JSON body that
 * has a field `client.id` that matches a regular expression `[0-9]{10}`
 * has a field `loanAmount` that is equal to `99999`
(5) - with header `Content-Type` equal to `application/json`
(6) - then the response will be sent with
(7) - status equal `200`
(8) - and JSON body equal to
 { "fraudCheckStatus": "FRAUD", "rejectionReason": "Amount too high" }
(9) - with header `Content-Type` equal to `application/json`

From the Producer perspective, in the autogenerated producer-side test:

(1) - A request will be sent to the producer
(2) - With the "PUT" method
(3) - to the URL "/fraudcheck"
(4) - with the JSON body that
 * has a field `client.id` that will have a generated value that matches a regular
expression `[0-9]{10}`
 * has a field `loanAmount` that is equal to `99999`
(5) - with header `Content-Type` equal to `application/json`
(6) - then the test will assert if the response has been sent with
(7) - status equal `200`
(8) - and JSON body equal to
 { "fraudCheckStatus": "FRAUD", "rejectionReason": "Amount too high" }
(9) - with header `Content-Type` matching `application/json.*`
 */

yaml

request: # (1)

 method: PUT # (2)
 url: /yamlfraudcheck # (3)
 body: # (4)
 "client.id": 1234567890
 loanAmount: 99999
 headers: # (5)
 Content-Type: application/json
 matchers:
 body:
 - path: $.['client.id'] # (6)
 type: by_regex
 value: "[0-9]{10}"
response: # (7)
 status: 200 # (8)
 body: # (9)
 fraudCheckStatus: "FRAUD"
 "rejection.reason": "Amount too high"
 headers: # (10)
 Content-Type: application/json

#From the Consumer perspective, when shooting a request in the integration test:
#
#(1) - If the consumer sends a request
#(2) - With the "PUT" method
#(3) - to the URL "/yamlfraudcheck"
#(4) - with the JSON body that
* has a field `client.id`
* has a field `loanAmount` that is equal to `99999`
#(5) - with header `Content-Type` equal to `application/json`
#(6) - and a `client.id` json entry matches the regular expression `[0-9]{10}`
#(7) - then the response will be sent with
#(8) - status equal `200`
#(9) - and JSON body equal to
{ "fraudCheckStatus": "FRAUD", "rejectionReason": "Amount too high" }
#(10) - with header `Content-Type` equal to `application/json`
#
#From the Producer perspective, in the autogenerated producer-side test:
#
#(1) - A request will be sent to the producer
#(2) - With the "PUT" method
#(3) - to the URL "/yamlfraudcheck"
#(4) - with the JSON body that
* has a field `client.id` `1234567890`
* has a field `loanAmount` that is equal to `99999`
#(5) - with header `Content-Type` equal to `application/json`
#(7) - then the test will assert if the response has been sent with
#(8) - status equal `200`
#(9) - and JSON body equal to
{ "fraudCheckStatus": "FRAUD", "rejectionReason": "Amount too high" }
#(10) - with header `Content-Type` equal to `application/json`

14.1.2. A Three-second Tour

This very brief tour walks through using Spring Cloud Contract. It consists of the following topics:

• On the Producer Side

• On the Consumer Side

You can find a somewhat longer tour here.

The following UML diagram shows the relationship of the parts within Spring Cloud Contract:

[getting started three second] | getting-started-three-second.png

On the Producer Side

To start working with Spring Cloud Contract, you can add files with REST or messaging contracts
expressed in either Groovy DSL or YAML to the contracts directory, which is set by the
contractsDslDir property. By default, it is $rootDir/src/test/resources/contracts.

Then you can add the Spring Cloud Contract Verifier dependency and plugin to your build file, as
the following example shows:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-verifier</artifactId>
 <scope>test</scope>
</dependency>

The following listing shows how to add the plugin, which should go in the build/plugins portion of
the file:

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
</plugin>

Running ./mvnw clean install automatically generates tests that verify the application compliance
with the added contracts. By default, the tests get generated under
org.springframework.cloud.contract.verifier.tests..

As the implementation of the functionalities described by the contracts is not yet present, the tests
fail.

To make them pass, you must add the correct implementation of either handling HTTP requests or
messages. Also, you must add a base test class for auto-generated tests to the project. This class is
extended by all the auto-generated tests, and it should contain all the setup information necessary
to run them (for example RestAssuredMockMvc controller setup or messaging test setup).

The following example, from pom.xml, shows how to specify the base test class:

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>2.1.2.RELEASE</version>
 <extensions>true</extensions>
 <configuration>

<baseClassForTests>com.example.contractTest.BaseTestClass</baseClassForTests> ①
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

① The baseClassForTests element lets you specify your base test class. It must be a child of a
configuration element within spring-cloud-contract-maven-plugin.

Once the implementation and the test base class are in place, the tests pass, and both the
application and the stub artifacts are built and installed in the local Maven repository. You can now
merge the changes, and you can publish both the application and the stub artifacts in an online
repository.

On the Consumer Side

You can use Spring Cloud Contract Stub Runner in the integration tests to get a running WireMock
instance or messaging route that simulates the actual service.

To do so, add the dependency to Spring Cloud Contract Stub Runner, as the following example
shows:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-stub-runner</artifactId>
 <scope>test</scope>
</dependency>

You can get the Producer-side stubs installed in your Maven repository in either of two ways:

• By checking out the Producer side repository and adding contracts and generating the stubs by
running the following commands:

$ cd local-http-server-repo
$./mvnw clean install -DskipTests

The tests are being skipped because the producer-side contract implementation
is not in place yet, so the automatically-generated contract tests fail.

• By getting already-existing producer service stubs from a remote repository. To do so, pass the
stub artifact IDs and artifact repository URL as Spring Cloud Contract Stub Runner properties, as
the following example shows:

stubrunner:
 ids: 'com.example:http-server-dsl:+:stubs:8080'
 repositoryRoot: https://repo.spring.io/libs-snapshot

Now you can annotate your test class with @AutoConfigureStubRunner. In the annotation, provide the
group-id and artifact-id values for Spring Cloud Contract Stub Runner to run the collaborators'
stubs for you, as the following example shows:

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment=WebEnvironment.NONE)
@AutoConfigureStubRunner(ids = {"com.example:http-server-dsl:+:stubs:6565"},
 stubsMode = StubRunnerProperties.StubsMode.LOCAL)
public class LoanApplicationServiceTests {

Use the REMOTE stubsMode when downloading stubs from an online repository and
LOCAL for offline work.

Now, in your integration test, you can receive stubbed versions of HTTP responses or messages that
are expected to be emitted by the collaborator service.

14.1.3. Developing Your First Spring Cloud Contract-based Application

This brief tour walks through using Spring Cloud Contract. It consists of the following topics:

• On the Producer Side

• On the Consumer Side

You can find an even more brief tour here.

For the sake of this example, the Stub Storage is Nexus/Artifactory.

The following UML diagram shows the relationship of the parts of Spring Cloud Contract:

[Getting started first application] | getting-started-three-second.png

On the Producer Side

To start working with Spring Cloud Contract, you can add Spring Cloud Contract Verifier
dependency and plugin to your build file, as the following example shows:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-verifier</artifactId>
 <scope>test</scope>
</dependency>

The following listing shows how to add the plugin, which should go in the build/plugins portion of
the file:

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
</plugin>

The easiest way to get started is to go to the Spring Initializr and add “Web” and
“Contract Verifier” as dependencies. Doing so pulls in the previously mentioned
dependencies and everything else you need in the pom.xml file (except for setting
the base test class, which we cover later in this section). The following image
shows the settings to use in the Spring Initializr:

Now you can add files with REST/ messaging contracts expressed in either Groovy DSL or YAML to
the contracts directory, which is set by the contractsDslDir property. By default, it is
$rootDir/src/test/resources/contracts. Note that the file name does not matter. You can organize
your contracts within this directory with whatever naming scheme you like.

For the HTTP stubs, a contract defines what kind of response should be returned for a given request
(taking into account the HTTP methods, URLs, headers, status codes, and so on). The following
example shows an HTTP stub contract in both Groovy and YAML:

https://start.spring.io
https://start.spring.io

groovy

package contracts

org.springframework.cloud.contract.spec.Contract.make {
 request {
 method 'PUT'
 url '/fraudcheck'
 body([
 "client.id": $(regex('[0-9]{10}')),
 loanAmount: 99999
])
 headers {
 contentType('application/json')
 }
 }
 response {
 status OK()
 body([
 fraudCheckStatus: "FRAUD",
 "rejection.reason": "Amount too high"
])
 headers {
 contentType('application/json')
 }
 }
}

yaml

request:
 method: PUT
 url: /fraudcheck
 body:
 "client.id": 1234567890
 loanAmount: 99999
 headers:
 Content-Type: application/json
 matchers:
 body:
 - path: $.['client.id']
 type: by_regex
 value: "[0-9]{10}"
response:
 status: 200
 body:
 fraudCheckStatus: "FRAUD"
 "rejection.reason": "Amount too high"
 headers:
 Content-Type: application/json;charset=UTF-8

If you need to use messaging, you can define:

• The input and output messages (taking into account from and where it was sent, the message
body, and the header).

• The methods that should be called after the message is received.

• The methods that, when called, should trigger a message.

The following example shows a Camel messaging contract:

groovy

def contractDsl = Contract.make {
 name "foo"
 label 'some_label'
 input {
 messageFrom('jms:delete')
 messageBody([
 bookName: 'foo'
])
 messageHeaders {
 header('sample', 'header')
 }
 assertThat('bookWasDeleted()')
 }
}

yaml

label: some_label
input:
 messageFrom: jms:delete
 messageBody:
 bookName: 'foo'
 messageHeaders:
 sample: header
 assertThat: bookWasDeleted()

Running ./mvnw clean install automatically generates tests that verify the application compliance
with the added contracts. By default, the generated tests are under
org.springframework.cloud.contract.verifier.tests..

The generated tests may differ, depending on which framework and test type you have setup in
your plugin.

In the next listing, you can find:

• The default test mode for HTTP contracts in MockMvc

• A JAX-RS client with the JAXRS test mode

• A WebTestClient-based test (this is particularly recommended while working with Reactive, Web-
Flux-based applications) set with the WEBTESTCLIENT test mode

• A Spock-based test with the testFramework property set to SPOCK

You need only one of these test frameworks. MockMvc is the default. To use one of
the other frameworks, add its library to your classpath.

The following listing shows samples for all frameworks:

mockmvc

@Test
public void validate_shouldMarkClientAsFraud() throws Exception {
 // given:
 MockMvcRequestSpecification request = given()
 .header("Content-Type", "application/vnd.fraud.v1+json")
 .body("{\"client.id\":\"1234567890\",\"loanAmount\":99999}");

 // when:
 ResponseOptions response = given().spec(request)
 .put("/fraudcheck");

 // then:
 assertThat(response.statusCode()).isEqualTo(200);
 assertThat(response.header("Content-
Type")).matches("application/vnd.fraud.v1.json.*");
 // and:
 DocumentContext parsedJson =
JsonPath.parse(response.getBody().asString());
 assertThatJson(parsedJson).field("['fraudCheckStatus']").matches("[A-
Z]{5}");
 assertThatJson(parsedJson).field("['rejection.reason']").isEqualTo("Amount
too high");
}

jaxrs

@SuppressWarnings("rawtypes")
public class FooTest {
 WebTarget webTarget;

 @Test
 public void validate_() throws Exception {

 // when:
 Response response = webTarget
 .path("/users")
 .queryParam("limit", "10")
 .queryParam("offset", "20")
 .queryParam("filter", "email")
 .queryParam("sort", "name")
 .queryParam("search", "55")
 .queryParam("age", "99")
 .queryParam("name", "Denis.Stepanov")
 .queryParam("email", "bob@email.com")
 .request()
 .build("GET")
 .invoke();
 String responseAsString = response.readEntity(String.class);

 // then:
 assertThat(response.getStatus()).isEqualTo(200);

 // and:
 DocumentContext parsedJson = JsonPath.parse(responseAsString);
 assertThatJson(parsedJson).field("['property1']").isEqualTo("a");
 }

}

webtestclient

@Test
 public void validate_shouldRejectABeerIfTooYoung() throws Exception {
 // given:
 WebTestClientRequestSpecification request = given()
 .header("Content-Type", "application/json")
 .body("{\"age\":10}");

 // when:
 WebTestClientResponse response = given().spec(request)
 .post("/check");

 // then:
 assertThat(response.statusCode()).isEqualTo(200);
 assertThat(response.header("Content-
Type")).matches("application/json.*");
 // and:
 DocumentContext parsedJson =
JsonPath.parse(response.getBody().asString());
 assertThatJson(parsedJson).field("['status']").isEqualTo("NOT_OK");
 }

spock

given:
 ContractVerifierMessage inputMessage = contractVerifierMessaging.create(
 \'\'\'{"bookName":"foo"}\'\'\',
 ['sample': 'header']
)

when:
 contractVerifierMessaging.send(inputMessage, 'jms:delete')

then:
 noExceptionThrown()
 bookWasDeleted()

As the implementation of the functionalities described by the contracts is not yet present, the tests
fail.

To make them pass, you must add the correct implementation of handling either HTTP requests or
messages. Also, you must add a base test class for auto-generated tests to the project. This class is
extended by all the auto-generated tests and should contain all the setup necessary information
needed to run them (for example, RestAssuredMockMvc controller setup or messaging test setup).

The following example, from pom.xml, shows how to specify the base test class:

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>2.1.2.RELEASE</version>
 <extensions>true</extensions>
 <configuration>

<baseClassForTests>com.example.contractTest.BaseTestClass</baseClassForTests> ①
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

① The baseClassForTests element lets you specify your base test class. It must be a child of a
configuration element within spring-cloud-contract-maven-plugin.

The following example shows a minimal (but functional) base test class:

package com.example.contractTest;

import org.junit.Before;

import io.restassured.module.mockmvc.RestAssuredMockMvc;

public class BaseTestClass {

 @Before
 public void setup() {
 RestAssuredMockMvc.standaloneSetup(new FraudController());
 }
}

This minimal class really is all you need to get your tests to work. It serves as a starting place to
which the automatically generated tests attach.

Now we can move on to the implementation. For that, we first need a data class, which we then use
in our controller. The following listing shows the data class:

package com.example.Test;

import com.fasterxml.jackson.annotation.JsonProperty;

public class LoanRequest {

 @JsonProperty("client.id")
 private String clientId;

 private Long loanAmount;

 public String getClientId() {
 return clientId;
 }

 public void setClientId(String clientId) {
 this.clientId = clientId;
 }

 public Long getLoanAmount() {
 return loanAmount;
 }

 public void setLoanRequestAmount(Long loanAmount) {
 this.loanAmount = loanAmount;
 }
}

The preceding class provides an object in which we can store the parameters. Because the client ID
in the contract is called client.id, we need to use the @JsonProperty("client.id") parameter to map
it to the clientId field.

Now we can move along to the controller, which the following listing shows:

package com.example.docTest;

import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class FraudController {

 @PutMapping(value = "/fraudcheck", consumes="application/json",
produces="application/json")
 public String check(@RequestBody LoanRequest loanRequest) { ①

 if (loanRequest.getLoanAmount() > 10000) { ②
 return "{fraudCheckStatus: FRAUD, rejection.reason: Amount too high}";
③
 } else {
 return "{fraudCheckStatus: OK, acceptance.reason: Amount OK}"; ④
 }
 }
}

① We map the incoming parameters to a LoanRequest object.

② We check the requested loan amount to see if it is too much.

③ If it is too much, we return the JSON (created with a simple string here) that the test
expects.

④ If we had a test to catch when the amount is allowable, we could match it to this output.

The FraudController is about as simple as things get. You can do much more, including logging,
validating the client ID, and so on.

Once the implementation and the test base class are in place, the tests pass, and both the
application and the stub artifacts are built and installed in the local Maven repository Information
about installing the stubs jar to the local repository appears in the logs, as the following example
shows:

[INFO] --- spring-cloud-contract-maven-plugin:1.0.0.BUILD-SNAPSHOT:generateStubs
(default-generateStubs) @ http-server ---
[INFO] Building jar: /some/path/http-server/target/http-server-0.0.1-SNAPSHOT-
stubs.jar
[INFO]
[INFO] --- maven-jar-plugin:2.6:jar (default-jar) @ http-server ---
[INFO] Building jar: /some/path/http-server/target/http-server-0.0.1-SNAPSHOT.jar
[INFO]
[INFO] --- spring-boot-maven-plugin:1.5.5.BUILD-SNAPSHOT:repackage (default) @
http-server ---
[INFO]
[INFO] --- maven-install-plugin:2.5.2:install (default-install) @ http-server ---
[INFO] Installing /some/path/http-server/target/http-server-0.0.1-SNAPSHOT.jar to
/path/to/your/.m2/repository/com/example/http-server/0.0.1-SNAPSHOT/http-server-
0.0.1-SNAPSHOT.jar
[INFO] Installing /some/path/http-server/pom.xml to
/path/to/your/.m2/repository/com/example/http-server/0.0.1-SNAPSHOT/http-server-
0.0.1-SNAPSHOT.pom
[INFO] Installing /some/path/http-server/target/http-server-0.0.1-SNAPSHOT-
stubs.jar to /path/to/your/.m2/repository/com/example/http-server/0.0.1-
SNAPSHOT/http-server-0.0.1-SNAPSHOT-stubs.jar

You can now merge the changes and publish both the application and the stub artifacts in an online
repository.

On the Consumer Side

You can use Spring Cloud Contract Stub Runner in the integration tests to get a running WireMock
instance or messaging route that simulates the actual service.

To get started, add the dependency to Spring Cloud Contract Stub Runner, as follows:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-stub-runner</artifactId>
 <scope>test</scope>
</dependency>

You can get the Producer-side stubs installed in your Maven repository in either of two ways:

• By checking out the Producer side repository and adding contracts and generating the stubs by
running the following commands:

$ cd local-http-server-repo
$./mvnw clean install -DskipTests

The tests are skipped because the Producer-side contract implementation is not
yet in place, so the automatically-generated contract tests fail.

• Getting already existing producer service stubs from a remote repository. To do so, pass the stub
artifact IDs and artifact repository URl as Spring Cloud Contract Stub Runner properties, as the
following example shows:

stubrunner:
 ids: 'com.example:http-server-dsl:+:stubs:8080'
 repositoryRoot: https://repo.spring.io/libs-snapshot

Now you can annotate your test class with @AutoConfigureStubRunner. In the annotation, provide the
group-id and artifact-id for Spring Cloud Contract Stub Runner to run the collaborators' stubs for
you, as the following example shows:

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment=WebEnvironment.NONE)
@AutoConfigureStubRunner(ids = {"com.example:http-server-dsl:+:stubs:6565"},
 stubsMode = StubRunnerProperties.StubsMode.LOCAL)
public class LoanApplicationServiceTests {

Use the REMOTE stubsMode when downloading stubs from an online repository and
LOCAL for offline work.

In your integration test, you can receive stubbed versions of HTTP responses or messages that are
expected to be emitted by the collaborator service. You can see entries similar to the following in
the build logs:

2016-07-19 14:22:25.403 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Desired version is + - will try to
resolve the latest version
2016-07-19 14:22:25.438 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Resolved version is 0.0.1-SNAPSHOT
2016-07-19 14:22:25.439 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Resolving artifact com.example:http-
server:jar:stubs:0.0.1-SNAPSHOT using remote repositories []
2016-07-19 14:22:25.451 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Resolved artifact com.example:http-
server:jar:stubs:0.0.1-SNAPSHOT to /path/to/your/.m2/repository/com/example/http-
server/0.0.1-SNAPSHOT/http-server-0.0.1-SNAPSHOT-stubs.jar
2016-07-19 14:22:25.465 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Unpacking stub from JAR [URI:
file:/path/to/your/.m2/repository/com/example/http-server/0.0.1-SNAPSHOT/http-
server-0.0.1-SNAPSHOT-stubs.jar]
2016-07-19 14:22:25.475 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Unpacked file to
[/var/folders/0p/xwq47sq106x1_g3dtv6qfm940000gq/T/contracts100276532569594265]
2016-07-19 14:22:27.737 INFO 41050 --- [main]
o.s.c.c.stubrunner.StubRunnerExecutor : All stubs are now running RunningStubs
[namesAndPorts={com.example:http-server:0.0.1-SNAPSHOT:stubs=8080}]

14.1.4. Step-by-step Guide to Consumer Driven Contracts (CDC) with
Contracts on the Producer Side

Consider an example of fraud detection and the loan issuance process. The business scenario is
such that we want to issue loans to people but do not want them to steal from us. The current
implementation of our system grants loans to everybody.

Assume that Loan Issuance is a client to the Fraud Detection server. In the current sprint, we must
develop a new feature: if a client wants to borrow too much money, we mark the client as a fraud.

Technical remarks

• Fraud Detection has an artifact-id of http-server

• Loan Issuance has an artifact-id of http-client

• Both have a group-id of com.example

• For the sake of this example the Stub Storage is Nexus/Artifactory

Social remarks

• Both the client and the server development teams need to communicate directly and discuss
changes while going through the process

• CDC is all about communication

The server-side code is available here and the client code is available here.

In this case, the producer owns the contracts. Physically, all of the contracts are in
the producer’s repository.

Technical Note

If you use the SNAPSHOT, Milestone, or Release Candidate versions you need to add the following
section to your build:

Maven

<repositories>
 <repository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>spring-releases</id>
 <name>Spring Releases</name>
 <url>https://repo.spring.io/release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>

https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x///Users/ryanjbaxter/git-repos/spring-cloud-samples/scripts/contract/samples/standalone/dsl/http-server
https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x///Users/ryanjbaxter/git-repos/spring-cloud-samples/scripts/contract/samples/standalone/dsl/http-client

 <url>https://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>spring-releases</id>
 <name>Spring Releases</name>
 <url>https://repo.spring.io/release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
</pluginRepositories>

Gradle

repositories {
 mavenCentral()
 mavenLocal()
 maven { url "https://repo.spring.io/snapshot" }
 maven { url "https://repo.spring.io/milestone" }
 maven { url "https://repo.spring.io/release" }
}

For simplicity, we use the following acronyms:

• Loan Issuance (LI): The HTTP client

• Fraud Detection (FD): The HTTP server

• Spring Cloud Contract (SCC)

The Consumer Side (Loan Issuance)

As a developer of the Loan Issuance service (a consumer of the Fraud Detection server), you might
do the following steps:

1. Start doing TDD by writing a test for your feature.

2. Write the missing implementation.

3. Clone the Fraud Detection service repository locally.

4. Define the contract locally in the repo of the fraud detection service.

5. Add the Spring Cloud Contract (SCC) plugin.

6. Run the integration tests.

7. File a pull request.

8. Create an initial implementation.

9. Take over the pull request.

10. Write the missing implementation.

11. Deploy your app.

12. Work online.

We start with the loan issuance flow, which the following UML diagram shows:

[getting started cdc client] | getting-started-cdc-client.png

Start Doing TDD by Writing a Test for Your Feature

The following listing shows a test that we might use to check whether a loan amount is too large:

@Test
public void shouldBeRejectedDueToAbnormalLoanAmount() {
 // given:
 LoanApplication application = new LoanApplication(new Client("1234567890"),
 99999);
 // when:
 LoanApplicationResult loanApplication = service.loanApplication(application);
 // then:
 assertThat(loanApplication.getLoanApplicationStatus())
 .isEqualTo(LoanApplicationStatus.LOAN_APPLICATION_REJECTED);
 assertThat(loanApplication.getRejectionReason()).isEqualTo("Amount too high");
}

Assume that you have written a test of your new feature. If a loan application for a big amount is
received, the system should reject that loan application with some description.

Write the Missing Implementation

At some point in time, you need to send a request to the Fraud Detection service. Assume that you
need to send the request containing the ID of the client and the amount the client wants to borrow.
You want to send it to the /fraudcheck URL by using the PUT method. To do so, you might use code
similar to the following:

ResponseEntity<FraudServiceResponse> response = restTemplate.exchange(
 "http://localhost:" + port + "/fraudcheck", HttpMethod.PUT,
 new HttpEntity<>(request, httpHeaders), FraudServiceResponse.class);

For simplicity, the port of the Fraud Detection service is set to 8080, and the application runs on
8090.

If you start the test at this point, it breaks, because no service currently runs on
port 8080.

Clone the Fraud Detection service repository locally

You can start by playing around with the server side contract. To do so, you must first clone it, by
running the following command:

$ git clone https://your-git-server.com/server-side.git local-http-server-repo

Define the Contract Locally in the Repository of the Fraud Detection Service

As a consumer, you need to define what exactly you want to achieve. You need to formulate your
expectations. To do so, write the following contract:

Place the contract in the src/test/resources/contracts/fraud folder. The fraud
folder is important because the producer’s test base class name references that
folder.

The following example shows our contract, in both Groovy and YAML:

groovy

/*
 * Copyright 2013-2020 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package contracts

org.springframework.cloud.contract.spec.Contract.make {
 request { // (1)
 method 'PUT' // (2)
 url '/fraudcheck' // (3)
 body([// (4)
 "client.id": $(regex('[0-9]{10}')),
 loanAmount : 99999
])
 headers { // (5)

 contentType('application/json')
 }
 }
 response { // (6)
 status OK() // (7)
 body([// (8)
 fraudCheckStatus : "FRAUD",
 "rejection.reason": "Amount too high"
])
 headers { // (9)
 contentType('application/json')
 }
 }
}

/*
From the Consumer perspective, when shooting a request in the integration test:

(1) - If the consumer sends a request
(2) - With the "PUT" method
(3) - to the URL "/fraudcheck"
(4) - with the JSON body that
 * has a field `client.id` that matches a regular expression `[0-9]{10}`
 * has a field `loanAmount` that is equal to `99999`
(5) - with header `Content-Type` equal to `application/json`
(6) - then the response will be sent with
(7) - status equal `200`
(8) - and JSON body equal to
 { "fraudCheckStatus": "FRAUD", "rejectionReason": "Amount too high" }
(9) - with header `Content-Type` equal to `application/json`

From the Producer perspective, in the autogenerated producer-side test:

(1) - A request will be sent to the producer
(2) - With the "PUT" method
(3) - to the URL "/fraudcheck"
(4) - with the JSON body that
 * has a field `client.id` that will have a generated value that matches a regular
expression `[0-9]{10}`
 * has a field `loanAmount` that is equal to `99999`
(5) - with header `Content-Type` equal to `application/json`
(6) - then the test will assert if the response has been sent with
(7) - status equal `200`
(8) - and JSON body equal to
 { "fraudCheckStatus": "FRAUD", "rejectionReason": "Amount too high" }
(9) - with header `Content-Type` matching `application/json.*`
 */

yaml

request: # (1)

 method: PUT # (2)
 url: /yamlfraudcheck # (3)
 body: # (4)
 "client.id": 1234567890
 loanAmount: 99999
 headers: # (5)
 Content-Type: application/json
 matchers:
 body:
 - path: $.['client.id'] # (6)
 type: by_regex
 value: "[0-9]{10}"
response: # (7)
 status: 200 # (8)
 body: # (9)
 fraudCheckStatus: "FRAUD"
 "rejection.reason": "Amount too high"
 headers: # (10)
 Content-Type: application/json

#From the Consumer perspective, when shooting a request in the integration test:
#
#(1) - If the consumer sends a request
#(2) - With the "PUT" method
#(3) - to the URL "/yamlfraudcheck"
#(4) - with the JSON body that
* has a field `client.id`
* has a field `loanAmount` that is equal to `99999`
#(5) - with header `Content-Type` equal to `application/json`
#(6) - and a `client.id` json entry matches the regular expression `[0-9]{10}`
#(7) - then the response will be sent with
#(8) - status equal `200`
#(9) - and JSON body equal to
{ "fraudCheckStatus": "FRAUD", "rejectionReason": "Amount too high" }
#(10) - with header `Content-Type` equal to `application/json`
#
#From the Producer perspective, in the autogenerated producer-side test:
#
#(1) - A request will be sent to the producer
#(2) - With the "PUT" method
#(3) - to the URL "/yamlfraudcheck"
#(4) - with the JSON body that
* has a field `client.id` `1234567890`
* has a field `loanAmount` that is equal to `99999`
#(5) - with header `Content-Type` equal to `application/json`
#(7) - then the test will assert if the response has been sent with
#(8) - status equal `200`
#(9) - and JSON body equal to
{ "fraudCheckStatus": "FRAUD", "rejectionReason": "Amount too high" }
#(10) - with header `Content-Type` equal to `application/json`

The YML contract is quite straightforward. However, when you take a look at the Contract written
with a statically typed Groovy DSL, you might wonder what the value(client(…), server(…))

parts are. By using this notation, Spring Cloud Contract lets you define parts of a JSON block, a URL,
or other structure that is dynamic. In case of an identifier or a timestamp, you need not hardcode a
value. You want to allow some different ranges of values. To enable ranges of values, you can set
regular expressions that match those values for the consumer side. You can provide the body by
means of either a map notation or String with interpolations. We highly recommend using the map
notation.

You must understand the map notation in order to set up contracts. See the Groovy
docs regarding JSON.

The previously shown contract is an agreement between two sides that:

• If an HTTP request is sent with all of

◦ A PUT method on the /fraudcheck endpoint

◦ A JSON body with a client.id that matches the regular expression [0-9]{10} and loanAmount
equal to 99999,

◦ A Content-Type header with a value of application/vnd.fraud.v1+json

• Then an HTTP response is sent to the consumer that

◦ Has status 200

◦ Contains a JSON body with the fraudCheckStatus field containing a value of FRAUD and the
rejectionReason field having a value of Amount too high

◦ Has a Content-Type header with a value of application/vnd.fraud.v1+json

Once you are ready to check the API in practice in the integration tests, you need to install the stubs
locally.

Add the Spring Cloud Contract Verifier Plugin

We can add either a Maven or a Gradle plugin. In this example, we show how to add Maven. First,
we add the Spring Cloud Contract BOM, as the following example shows:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud-release.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

https://groovy-lang.org/json.html
https://groovy-lang.org/json.html

Next, add the Spring Cloud Contract Verifier Maven plugin, as the following example shows:

 <plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>

<packageWithBaseClasses>com.example.fraud</packageWithBaseClasses>
<!-- <convertToYaml>true</convertToYaml>-->
 </configuration>
 <!-- if additional dependencies are needed e.g. for Pact -->
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-pact</artifactId>
 <version>${spring-cloud-contract.version}</version>
 </dependency>
 </dependencies>
 </plugin>

Since the plugin was added, you get the Spring Cloud Contract Verifier features, which, from the
provided contracts:

• Generate and run tests

• Produce and install stubs

You do not want to generate tests, since you, as the consumer, want only to play with the stubs. You
need to skip the test generation and execution. To do so, run the following commands:

$ cd local-http-server-repo
$./mvnw clean install -DskipTests

Once you run those commands, you should you see something like the following content in the logs:

[INFO] --- spring-cloud-contract-maven-plugin:1.0.0.BUILD-SNAPSHOT:generateStubs
(default-generateStubs) @ http-server ---
[INFO] Building jar: /some/path/http-server/target/http-server-0.0.1-SNAPSHOT-
stubs.jar
[INFO]
[INFO] --- maven-jar-plugin:2.6:jar (default-jar) @ http-server ---
[INFO] Building jar: /some/path/http-server/target/http-server-0.0.1-SNAPSHOT.jar
[INFO]
[INFO] --- spring-boot-maven-plugin:1.5.5.BUILD-SNAPSHOT:repackage (default) @
http-server ---
[INFO]
[INFO] --- maven-install-plugin:2.5.2:install (default-install) @ http-server ---
[INFO] Installing /some/path/http-server/target/http-server-0.0.1-SNAPSHOT.jar to
/path/to/your/.m2/repository/com/example/http-server/0.0.1-SNAPSHOT/http-server-
0.0.1-SNAPSHOT.jar
[INFO] Installing /some/path/http-server/pom.xml to
/path/to/your/.m2/repository/com/example/http-server/0.0.1-SNAPSHOT/http-server-
0.0.1-SNAPSHOT.pom
[INFO] Installing /some/path/http-server/target/http-server-0.0.1-SNAPSHOT-
stubs.jar to /path/to/your/.m2/repository/com/example/http-server/0.0.1-
SNAPSHOT/http-server-0.0.1-SNAPSHOT-stubs.jar

The following line is extremely important:

[INFO] Installing /some/path/http-server/target/http-server-0.0.1-SNAPSHOT-
stubs.jar to /path/to/your/.m2/repository/com/example/http-server/0.0.1-
SNAPSHOT/http-server-0.0.1-SNAPSHOT-stubs.jar

It confirms that the stubs of the http-server have been installed in the local repository.

Running the Integration Tests

In order to profit from the Spring Cloud Contract Stub Runner functionality of automatic stub
downloading, you must do the following in your consumer side project (Loan Application service):

1. Add the Spring Cloud Contract BOM, as follows:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud-release-train.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

2. Add the dependency to Spring Cloud Contract Stub Runner, as follows:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-stub-runner</artifactId>
 <scope>test</scope>
</dependency>

3. Annotate your test class with @AutoConfigureStubRunner. In the annotation, provide the group-id
and artifact-id for the Stub Runner to download the stubs of your collaborators. (Optional
step) Because you are playing with the collaborators offline, you can also provide the offline
work switch (StubRunnerProperties.StubsMode.LOCAL).

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.NONE)
@AutoConfigureStubRunner(ids = {
 "com.example:http-server-dsl:0.0.1:stubs" }, stubsMode =
StubRunnerProperties.StubsMode.LOCAL)
public class LoanApplicationServiceTests {

Now, when you run your tests, you see something like the following output in the logs:

2016-07-19 14:22:25.403 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Desired version is + - will try to
resolve the latest version
2016-07-19 14:22:25.438 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Resolved version is 0.0.1-SNAPSHOT
2016-07-19 14:22:25.439 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Resolving artifact com.example:http-
server:jar:stubs:0.0.1-SNAPSHOT using remote repositories []
2016-07-19 14:22:25.451 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Resolved artifact com.example:http-
server:jar:stubs:0.0.1-SNAPSHOT to /path/to/your/.m2/repository/com/example/http-
server/0.0.1-SNAPSHOT/http-server-0.0.1-SNAPSHOT-stubs.jar
2016-07-19 14:22:25.465 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Unpacking stub from JAR [URI:
file:/path/to/your/.m2/repository/com/example/http-server/0.0.1-SNAPSHOT/http-
server-0.0.1-SNAPSHOT-stubs.jar]
2016-07-19 14:22:25.475 INFO 41050 --- [main]
o.s.c.c.stubrunner.AetherStubDownloader : Unpacked file to
[/var/folders/0p/xwq47sq106x1_g3dtv6qfm940000gq/T/contracts100276532569594265]
2016-07-19 14:22:27.737 INFO 41050 --- [main]
o.s.c.c.stubrunner.StubRunnerExecutor : All stubs are now running RunningStubs
[namesAndPorts={com.example:http-server:0.0.1-SNAPSHOT:stubs=8080}]

This output means that Stub Runner has found your stubs and started a server for your application
with a group ID of com.example and an artifact ID of http-server with version 0.0.1-SNAPSHOT of the
stubs and with the stubs classifier on port 8080.

Filing a Pull Request

What you have done until now is an iterative process. You can play around with the contract, install
it locally, and work on the consumer side until the contract works as you wish.

Once you are satisfied with the results and the test passes, you can publish a pull request to the
server side. Currently, the consumer side work is done.

The Producer Side (Fraud Detection server)

As a developer of the Fraud Detection server (a server to the Loan Issuance service), you might
want to do the following

• Take over the pull request

• Write the missing implementation

• Deploy the application

The following UML diagram shows the fraud detection flow:

[getting started cdc server] | getting-started-cdc-server.png

Taking over the Pull Request

As a reminder, the following listing shows the initial implementation:

@RequestMapping(value = "/fraudcheck", method = PUT)
public FraudCheckResult fraudCheck(@RequestBody FraudCheck fraudCheck) {
return new FraudCheckResult(FraudCheckStatus.OK, NO_REASON);
}

Then you can run the following commands:

$ git checkout -b contract-change-pr master
$ git pull https://your-git-server.com/server-side-fork.git contract-change-pr

You must add the dependencies needed by the autogenerated tests, as follows:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-verifier</artifactId>
 <scope>test</scope>
</dependency>

In the configuration of the Maven plugin, you must pass the packageWithBaseClasses property, as
follows:

 <plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>

<packageWithBaseClasses>com.example.fraud</packageWithBaseClasses>
<!-- <convertToYaml>true</convertToYaml>-->
 </configuration>
 <!-- if additional dependencies are needed e.g. for Pact -->
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-pact</artifactId>
 <version>${spring-cloud-contract.version}</version>
 </dependency>
 </dependencies>
 </plugin>

This example uses “convention-based” naming by setting the
packageWithBaseClasses property. Doing so means that the two last packages
combine to make the name of the base test class. In our case, the contracts were
placed under src/test/resources/contracts/fraud. Since you do not have two
packages starting from the contracts folder, pick only one, which should be fraud.
Add the Base suffix and capitalize fraud. That gives you the FraudBase test class
name.

All the generated tests extend that class. Over there, you can set up your Spring Context or
whatever is necessary. In this case, you should use Rest Assured MVC to start the server side
FraudDetectionController. The following listing shows the FraudBase class:

https://github.com/rest-assured/rest-assured

/*
 * Copyright 2013-2020 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.example.fraud;

import io.restassured.module.mockmvc.RestAssuredMockMvc;
import org.junit.Before;

public class FraudBase {

 @Before
 public void setup() {
 RestAssuredMockMvc.standaloneSetup(new FraudDetectionController(),
 new FraudStatsController(stubbedStatsProvider()));
 }

 private StatsProvider stubbedStatsProvider() {
 return fraudType -> {
 switch (fraudType) {
 case DRUNKS:
 return 100;
 case ALL:
 return 200;
 }
 return 0;
 };
 }

 public void assertThatRejectionReasonIsNull(Object rejectionReason) {
 assert rejectionReason == null;
 }

}

Now, if you run the ./mvnw clean install, you get something like the following output:

Results :

Tests in error:
 ContractVerifierTest.validate_shouldMarkClientAsFraud:32 » IllegalState
Parsed...

This error occurs because you have a new contract from which a test was generated and it failed
since you have not implemented the feature. The auto-generated test would look like the following
test method:

@Test
public void validate_shouldMarkClientAsFraud() throws Exception {
 // given:
 MockMvcRequestSpecification request = given()
 .header("Content-Type", "application/vnd.fraud.v1+json")
 .body("{\"client.id\":\"1234567890\",\"loanAmount\":99999}");

 // when:
 ResponseOptions response = given().spec(request)
 .put("/fraudcheck");

 // then:
 assertThat(response.statusCode()).isEqualTo(200);
 assertThat(response.header("Content-
Type")).matches("application/vnd.fraud.v1.json.*");
 // and:
 DocumentContext parsedJson =
JsonPath.parse(response.getBody().asString());
 assertThatJson(parsedJson).field("['fraudCheckStatus']").matches("[A-
Z]{5}");
 assertThatJson(parsedJson).field("['rejection.reason']").isEqualTo("Amount
too high");
}

If you used the Groovy DSL, you can see that all of the producer() parts of the Contract that were
present in the value(consumer(…), producer(…)) blocks got injected into the test. In case of using
YAML, the same applied for the matchers sections of the response.

Note that, on the producer side, you are also doing TDD. The expectations are expressed in the form
of a test. This test sends a request to our own application with the URL, headers, and body defined
in the contract. It is also expecting precisely defined values in the response. In other words, you
have the red part of red, green, and refactor. It is time to convert the red into the green.

Write the Missing Implementation

Because you know the expected input and expected output, you can write the missing
implementation as follows:

@RequestMapping(value = "/fraudcheck", method = PUT)
public FraudCheckResult fraudCheck(@RequestBody FraudCheck fraudCheck) {
if (amountGreaterThanThreshold(fraudCheck)) {
 return new FraudCheckResult(FraudCheckStatus.FRAUD, AMOUNT_TOO_HIGH);
}
return new FraudCheckResult(FraudCheckStatus.OK, NO_REASON);
}

When you run ./mvnw clean install again, the tests pass. Since the Spring Cloud Contract Verifier
plugin adds the tests to the generated-test-sources, you can actually run those tests from your IDE.

Deploying Your Application

Once you finish your work, you can deploy your changes. To do so, you must first merge the branch
by running the following commands:

$ git checkout master
$ git merge --no-ff contract-change-pr
$ git push origin master

Your CI might run something a command such as ./mvnw clean deploy, which would publish both
the application and the stub artifacts.

Consumer Side (Loan Issuance), Final Step

As a developer of the loan issuance service (a consumer of the Fraud Detection server), I want to:

• Merge our feature branch to master

• Switch to online mode of working

The following UML diagram shows the final state of the process:

[getting started cdc client final] | getting-started-cdc-client-final.png

Merging a Branch to Master

The following commands show one way to merge a branch into master with Git:

$ git checkout master
$ git merge --no-ff contract-change-pr

Working Online

Now you can disable the offline work for Spring Cloud Contract Stub Runner and indicate where
the repository with your stubs is located. At this moment, the stubs of the server side are
automatically downloaded from Nexus/Artifactory. You can set the value of stubsMode to REMOTE. The
following code shows an example of achieving the same thing by changing the properties:

stubrunner:
 ids: 'com.example:http-server-dsl:+:stubs:8080'
 repositoryRoot: https://repo.spring.io/libs-snapshot

That’s it. You have finished the tutorial.

14.1.5. Next Steps

Hopefully, this section provided some of the Spring Cloud Contract basics and got you on your way
to writing your own applications. If you are a task-oriented type of developer, you might want to
jump over to spring.io and check out some of the getting started guides that solve specific “How do I
do that with Spring?” problems. We also have Spring Cloud Contract-specific “how-to” reference
documentation.

Otherwise, the next logical step is to read Using Spring Cloud Contract. If you are really impatient,
you could also jump ahead and read about Spring Cloud Contract features.

In addition to that you can check out the following videos:

• "Consumer Driven Contracts and Your Microservice Architecture" by Olga Maciaszek-Sharma
and Marcin Grzejszczak

https://spring.io
https://spring.io/guides/
howto.pdf#howto
using.pdf#using
project-features.pdf#project-features

• "Contract Tests in the Enterprise" by Marcin Grzejszczak

• "Why Contract Tests Matter?" by Marcin Grzejszczak

https://www.youtube.com/watch?v=pDkC_00hhvA
https://www.youtube.com/watch?v=ZyHG-VOzPZg

You can find the default project samples at samples.

You can find the Spring Cloud Contract workshops here.

14.2. Using Spring Cloud Contract
This section goes into more detail about how you should use Spring Cloud Contract. It covers topics
such as flows of how to work with Spring Cloud Contract. We also cover some Spring Cloud Contract
best practices.

If you are starting out with Spring Cloud Contract, you should probably read the Getting Started
guide before diving into this section.

14.2.1. Provider Contract Testing with Stubs in Nexus or Artifactory

You can check the Developing Your First Spring Cloud Contract based application link to see the
provider contract testing with stubs in the Nexus or Artifactory flow.

You can also check the workshop page for a step-by-step instruction on how to do this flow.

14.2.2. Provider Contract Testing with Stubs in Git

In this flow, we perform the provider contract testing (the producer has no knowledge of how
consumers use their API). The stubs are uploaded to a separate repository (they are not uploaded to
Artifactory or Nexus).

Prerequisites

Before testing provider contracts with stubs in git, you must provide a git repository that contains
all the stubs for each producer. For an example of such a project, see this samples or this sample.
As a result of pushing stubs there, the repository has the following structure:

https://www.youtube.com/watch?v=TvpkZu1e2Dc
https://github.com/spring-cloud-samples/spring-cloud-contract-samples
https://cloud-samples.spring.io/spring-cloud-contract-samples/
getting-started.pdf#getting-started
getting-started.pdf#getting-started-first-application
https://cloud-samples.spring.io/spring-cloud-contract-samples/tutorials/contracts_on_the_producer_side.html
https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x//contract_git
https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x//contract_git

$ tree .
└── META-INF
 └── folder.with.group.id.as.its.name
 └── folder-with-artifact-id
 └── folder-with-version
 ├── contractA.groovy
 ├── contractB.yml
 └── contractC.groovy

You must also provide consumer code that has Spring Cloud Contract Stub Runner set up. For an
example of such a project, see this sample and search for a BeerControllerGitTest test. You must
also provide producer code that has Spring Cloud Contract set up, together with a plugin. For an
example of such a project, see this sample.

The Flow

The flow looks exactly as the one presented in Developing Your First Spring Cloud Contract based
application, but the Stub Storage implementation is a git repository.

You can read more about setting up a git repository and setting consumer and producer side in the
How To page of the documentation.

Consumer setup

In order to fetch the stubs from a git repository instead of Nexus or Artifactory, you need to use the
git protocol in the URL of the repositoryRoot property in Stub Runner. The following example
shows how to set it up:

https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x//consumer
https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x//producer_with_empty_git
getting-started.pdf#getting-started-first-application
getting-started.pdf#getting-started-first-application
howto.pdf#how-to-use-git-as-storage

Annotation

@AutoConfigureStubRunner(
stubsMode = StubRunnerProperties.StubsMode.REMOTE,
 repositoryRoot = "git://git@github.com:spring-cloud-samples/spring-cloud-
contract-nodejs-contracts-git.git",
 ids = "com.example:artifact-id:0.0.1")

JUnit 4 Rule

@Rule
 public StubRunnerRule rule = new StubRunnerRule()
 .downloadStub("com.example","artifact-id", "0.0.1")
 .repoRoot("git://git@github.com:spring-cloud-samples/spring-cloud-
contract-nodejs-contracts-git.git")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE);

JUnit 5 Extension

@RegisterExtension
 public StubRunnerExtension stubRunnerExtension = new StubRunnerExtension()
 .downloadStub("com.example","artifact-id", "0.0.1")
 .repoRoot("git://git@github.com:spring-cloud-samples/spring-cloud-
contract-nodejs-contracts-git.git")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE);

Setting up the Producer

In order to push the stubs to a git repository instead of Nexus or Artifactory, you need to use the git
protocol in the URL of the plugin setup. Also you need to explicitly tell the plugin to push the stubs
at the end of the build process. The following example shows how to do so:

maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <!-- Base class mappings etc. -->

 <!-- We want to pick contracts from a Git repository -->
 <contractsRepositoryUrl>git://git://git@github.com:spring-cloud-
samples/spring-cloud-contract-nodejs-contracts-git.git</contractsRepositoryUrl>

 <!-- We reuse the contract dependency section to set up the path
 to the folder that contains the contract definitions. In our case the
 path will be /groupId/artifactId/version/contracts -->
 <contractDependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>${project.artifactId}</artifactId>
 <version>${project.version}</version>
 </contractDependency>

 <!-- The contracts mode can't be classpath -->
 <contractsMode>REMOTE</contractsMode>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <!-- By default we will not push the stubs back to SCM,
 you have to explicitly add it as a goal -->
 <goal>pushStubsToScm</goal>
 </goals>
 </execution>
 </executions>
</plugin>

gradle

contracts {
 // We want to pick contracts from a Git repository
 contractDependency {
 stringNotation = "${project.group}:${project.name}:${project.version}"
 }
 /*
 We reuse the contract dependency section to set up the path
 to the folder that contains the contract definitions. In our case the
 path will be /groupId/artifactId/version/contracts
 */
 contractRepository {
 repositoryUrl = "git://git://git@github.com:spring-cloud-samples/spring-
cloud-contract-nodejs-contracts-git.git"
 }
 // The mode can't be classpath
 contractsMode = "REMOTE"
 // Base class mappings etc.
}

/*
In this scenario we want to publish stubs to SCM whenever
the `publish` task is executed
*/
publish.dependsOn("publishStubsToScm")

You can read more about setting up a git repository in the How To page of the documentation.

14.2.3. Consumer Driven Contracts with Contracts on the Producer Side

See Step-by-step Guide to Consumer Driven Contracts (CDC) with Contracts on the Producer Side to
see the Consumer Driven Contracts with contracts on the producer side flow.

14.2.4. Consumer Driven Contracts with Contracts in an External Repository

In this flow, we perform Consumer Driven Contract testing. The contract definitions are stored in a
separate repository.

See the workshop page for step-by-step instructions on how to do this flow.

Prerequisites

To use consumer-driven contracts with the contracts held in an external repository, you need to set
up a git repository that:

• Contains all the contract definitions for each producer.

• Can package the contract definitions in a JAR.

howto.pdf#how-to-use-git-as-storage
getting-started.pdf#getting-started-cdc
https://cloud-samples.spring.io/spring-cloud-contract-samples/tutorials/contracts_on_the_producer_side.html

• For each contract producer, contains a way (for example, pom.xml) to install stubs locally
through the Spring Cloud Contract Plugin (SCC Plugin)

For more information, see the How To section, where we describe how to set up such a repository
For an example of such a project, see this sample.

You also need consumer code that has Spring Cloud Contract Stub Runner set up. For an example of
such a project, see this sample. You also need producer code that has Spring Cloud Contract set up,
together with a plugin. For an example of such a project, see this sample. The stub storage is Nexus
or Artifactory

At a high level, the flow looks as follows:

1. The consumer works with the contract definitions from the separate repository

2. Once the consumer’s work is done, a branch with working code is done on the consumer side
and a pull request is made to the separate repository that holds the contract definitions.

3. The producer takes over the pull request to the separate repository with contract definitions
and installs the JAR with all contracts locally.

4. The producer generates tests from the locally stored JAR and writes the missing implementation
to make the tests pass.

5. Once the producer’s work is done, the pull request to the repository that holds the contract
definitions is merged.

6. After the CI tool builds the repository with the contract definitions and the JAR with contract
definitions gets uploaded to Nexus or Artifactory, the producer can merge its branch.

7. Finally, the consumer can switch to working online to fetch stubs of the producer from a remote
location, and the branch can be merged to master.

Consumer Flow

The consumer:

1. Writes a test that would send a request to the producer.

The test fails due to no server being present.

2. Clones the repository that holds the contract definitions.

3. Set up the requirements as contracts under the folder with the consumer name as a subfolder of
the producer.

For example, for a producer named producer and a consumer named consumer, the contracts
would be stored under src/main/resources/contracts/producer/consumer/)

4. Once the contracts are defined, installs the producer stubs to local storage, as the following
example shows:

howto.pdf#how-to-common-repo-with-contracts
https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x//beer_contracts
https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x//consumer
https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x//producer_with_external_contracts

$ cd src/main/resource/contracts/producer
$./mvnw clean install

5. Sets up Spring Cloud Contract (SCC) Stub Runner in the consumer tests, to:

◦ Fetch the producer stubs from local storage.

◦ Work in the stubs-per-consumer mode (this enables consumer driven contracts mode).

The SCC Stub Runner:

◦ Fetches the producer stubs.

◦ Runs an in-memory HTTP server stub with the producer stubs.

◦ Now your test communicates with the HTTP server stub and your tests pass

◦ Create a pull request to the repository with contract definitions, with the new contracts for
the producer

◦ Branch your consumer code, until the producer team has merged their code

The following UML diagram shows the consumer flow:

[flow overview consumer cdc external consumer] | flow-overview-consumer-cdc-external-

consumer.png

Producer Flow

The producer:

1. Takes over the pull request to the repository with contract definitions. You can do it from the
command line, as follows

$ git checkout -b the_branch_with_pull_request master
git pull https://github.com/user_id/project_name.git
the_branch_with_pull_request

2. Installs the contract definitions, as follows

$./mvnw clean install

3. Sets up the plugin to fetch the contract definitions from a JAR instead of from
src/test/resources/contracts, as follows:

Maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <!-- We want to use the JAR with contracts with the following
coordinates -->
 <contractDependency>
 <groupId>com.example</groupId>
 <artifactId>beer-contracts</artifactId>
 </contractDependency>
 <!-- The JAR with contracts should be taken from Maven local -->
 <contractsMode>LOCAL</contractsMode>
 <!-- ... additional configuration -->
 </configuration>
</plugin>

Gradle

contracts {
 // We want to use the JAR with contracts with the following coordinates
 // group id `com.example`, artifact id `beer-contracts`, LATEST version and
NO classifier
 contractDependency {
 stringNotation = 'com.example:beer-contracts:+:'
 }
 // The JAR with contracts should be taken from Maven local
 contractsMode = "LOCAL"
 // Additional configuration
}

4. Runs the build to generate tests and stubs, as follows:

Maven

./mvnw clean install

Gradle

./gradlew clean build

5. Writes the missing implementation, to make the tests pass.

6. Merges the pull request to the repository with contract definitions, as follows:

$ git commit -am "Finished the implementation to make the contract tests pass"
$ git checkout master
$ git merge --no-ff the_branch_with_pull_request
$ git push origin master

7. The CI system builds the project with the contract definitions and uploads the JAR with the
contract definitions to Nexus or Artifactory.

8. Switches to working remotely.

9. Sets up the plugin so that the contract definitions are no longer taken from the local storage but
from a remote location, as follows:

Maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <!-- We want to use the JAR with contracts with the following
coordinates -->
 <contractDependency>
 <groupId>com.example</groupId>
 <artifactId>beer-contracts</artifactId>
 </contractDependency>
 <!-- The JAR with contracts should be taken from a remote location -->
 <contractsMode>REMOTE</contractsMode>
 <!-- ... additional configuration -->
 </configuration>
</plugin>

Gradle

contracts {
 // We want to use the JAR with contracts with the following coordinates
 // group id `com.example`, artifact id `beer-contracts`, LATEST version and
NO classifier
 contractDependency {
 stringNotation = 'com.example:beer-contracts:+:'
 }
 // The JAR with contracts should be taken from a remote location
 contractsMode = "REMOTE"
 // Additional configuration
}

10. Merges the producer code with the new implementation.

11. The CI system:

◦ Builds the project

◦ Generates tests, stubs, and the stub JAR

◦ Uploads the artifact with the application and the stubs to Nexus or Artifactory.

The following UML diagram shows the producer process:

[flow overview consumer cdc external producer] | flow-overview-consumer-cdc-external-

producer.png

14.2.5. Consumer Driven Contracts with Contracts on the Producer Side,
Pushed to Git

You can check Step-by-step Guide to Consumer Driven Contracts (CDC) with contracts laying on the
producer side to see the consumer driven contracts with contracts on the producer side flow.

The stub storage implementation is a git repository. We describe its setup in the Provider Contract
Testing with Stubs in Git section.

You can read more about setting up a git repository for the consumer and producer sides in the
How To page of the documentation.

14.2.6. Provider Contract Testing with Stubs in Artifactory for a non-Spring
Application

The Flow

You can check Developing Your First Spring Cloud Contract based application to see the flow for
provider contract testing with stubs in Nexus or Artifactory.

Setting up the Consumer

For the consumer side, you can use a JUnit rule. That way, you need not start a Spring context. The
follwoing listing shows such a rule (in JUnit4 and JUnit 5);

JUnit 4 Rule

@Rule
 public StubRunnerRule rule = new StubRunnerRule()
 .downloadStub("com.example","artifact-id", "0.0.1")
 .repoRoot("git://git@github.com:spring-cloud-samples/spring-cloud-
contract-nodejs-contracts-git.git")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE);

JUnit 5 Extension

@Rule
 public StubRunnerExtension stubRunnerExtension = new StubRunnerExtension()
 .downloadStub("com.example","artifact-id", "0.0.1")
 .repoRoot("git://git@github.com:spring-cloud-samples/spring-cloud-
contract-nodejs-contracts-git.git")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE);

getting-started.pdf#getting-started-cdc
getting-started.pdf#getting-started-cdc
howto.pdf#how-to-use-git-as-storage
getting-started.pdf#getting-started-first-application

Setting up the Producer

By default, the Spring Cloud Contract Plugin uses Rest Assured’s MockMvc setup for the generated
tests. Since non-Spring applications do not use MockMvc, you can change the testMode to EXPLICIT to
send a real request to an application bound at a specific port.

In this example, we use a framework called Javalin to start a non-Spring HTTP server.

Assume that we have the following application:

package com.example.demo;

import io.javalin.Javalin;

public class DemoApplication {

 public static void main(String[] args) {
 new DemoApplication().run(7000);
 }

 public Javalin start(int port) {
 return Javalin.create().start(port);
 }

 public Javalin registerGet(Javalin app) {
 return app.get("/", ctx -> ctx.result("Hello World"));
 }

 public Javalin run(int port) {
 return registerGet(start(port));
 }

}

Given that application, we can set up the plugin to use the EXPLICIT mode (that is, to send out
requests to a real port), as follows:

https://javalin.io

maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <baseClassForTests>com.example.demo.BaseClass</baseClassForTests>
 <!-- This will setup the EXPLICIT mode for the tests -->
 <testMode>EXPLICIT</testMode>
 </configuration>
</plugin>

gradle

contracts {
 // This will setup the EXPLICIT mode for the tests
 testMode = "EXPLICIT"
 baseClassForTests = "com.example.demo.BaseClass"
}

The base class might resemble the following:

import io.javalin.Javalin;
import io.restassured.RestAssured;
import org.junit.After;
import org.junit.Before;
import org.springframework.util.SocketUtils;

public class BaseClass {

 Javalin app;

 @Before
 public void setup() {
 // pick a random port
 int port = SocketUtils.findAvailableTcpPort();
 // start the application at a random port
 this.app = start(port);
 // tell Rest Assured where the started application is
 RestAssured.baseURI = "http://localhost:" + port;
 }

 @After
 public void close() {
 // stop the server after each test
 this.app.stop();
 }

 private Javalin start(int port) {
 // reuse the production logic to start a server
 return new DemoApplication().run(port);
 }
}

With such a setup:

• We have setup the Spring Cloud Contract plugin to use the EXPLICIT mode to send real requests
instead of mocked ones.

• We have defined a base class that:

◦ Starts the HTTP server on a random port for each test.

◦ Sets Rest Assured to send requests to that port.

◦ Closes the HTTP server after each test.

14.2.7. Provider Contract Testing with Stubs in Artifactory in a non-JVM
World

In this flow, we assume that:

• The API Producer and API Consumer are non-JVM applications.

• The contract definitions are written in YAML.

• The Stub Storage is Artifactory or Nexus.

• Spring Cloud Contract Docker (SCC Docker) and Spring Cloud Contract Stub Runner Docker (SCC
Stub Runner Docker) images are used.

You can read more about how to use Spring Cloud Contract with Docker in this page.

Here, you can read a blog post about how to use Spring Cloud Contract in a polyglot world.

Here, you can find a sample of a NodeJS application that uses Spring Cloud Contract both as a
producer and a consumer.

Producer Flow

At a high level, the producer:

1. Writes contract definitions (for example, in YAML).

2. Sets up the build tool to:

a. Start the application with mocked services on a given port.

If mocking is not possible, you can setup the infrastructure and define tests in a stateful way.

b. Run the Spring Cloud Contract Docker image and pass the port of a running application as
an environment variable.

The SCC Docker image: * Generates the tests from the attached volume. * Runs the tests against the
running application.

Upon test completion, stubs get uploaded to a stub storage site (such as Artifactory or Git).

The following UML diagram shows the producer flow:

[flows provider non jvm producer] | flows-provider-non-jvm-producer.png

Consumer Flow

At a high level, the consumer:

1. Sets up the build tool to:

◦ Start the Spring Cloud Contract Stub Runner Docker image and start the stubs.

The environment variables configure:

◦ The stubs to fetch.

◦ The location of the repositories.

Note that:

docker-project.html
https://spring.io/blog/2018/02/13/spring-cloud-contract-in-a-polyglot-world
https://github.com/spring-cloud-samples/spring-cloud-contract-nodejs/

◦ To use the local storage, you can also attach it as a volume.

◦ The ports at which the stubs are running need to be exposed.

2. Run the application tests against the running stubs.

The following UML diagram shows the consumer flow:

[flows provider non jvm consumer] | flows-provider-non-jvm-consumer.png

14.2.8. Provider Contract Testing with REST Docs and Stubs in Nexus or
Artifactory

In this flow, we do not use a Spring Cloud Contract plugin to generate tests and stubs. We write
Spring RESTDocs and, from them, we automatically generate stubs. Finally, we set up our builds to
package the stubs and upload them to the stub storage site — in our case, Nexus or Artifactory.

See the workshop page for a step-by-step instruction on how to use this flow.

Producer Flow

As a producer, we:

1. We write RESTDocs tests of our API.

2. We add Spring Cloud Contract Stub Runner starter to our build (spring-cloud-starter-contract-
stub-runner), as follows

https://spring.io/projects/spring-restdocs
https://cloud-samples.spring.io/spring-cloud-contract-samples/tutorials/rest_docs.html

maven

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-stub-runner</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

gradle

dependencies {
 testImplementation 'org.springframework.cloud:spring-cloud-starter-
contract-stub-runner'
}

dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
 }
}

3. We set up the build tool to package our stubs, as follows:

maven

<!-- pom.xml -->
<plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <id>stub</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <inherited>false</inherited>
 <configuration>
 <attach>true</attach>
 <descriptors>
 ${basedir}/src/assembly/stub.xml
 </descriptors>
 </configuration>
 </execution>
 </executions>
 </plugin>
</plugins>

<!-- src/assembly/stub.xml -->
<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.3 http://maven.apache.org/xsd/assembly-1.1.3.xsd">
 <id>stubs</id>
 <formats>
 <format>jar</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <fileSet>
 <directory>${project.build.directory}/generated-
snippets/stubs</directory>
 <outputDirectory>META-
INF/${project.groupId}/${project.artifactId}/${project.version}/mappings</outpu
tDirectory>
 <includes>
 <include>**/*</include>
 </includes>
 </fileSet>
 </fileSets>
</assembly>

gradle

task stubsJar(type: Jar) {
 classifier = "stubs"
 into("META-
INF/${project.group}/${project.name}/${project.version}/mappings") {
 include('**/*.*')
 from("${project.buildDir}/generated-snippets/stubs")
 }
}
// we need the tests to pass to build the stub jar
stubsJar.dependsOn(test)
bootJar.dependsOn(stubsJar)

Now, when we run the tests, stubs are automatically published and packaged.

The following UML diagram shows the producer flow:

[flows provider rest docs producer] | flows-provider-rest-docs-producer.png

Consumer Flow

Since the consumer flow is not affected by the tool used to generate the stubs, you can check
Developing Your First Spring Cloud Contract based application to see the flow for consumer side of
the provider contract testing with stubs in Nexus or Artifactory.

14.2.9. What to Read Next

You should now understand how you can use Spring Cloud Contract and some best practices that
you should follow. You can now go on to learn about specific Spring Cloud Contract features, or you
could skip ahead and read about the advanced features of Spring Cloud Contract.

14.3. Spring Cloud Contract Features
This section dives into the details of Spring Cloud Contract. Here you can learn about the key
features that you may want to use and customize. If you have not already done so, you might want
to read the "getting-started.pdf" and "using.pdf" sections, so that you have a good grounding of the
basics.

14.3.1. Contract DSL

Spring Cloud Contract supports the DSLs written in the following languages:

• Groovy

• YAML

• Java

• Kotlin

getting-started.pdf#getting-started-first-application-consumer
project-features.pdf#project-features
advanced.html
getting-started.pdf#getting-started
using.pdf#using

 Spring Cloud Contract supports defining multiple contracts in a single file.

The following example shows a contract definition:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 request {
 method 'PUT'
 url '/api/12'
 headers {
 header 'Content-Type':
'application/vnd.org.springframework.cloud.contract.verifier.twitter-places-
analyzer.v1+json'
 }
 body '''\
 [{
 "created_at": "Sat Jul 26 09:38:57 +0000 2014",
 "id": 492967299297845248,
 "id_str": "492967299297845248",
 "text": "Gonna see you at Warsaw",
 "place":
 {
 "attributes":{},
 "bounding_box":
 {
 "coordinates":
 [[
 [-77.119759,38.791645],
 [-76.909393,38.791645],
 [-76.909393,38.995548],
 [-77.119759,38.995548]
]],
 "type":"Polygon"
 },
 "country":"United States",
 "country_code":"US",
 "full_name":"Washington, DC",
 "id":"01fbe706f872cb32",
 "name":"Washington",
 "place_type":"city",
 "url": "https://api.twitter.com/1/geo/id/01fbe706f872cb32.json"
 }
 }]
'''
 }
 response {
 status OK()
 }
}

yml

description: Some description
name: some name
priority: 8
ignored: true
request:
 url: /foo
 queryParameters:
 a: b
 b: c
 method: PUT
 headers:
 foo: bar
 fooReq: baz
 body:
 foo: bar
 matchers:
 body:
 - path: $.foo
 type: by_regex
 value: bar
 headers:
 - key: foo
 regex: bar
response:
 status: 200
 headers:
 foo2: bar
 foo3: foo33
 fooRes: baz
 body:
 foo2: bar
 foo3: baz
 nullValue: null
 matchers:
 body:
 - path: $.foo2
 type: by_regex
 value: bar
 - path: $.foo3
 type: by_command
 value: executeMe($it)
 - path: $.nullValue
 type: by_null
 value: null
 headers:
 - key: foo2
 regex: bar
 - key: foo3
 command: andMeToo($it)

java

import java.util.Collection;
import java.util.Collections;
import java.util.function.Supplier;

import org.springframework.cloud.contract.spec.Contract;
import org.springframework.cloud.contract.verifier.util.ContractVerifierUtil;

class contract_rest implements Supplier<Collection<Contract>> {

 @Override
 public Collection<Contract> get() {
 return Collections.singletonList(Contract.make(c -> {
 c.description("Some description");
 c.name("some name");
 c.priority(8);
 c.ignored();
 c.request(r -> {
 r.url("/foo", u -> {
 u.queryParameters(q -> {
 q.parameter("a", "b");
 q.parameter("b", "c");
 });
 });
 r.method(r.PUT());
 r.headers(h -> {
 h.header("foo", r.value(r.client(r.regex("bar")),
r.server("bar")));
 h.header("fooReq", "baz");
 });
 r.body(ContractVerifierUtil.map().entry("foo", "bar"));
 r.bodyMatchers(m -> {
 m.jsonPath("$.foo", m.byRegex("bar"));
 });
 });
 c.response(r -> {
 r.fixedDelayMilliseconds(1000);
 r.status(r.OK());
 r.headers(h -> {
 h.header("foo2", r.value(r.server(r.regex("bar")),
r.client("bar")));
 h.header("foo3", r.value(r.server(r.execute("andMeToo($it)")),
 r.client("foo33")));
 h.header("fooRes", "baz");
 });
 r.body(ContractVerifierUtil.map().entry("foo2", "bar")
 .entry("foo3", "baz").entry("nullValue", null));
 r.bodyMatchers(m -> {
 m.jsonPath("$.foo2", m.byRegex("bar"));
 m.jsonPath("$.foo3", m.byCommand("executeMe($it)"));

 m.jsonPath("$.nullValue", m.byNull());
 });
 });
 }));
 }

}

kotlin

import org.springframework.cloud.contract.spec.ContractDsl.Companion.contract
import org.springframework.cloud.contract.spec.withQueryParameters

contract {
 name = "some name"
 description = "Some description"
 priority = 8
 ignored = true
 request {
 url = url("/foo") withQueryParameters {
 parameter("a", "b")
 parameter("b", "c")
 }
 method = PUT
 headers {
 header("foo", value(client(regex("bar")), server("bar")))
 header("fooReq", "baz")
 }
 body = body(mapOf("foo" to "bar"))
 bodyMatchers {
 jsonPath("$.foo", byRegex("bar"))
 }
 }
 response {
 delay = fixedMilliseconds(1000)
 status = OK
 headers {
 header("foo2", value(server(regex("bar")), client("bar")))
 header("foo3", value(server(execute("andMeToo(\$it)")),
client("foo33")))
 header("fooRes", "baz")
 }
 body = body(mapOf(
 "foo" to "bar",
 "foo3" to "baz",
 "nullValue" to null
))
 bodyMatchers {
 jsonPath("$.foo2", byRegex("bar"))
 jsonPath("$.foo3", byCommand("executeMe(\$it)"))
 jsonPath("$.nullValue", byNull)
 }
 }
}

You can compile contracts to stubs mapping by using the following standalone
Maven command:

mvn org.springframework.cloud:spring-cloud-contract-maven-
plugin:convert

Contract DSL in Groovy

If you are not familiar with Groovy, do not worry - you can use Java syntax in the Groovy DSL files
as well.

If you decide to write the contract in Groovy, do not be alarmed if you have not used Groovy before.
Knowledge of the language is not really needed, as the Contract DSL uses only a tiny subset of it
(only literals, method calls, and closures). Also, the DSL is statically typed, to make it programmer-
readable without any knowledge of the DSL itself.

Remember that, inside the Groovy contract file, you have to provide the fully
qualified name to the Contract class and make static imports, such as
org.springframework.cloud.spec.Contract.make { … }. You can also provide an
import to the Contract class (import org.springframework.cloud.spec.Contract) and
then call Contract.make { … }.

Contract DSL in Java

To write a contract definition in Java, you need to create a class, that implements either the
Supplier<Contract> interface for a single contract or Supplier<Collection<Contract>> for multiple
contracts.

You can also write the contract definitions under src/test/java (e.g. src/test/java/contracts) so
that you don’t have to modify the classpath of your project. In this case you’ll have to provide a new
location of contract definitions to your Spring Cloud Contract plugin.

Maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <contractsDirectory>src/test/java/contracts</contractsDirectory>
 </configuration>
</plugin>

Gradle

contracts {
 contractsDslDir = new File(project.rootDir, "src/test/java/contracts")
}

Contract DSL in Kotlin

To get started with writing contracts in Kotlin you would need to start with a (newly created) Kotlin
Script file (.kts). Just like the with the Java DSL you can put your contracts in any directory of your
choice. The Maven and Gradle plugins will look at the src/test/resources/contracts directory by
default.

You need to explicitly pass the the spring-cloud-contract-spec-kotlin dependency to your project
plugin setup.

Maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <!-- some config -->
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-spec-kotlin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 </dependency>
 </dependencies>
</plugin>

<dependencies>
 <!-- Remember to add this for the DSL support in the IDE and on the
consumer side -->
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-spec-kotlin</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

Gradle

buildscript {
 repositories {
 // ...
 }
 dependencies {
 classpath "org.springframework.cloud:spring-cloud-contract-gradle-
plugin:${scContractVersion}"
 // remember to add this:
 classpath "org.springframework.cloud:spring-cloud-contract-spec-
kotlin:${scContractVersion}"
 }
}

dependencies {
 // ...

 // Remember to add this for the DSL support in the IDE and on the consumer
side
 testImplementation "org.springframework.cloud:spring-cloud-contract-spec-
kotlin"
}

Remember that, inside the Kotlin Script file, you have to provide the fully qualified
name to the ContractDSL class. Generally you would use its contract function like
this: org.springframework.cloud.contract.spec.ContractDsl.contract { … }. You
can also provide an import to the contract function (import
org.springframework.cloud.contract.spec.ContractDsl.Companion.contract) and
then call contract { … }.

Contract DSL in YML

In order to see a schema of a YAML contract, you can check out the YML Schema page.

Limitations

The support for verifying the size of JSON arrays is experimental. If you want to
turn it on, set the value of the following system property to true:
spring.cloud.contract.verifier.assert.size. By default, this feature is set to false.
You can also set the assertJsonSize property in the plugin configuration.

Because JSON structure can have any form, it can be impossible to parse it
properly when using the Groovy DSL and the value(consumer(…), producer(…))

notation in GString. That is why you should use the Groovy Map notation.

yml-schema.html

Common Top-Level Elements

The following sections describe the most common top-level elements:

• Description

• Name

• Ignoring Contracts

• Contracts in Progress

• Passing Values from Files

Description

You can add a description to your contract. The description is arbitrary text. The following code
shows an example:

groovy

 org.springframework.cloud.contract.spec.Contract.make {
 description('''
given:
 An input
when:
 Sth happens
then:
 Output
''')
 }

yml

description: Some description
name: some name
priority: 8
ignored: true
request:
 url: /foo
 queryParameters:
 a: b
 b: c
 method: PUT
 headers:
 foo: bar
 fooReq: baz
 body:
 foo: bar
 matchers:
 body:
 - path: $.foo
 type: by_regex
 value: bar
 headers:
 - key: foo
 regex: bar
response:
 status: 200
 headers:
 foo2: bar
 foo3: foo33
 fooRes: baz
 body:
 foo2: bar
 foo3: baz
 nullValue: null
 matchers:
 body:
 - path: $.foo2
 type: by_regex
 value: bar
 - path: $.foo3
 type: by_command
 value: executeMe($it)
 - path: $.nullValue
 type: by_null
 value: null
 headers:
 - key: foo2
 regex: bar
 - key: foo3
 command: andMeToo($it)

java

Contract.make(c -> {
 c.description("Some description");
}));

kotlin

contract {
 description = """
given:
 An input
when:
 Sth happens
then:
 Output
"""
}

Name

You can provide a name for your contract. Assume that you provided the following name: should
register a user. If you do so, the name of the autogenerated test is
validate_should_register_a_user. Also, the name of the stub in a WireMock stub is
should_register_a_user.json.

You must ensure that the name does not contain any characters that make the
generated test not compile. Also, remember that, if you provide the same name for
multiple contracts, your autogenerated tests fail to compile and your generated
stubs override each other.

The following example shows how to add a name to a contract:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 name("some_special_name")
}

yml

name: some name

java

Contract.make(c -> {
 c.name("some name");
}));

kotlin

contract {
 name = "some_special_name"
}

Ignoring Contracts

If you want to ignore a contract, you can either set a value for ignored contracts in the plugin
configuration or set the ignored property on the contract itself. The following example shows how
to do so:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 ignored()
}

yml

ignored: true

java

Contract.make(c -> {
 c.ignored();
}));

kotlin

contract {
 ignored = true
}

Contracts in Progress

A contract in progress will not generate tests on the producer side, but will allow generation of
stubs.

Use this feature with caution as it may lead to false positives. You generate stubs
for your consumers to use without actually having the implementation in place!

If you want to set a contract in progress the following example shows how to do so:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 inProgress()
}

yml

inProgress: true

java

Contract.make(c -> {
 c.inProgress();
}));

kotlin

contract {
 inProgress = true
}

You can set the value of the failOnInProgress Spring Cloud Contract plugin property to ensure that
your build will break when at least one contract in progress remains in your sources.

Passing Values from Files

Starting with version 1.2.0, you can pass values from files. Assume that you have the following
resources in your project:

└── src
 └── test
 └── resources
 └── contracts
 ├── readFromFile.groovy
 ├── request.json
 └── response.json

Further assume that your contract is as follows:

groovy

/*
 * Copyright 2013-2020 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import org.springframework.cloud.contract.spec.Contract

Contract.make {
 request {
 method('PUT')
 headers {
 contentType(applicationJson())
 }
 body(file("request.json"))
 url("/1")
 }
 response {
 status OK()
 body(file("response.json"))
 headers {
 contentType(applicationJson())
 }
 }
}

yml

request:
 method: GET
 url: /foo
 bodyFromFile: request.json
response:
 status: 200
 bodyFromFile: response.json

java

import java.util.Collection;
import java.util.Collections;
import java.util.function.Supplier;

import org.springframework.cloud.contract.spec.Contract;

class contract_rest_from_file implements Supplier<Collection<Contract>> {

 @Override
 public Collection<Contract> get() {
 return Collections.singletonList(Contract.make(c -> {
 c.request(r -> {
 r.url("/foo");
 r.method(r.GET());
 r.body(r.file("request.json"));
 });
 c.response(r -> {
 r.status(r.OK());
 r.body(r.file("response.json"));
 });
 }));
 }

}

kotlin

import org.springframework.cloud.contract.spec.ContractDsl.Companion.contract

contract {
 request {
 url = url("/1")
 method = PUT
 headers {
 contentType = APPLICATION_JSON
 }
 body = bodyFromFile("request.json")
 }
 response {
 status = OK
 body = bodyFromFile("response.json")
 headers {
 contentType = APPLICATION_JSON
 }
 }
}

Further assume that the JSON files is as follows:

request.json

{
 "status": "REQUEST"
}

response.json

{
 "status": "RESPONSE"
}

When test or stub generation takes place, the contents of the request.json and response.json files
are passed to the body of a request or a response. The name of the file needs to be a file with
location relative to the folder in which the contract lays.

If you need to pass the contents of a file in binary form, you can use the fileAsBytes method in the
coded DSL or a bodyFromFileAsBytes field in YAML.

The following example shows how to pass the contents of binary files:

groovy

import org.springframework.cloud.contract.spec.Contract

Contract.make {
 request {
 url("/1")
 method(PUT())
 headers {
 contentType(applicationOctetStream())
 }
 body(fileAsBytes("request.pdf"))
 }
 response {
 status 200
 body(fileAsBytes("response.pdf"))
 headers {
 contentType(applicationOctetStream())
 }
 }
}

yml

request:
 url: /1
 method: PUT
 headers:
 Content-Type: application/octet-stream
 bodyFromFileAsBytes: request.pdf
response:
 status: 200
 bodyFromFileAsBytes: response.pdf
 headers:
 Content-Type: application/octet-stream

java

import java.util.Collection;
import java.util.Collections;
import java.util.function.Supplier;

import org.springframework.cloud.contract.spec.Contract;

class contract_rest_from_pdf implements Supplier<Collection<Contract>> {

 @Override
 public Collection<Contract> get() {
 return Collections.singletonList(Contract.make(c -> {
 c.request(r -> {
 r.url("/1");
 r.method(r.PUT());
 r.body(r.fileAsBytes("request.pdf"));
 r.headers(h -> {
 h.contentType(h.applicationOctetStream());
 });
 });
 c.response(r -> {
 r.status(r.OK());
 r.body(r.fileAsBytes("response.pdf"));
 r.headers(h -> {
 h.contentType(h.applicationOctetStream());
 });
 });
 }));
 }

}

kotlin

import org.springframework.cloud.contract.spec.ContractDsl.Companion.contract

contract {
 request {
 url = url("/1")
 method = PUT
 headers {
 contentType = APPLICATION_OCTET_STREAM
 }
 body = bodyFromFileAsBytes("contracts/request.pdf")
 }
 response {
 status = OK
 body = bodyFromFileAsBytes("contracts/response.pdf")
 headers {
 contentType = APPLICATION_OCTET_STREAM
 }
 }
}

You should use this approach whenever you want to work with binary payloads,
both for HTTP and messaging.

14.3.2. Contracts for HTTP

Spring Cloud Contract lets you verify applications that use REST or HTTP as a means of
communication. Spring Cloud Contract verifies that, for a request that matches the criteria from the
request part of the contract, the server provides a response that is in keeping with the response part
of the contract. Subsequently, the contracts are used to generate WireMock stubs that, for any
request matching the provided criteria, provide a suitable response.

HTTP Top-Level Elements

You can call the following methods in the top-level closure of a contract definition:

• request: Mandatory

• response : Mandatory

• priority: Optional

The following example shows how to define an HTTP request contract:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 // Definition of HTTP request part of the contract
 // (this can be a valid request or invalid depending
 // on type of contract being specified).
 request {
 method GET()
 url "/foo"
 //...
 }

 // Definition of HTTP response part of the contract
 // (a service implementing this contract should respond
 // with following response after receiving request
 // specified in "request" part above).
 response {
 status 200
 //...
 }

 // Contract priority, which can be used for overriding
 // contracts (1 is highest). Priority is optional.
 priority 1
}

yml

priority: 8
request:
...
response:
...

java

org.springframework.cloud.contract.spec.Contract.make(c -> {
 // Definition of HTTP request part of the contract
 // (this can be a valid request or invalid depending
 // on type of contract being specified).
 c.request(r -> {
 r.method(r.GET());
 r.url("/foo");
 // ...
 });

 // Definition of HTTP response part of the contract
 // (a service implementing this contract should respond
 // with following response after receiving request
 // specified in "request" part above).
 c.response(r -> {
 r.status(200);
 // ...
 });

 // Contract priority, which can be used for overriding
 // contracts (1 is highest). Priority is optional.
 c.priority(1);
});

kotlin

contract {
 // Definition of HTTP request part of the contract
 // (this can be a valid request or invalid depending
 // on type of contract being specified).
 request {
 method = GET
 url = url("/foo")
 // ...
 }

 // Definition of HTTP response part of the contract
 // (a service implementing this contract should respond
 // with following response after receiving request
 // specified in "request" part above).
 response {
 status = OK
 // ...
 }

 // Contract priority, which can be used for overriding
 // contracts (1 is highest). Priority is optional.
 priority = 1
}

If you want to make your contract have a higher priority, you need to pass a lower
number to the priority tag or method. For example, a priority with a value of 5
has higher priority than a priority with a value of 10.

HTTP Request

The HTTP protocol requires only the method and the URL to be specified in a request. The same
information is mandatory in request definition of the contract.

The following example shows a contract for a request:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 request {
 // HTTP request method (GET/POST/PUT/DELETE).
 method 'GET'

 // Path component of request URL is specified as follows.
 urlPath('/users')
 }

 response {
 //...
 status 200
 }
}

yml

method: PUT
url: /foo

java

org.springframework.cloud.contract.spec.Contract.make(c -> {
 c.request(r -> {
 // HTTP request method (GET/POST/PUT/DELETE).
 r.method("GET");

 // Path component of request URL is specified as follows.
 r.urlPath("/users");
 });

 c.response(r -> {
 // ...
 r.status(200);
 });
});

kotlin

contract {
 request {
 // HTTP request method (GET/POST/PUT/DELETE).
 method = method("GET")

 // Path component of request URL is specified as follows.
 urlPath = path("/users")
 }
 response {
 // ...
 status = code(200)
 }
}

You can specify an absolute rather than a relative url, but using urlPath is the recommended way,
as doing so makes the tests be host-independent.

The following example uses url:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 request {
 method 'GET'

 // Specifying `url` and `urlPath` in one contract is illegal.
 url('http://localhost:8888/users')
 }

 response {
 //...
 status 200
 }
}

yml

request:
 method: PUT
 urlPath: /foo

java

org.springframework.cloud.contract.spec.Contract.make(c -> {
 c.request(r -> {
 r.method("GET");

 // Specifying `url` and `urlPath` in one contract is illegal.
 r.url("http://localhost:8888/users");
 });

 c.response(r -> {
 // ...
 r.status(200);
 });
});

kotlin

contract {
 request {
 method = GET

 // Specifying `url` and `urlPath` in one contract is illegal.
 url("http://localhost:8888/users")
 }
 response {
 // ...
 status = OK
 }
}

request may contain query parameters, as the following example (which uses urlPath) shows:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 request {
 //...
 method GET()

 urlPath('/users') {

 // Each parameter is specified in form
 // `'paramName' : paramValue` where parameter value
 // may be a simple literal or one of matcher functions,
 // all of which are used in this example.
 queryParameters {

 // If a simple literal is used as value
 // default matcher function is used (equalTo)
 parameter 'limit': 100

 // `equalTo` function simply compares passed value
 // using identity operator (==).
 parameter 'filter': equalTo("email")

 // `containing` function matches strings
 // that contains passed substring.
 parameter 'gender': value(consumer(containing("[mf]")),
producer('mf'))

 // `matching` function tests parameter
 // against passed regular expression.
 parameter 'offset': value(consumer(matching("[0-9]+")),
producer(123))

 // `notMatching` functions tests if parameter
 // does not match passed regular expression.
 parameter 'loginStartsWith':
value(consumer(notMatching(".{0,2}")), producer(3))
 }
 }

 //...
 }

 response {
 //...
 status 200
 }
}

yml

request:
...
queryParameters:
 a: b
 b: c

java

org.springframework.cloud.contract.spec.Contract.make(c -> {
 c.request(r -> {
 // ...
 r.method(r.GET());

 r.urlPath("/users", u -> {

 // Each parameter is specified in form
 // `'paramName' : paramValue` where parameter value
 // may be a simple literal or one of matcher functions,
 // all of which are used in this example.
 u.queryParameters(q -> {

 // If a simple literal is used as value
 // default matcher function is used (equalTo)
 q.parameter("limit", 100);

 // `equalTo` function simply compares passed value
 // using identity operator (==).
 q.parameter("filter", r.equalTo("email"));

 // `containing` function matches strings
 // that contains passed substring.
 q.parameter("gender",
 r.value(r.consumer(r.containing("[mf]")),
 r.producer("mf")));

 // `matching` function tests parameter
 // against passed regular expression.
 q.parameter("offset",
 r.value(r.consumer(r.matching("[0-9]+")),
 r.producer(123)));

 // `notMatching` functions tests if parameter
 // does not match passed regular expression.
 q.parameter("loginStartsWith",
 r.value(r.consumer(r.notMatching(".{0,2}")),
 r.producer(3)));
 });
 });

 // ...
 });

 c.response(r -> {
 // ...
 r.status(200);
 });
});

kotlin

contract {
 request {
 // ...
 method = GET

 // Each parameter is specified in form
 // `'paramName' : paramValue` where parameter value
 // may be a simple literal or one of matcher functions,
 // all of which are used in this example.
 urlPath = path("/users") withQueryParameters {
 // If a simple literal is used as value
 // default matcher function is used (equalTo)
 parameter("limit", 100)

 // `equalTo` function simply compares passed value
 // using identity operator (==).
 parameter("filter", equalTo("email"))

 // `containing` function matches strings
 // that contains passed substring.
 parameter("gender", value(consumer(containing("[mf]")),
producer("mf")))

 // `matching` function tests parameter
 // against passed regular expression.
 parameter("offset", value(consumer(matching("[0-9]+")),
producer(123)))

 // `notMatching` functions tests if parameter
 // does not match passed regular expression.
 parameter("loginStartsWith", value(consumer(notMatching(".{0,2}")),
producer(3)))
 }

 // ...
 }
 response {
 // ...
 status = code(200)
 }
}

request can contain additional request headers, as the following example shows:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 request {
 //...
 method GET()
 url "/foo"

 // Each header is added in form `'Header-Name' : 'Header-Value'`.
 // there are also some helper methods
 headers {
 header 'key': 'value'
 contentType(applicationJson())
 }

 //...
 }

 response {
 //...
 status 200
 }
}

yml

request:
...
headers:
 foo: bar
 fooReq: baz

java

org.springframework.cloud.contract.spec.Contract.make(c -> {
 c.request(r -> {
 // ...
 r.method(r.GET());
 r.url("/foo");

 // Each header is added in form `'Header-Name' : 'Header-Value'`.
 // there are also some helper methods
 r.headers(h -> {
 h.header("key", "value");
 h.contentType(h.applicationJson());
 });

 // ...
 });

 c.response(r -> {
 // ...
 r.status(200);
 });
});

kotlin

contract {
 request {
 // ...
 method = GET
 url = url("/foo")

 // Each header is added in form `'Header-Name' : 'Header-Value'`.
 // there are also some helper variables
 headers {
 header("key", "value")
 contentType = APPLICATION_JSON
 }

 // ...
 }
 response {
 // ...
 status = OK
 }
}

request may contain additional request cookies, as the following example shows:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 request {
 //...
 method GET()
 url "/foo"

 // Each Cookies is added in form `'Cookie-Key' : 'Cookie-Value'`.
 // there are also some helper methods
 cookies {
 cookie 'key': 'value'
 cookie('another_key', 'another_value')
 }

 //...
 }

 response {
 //...
 status 200
 }
}

yml

request:
...
cookies:
 foo: bar
 fooReq: baz

java

org.springframework.cloud.contract.spec.Contract.make(c -> {
 c.request(r -> {
 // ...
 r.method(r.GET());
 r.url("/foo");

 // Each Cookies is added in form `'Cookie-Key' : 'Cookie-Value'`.
 // there are also some helper methods
 r.cookies(ck -> {
 ck.cookie("key", "value");
 ck.cookie("another_key", "another_value");
 });

 // ...
 });

 c.response(r -> {
 // ...
 r.status(200);
 });
});

kotlin

contract {
 request {
 // ...
 method = GET
 url = url("/foo")

 // Each Cookies is added in form `'Cookie-Key' : 'Cookie-Value'`.
 // there are also some helper methods
 cookies {
 cookie("key", "value")
 cookie("another_key", "another_value")
 }

 // ...
 }

 response {
 // ...
 status = code(200)
 }
}

request may contain a request body, as the following example shows:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 request {
 //...
 method GET()
 url "/foo"

 // Currently only JSON format of request body is supported.
 // Format will be determined from a header or body's content.
 body '''{ "login" : "john", "name": "John The Contract" }'''
 }

 response {
 //...
 status 200
 }
}

yml

request:
...
body:
 foo: bar

java

org.springframework.cloud.contract.spec.Contract.make(c -> {
 c.request(r -> {
 // ...
 r.method(r.GET());
 r.url("/foo");

 // Currently only JSON format of request body is supported.
 // Format will be determined from a header or body's content.
 r.body("{ \"login\" : \"john\", \"name\": \"John The Contract\" }");
 });

 c.response(r -> {
 // ...
 r.status(200);
 });
});

kotlin

contract {
 request {
 // ...
 method = GET
 url = url("/foo")

 // Currently only JSON format of request body is supported.
 // Format will be determined from a header or body's content.
 body = body("{ \"login\" : \"john\", \"name\": \"John The Contract\" }")
 }
 response {
 // ...
 status = OK
 }
}

request can contain multipart elements. To include multipart elements, use the multipart

method/section, as the following examples show:

groovy

org.springframework.cloud.contract.spec.Contract contractDsl =
org.springframework.cloud.contract.spec.Contract.make {
 request {
 method 'PUT'
 url '/multipart'
 headers {
 contentType('multipart/form-data;boundary=AaB03x')
 }
 multipart(
 // key (parameter name), value (parameter value) pair
 formParameter: $(c(regex('".+"')), p('"formParameterValue"')),
 someBooleanParameter: $(c(regex(anyBoolean())), p('true')),
 // a named parameter (e.g. with `file` name) that represents file
with
 // `name` and `content`. You can also call `named("fileName",
"fileContent")`
 file: named(
 // name of the file
 name: $(c(regex(nonEmpty())), p('filename.csv')),
 // content of the file
 content: $(c(regex(nonEmpty())), p('file content')),
 // content type for the part
 contentType: $(c(regex(nonEmpty())),
p('application/json')))
)
 }

 response {
 status OK()
 }
}
org.springframework.cloud.contract.spec.Contract contractDsl =
org.springframework.cloud.contract.spec.Contract.make {
 request {
 method "PUT"
 url "/multipart"
 headers {
 contentType('multipart/form-data;boundary=AaB03x')
 }
 multipart(
 file: named(
 name: value(stub(regex('.+')), test('file')),
 content: value(stub(regex('.+')), test([100, 117, 100, 97]
as byte[]))
)
)
 }
 response {
 status 200
 }
}

yml

request:
 method: PUT
 url: /multipart
 headers:
 Content-Type: multipart/form-data;boundary=AaB03x
 multipart:
 params:
 # key (parameter name), value (parameter value) pair
 formParameter: '"formParameterValue"'
 someBooleanParameter: true
 named:
 - paramName: file
 fileName: filename.csv
 fileContent: file content
 matchers:
 multipart:
 params:
 - key: formParameter
 regex: ".+"
 - key: someBooleanParameter
 predefined: any_boolean
 named:
 - paramName: file
 fileName:
 predefined: non_empty
 fileContent:
 predefined: non_empty
response:
 status: 200

java

import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.function.Supplier;

import org.springframework.cloud.contract.spec.Contract;
import org.springframework.cloud.contract.spec.internal.DslProperty;
import org.springframework.cloud.contract.spec.internal.Request;
import org.springframework.cloud.contract.verifier.util.ContractVerifierUtil;

class contract_multipart implements Supplier<Collection<Contract>> {

 private static Map<String, DslProperty> namedProps(Request r) {
 Map<String, DslProperty> map = new HashMap<>();
 // name of the file

 map.put("name", r.$(r.c(r.regex(r.nonEmpty())), r.p("filename.csv")));
 // content of the file
 map.put("content", r.$(r.c(r.regex(r.nonEmpty())), r.p("file content")));
 // content type for the part
 map.put("contentType", r.$(r.c(r.regex(r.nonEmpty())),
r.p("application/json")));
 return map;
 }

 @Override
 public Collection<Contract> get() {
 return Collections.singletonList(Contract.make(c -> {
 c.request(r -> {
 r.method("PUT");
 r.url("/multipart");
 r.headers(h -> {
 h.contentType("multipart/form-data;boundary=AaB03x");
 });
 r.multipart(ContractVerifierUtil.map()
 // key (parameter name), value (parameter value) pair
 .entry("formParameter",
 r.$(r.c(r.regex("\".+\"")),
 r.p("\"formParameterValue\"")))
 .entry("someBooleanParameter",
 r.$(r.c(r.regex(r.anyBoolean())), r.p("true")))
 // a named parameter (e.g. with `file` name) that
represents file
 // with
 // `name` and `content`. You can also call
`named("fileName",
 // "fileContent")`
 .entry("file", r.named(namedProps(r))));
 });
 c.response(r -> {
 r.status(r.OK());
 });
 }));
 }

}

kotlin

import org.springframework.cloud.contract.spec.ContractDsl.Companion.contract

contract {
 request {
 method = PUT
 url = url("/multipart")
 multipart {
 field("formParameter", value(consumer(regex("\".+\"")),
producer("\"formParameterValue\"")))
 field("someBooleanParameter", value(consumer(anyBoolean),
producer("true")))
 field("file",
 named(
 // name of the file
 value(consumer(regex(nonEmpty)), producer("filename.csv")),
 // content of the file
 value(consumer(regex(nonEmpty)), producer("file content")),
 // content type for the part
 value(consumer(regex(nonEmpty)), producer("application/json"))
)
)
 }
 headers {
 contentType = "multipart/form-data;boundary=AaB03x"
 }
 }
 response {
 status = OK
 }
}

In the preceding example, we define parameters in either of two ways:

Coded DSL

• Directly, by using the map notation, where the value can be a dynamic property (such as
formParameter: $(consumer(…), producer(…))).

• By using the named(…) method that lets you set a named parameter. A named parameter can set
a name and content. You can call it either by using a method with two arguments, such as
named("fileName", "fileContent"), or by using a map notation, such as named(name: "fileName",
content: "fileContent").

YAML

• The multipart parameters are set in the multipart.params section.

• The named parameters (the fileName and fileContent for a given parameter name) can be set in
the multipart.named section. That section contains the paramName (the name of the parameter),
fileName (the name of the file), fileContent (the content of the file) fields.

• The dynamic bits can be set via the matchers.multipart section.

◦ For parameters, use the params section, which can accept regex or a predefined regular
expression.

◦ for named params, use the named section where first you define the parameter name with
paramName. Then you can pass the parametrization of either fileName or fileContent in a regex
or in a predefined regular expression.

From the contract in the preceding example, the generated test and stubs look as follows:

Test

// given:
 MockMvcRequestSpecification request = given()
 .header("Content-Type", "multipart/form-data;boundary=AaB03x")
 .param("formParameter", "\"formParameterValue\"")
 .param("someBooleanParameter", "true")
 .multiPart("file", "filename.csv", "file content".getBytes());

 // when:
 ResponseOptions response = given().spec(request)
 .put("/multipart");

 // then:
 assertThat(response.statusCode()).isEqualTo(200);

Stub

 '''
{
 "request" : {
 "url" : "/multipart",
 "method" : "PUT",
 "headers" : {
 "Content-Type" : {
 "matches" : "multipart/form-data;boundary=AaB03x.*"
 }
 },
 "bodyPatterns" : [{
 "matches" : ".*--(.*)\\r\\nContent-Disposition: form-data;
name=\\"formParameter\\"\\r\\n(Content-Type: .*\\r\\n)?(Content-Transfer-Encoding:
.*\\r\\n)?(Content-Length: \\\\d+\\r\\n)?\\r\\n\\".+\\"\\r\\n--\\\\1.*"
 }, {
 "matches" : ".*--(.*)\\r\\nContent-Disposition: form-data;
name=\\"someBooleanParameter\\"\\r\\n(Content-Type: .*\\r\\n)?(Content-Transfer-
Encoding: .*\\r\\n)?(Content-Length: \\\\d+\\r\\n)?\\r\\n(true|false)\\r\\n--
\\\\1.*"
 }, {
 "matches" : ".*--(.*)\\r\\nContent-Disposition: form-data; name=\\"file\\";
filename=\\"[\\\\S\\\\s]+\\"\\r\\n(Content-Type: .*\\r\\n)?(Content-Transfer-
Encoding: .*\\r\\n)?(Content-Length: \\\\d+\\r\\n)?\\r\\n[\\\\S\\\\s]+\\r\\n--
\\\\1.*"
 }]
 },
 "response" : {
 "status" : 200,
 "transformers" : ["response-template", "foo-transformer"]
 }
}
 '''

HTTP Response

The response must contain an HTTP status code and may contain other information. The following
code shows an example:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 request {
 //...
 method GET()
 url "/foo"
 }
 response {
 // Status code sent by the server
 // in response to request specified above.
 status OK()
 }
}

yml

response:
...
status: 200

java

org.springframework.cloud.contract.spec.Contract.make(c -> {
 c.request(r -> {
 // ...
 r.method(r.GET());
 r.url("/foo");
 });
 c.response(r -> {
 // Status code sent by the server
 // in response to request specified above.
 r.status(r.OK());
 });
});

kotlin

contract {
 request {
 // ...
 method = GET
 url =url("/foo")
 }
 response {
 // Status code sent by the server
 // in response to request specified above.
 status = OK
 }
}

Besides status, the response may contain headers, cookies, and a body, which are specified the same
way as in the request (see HTTP Request).

In the Groovy DSL, you can reference the
org.springframework.cloud.contract.spec.internal.HttpStatus methods to provide
a meaningful status instead of a digit. For example, you can call OK() for a status
200 or BAD_REQUEST() for 400.

Dynamic properties

The contract can contain some dynamic properties: timestamps, IDs, and so on. You do not want to
force the consumers to stub their clocks to always return the same value of time so that it gets
matched by the stub.

For the Groovy DSL, you can provide the dynamic parts in your contracts in two ways: pass them
directly in the body or set them in a separate section called bodyMatchers.

Before 2.0.0, these were set by using testMatchers and stubMatchers. See the
migration guide for more information.

For YAML, you can use only the matchers section.

Entries inside the matchers must reference existing elements of the payload. For
more information check this issue.

Dynamic Properties inside the Body

This section is valid only for the Coded DSL (Groovy, Java etc.). Check out the
Dynamic Properties in the Matchers Sections section for YAML examples of a
similar feature.

You can set the properties inside the body either with the value method or, if you use the Groovy

https://github.com/spring-cloud/spring-cloud-contract/wiki/Spring-Cloud-Contract-2.0-Migration-Guide
https://github.com/spring-cloud/spring-cloud-contract/issues/722

map notation, with $(). The following example shows how to set dynamic properties with the value
method:

value

value(consumer(...), producer(...))
value(c(...), p(...))
value(stub(...), test(...))
value(client(...), server(...))

$

$(consumer(...), producer(...))
$(c(...), p(...))
$(stub(...), test(...))
$(client(...), server(...))

Both approaches work equally well. The stub and client methods are aliases over the consumer
method. Subsequent sections take a closer look at what you can do with those values.

Regular Expressions

This section is valid only for Groovy DSL. Check out the Dynamic Properties in the
Matchers Sections section for YAML examples of a similar feature.

You can use regular expressions to write your requests in the contract DSL. Doing so is particularly
useful when you want to indicate that a given response should be provided for requests that follow
a given pattern. Also, you can use regular expressions when you need to use patterns and not exact
values both for your tests and your server-side tests.

Make sure that regex matches a whole region of a sequence, as, internally, a call to
Pattern.matches() is called. For instance, abc does not match aabc, but .abc does. There are several
additional known limitations as well.

The following example shows how to use regular expressions to write a request:

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#matches

groovy

org.springframework.cloud.contract.spec.Contract.make {
 request {
 method('GET')
 url $(consumer(~/\/[0-9]{2}/), producer('/12'))
 }
 response {
 status OK()
 body(
 id: $(anyNumber()),
 surname: $(
 consumer('Kowalsky'),
 producer(regex('[a-zA-Z]+'))
),
 name: 'Jan',
 created: $(consumer('2014-02-02 12:23:43'),
producer(execute('currentDate(it)'))),
 correlationId: value(consumer('5d1f9fef-e0dc-4f3d-a7e4-
72d2220dd827'),
 producer(regex('[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-
9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}'))
)
)
 headers {
 header 'Content-Type': 'text/plain'
 }
 }
}

java

org.springframework.cloud.contract.spec.Contract.make(c -> {
 c.request(r -> {
 r.method("GET");
 r.url(r.$(r.consumer(r.regex("\\/[0-9]{2}")), r.producer("/12")));
 });
 c.response(r -> {
 r.status(r.OK());
 r.body(ContractVerifierUtil.map().entry("id", r.$(r.anyNumber()))
 .entry("surname", r.$(r.consumer("Kowalsky"),
 r.producer(r.regex("[a-zA-Z]+")))));
 r.headers(h -> {
 h.header("Content-Type", "text/plain");
 });
 });
});

kotlin

contract {
 request {
 method = method("GET")
 url = url(v(consumer(regex("\\/[0-9]{2}")), producer("/12")))
 }
 response {
 status = OK
 body(mapOf(
 "id" to v(anyNumber),
 "surname" to v(consumer("Kowalsky"), producer(regex("[a-zA-Z]+")))
))
 headers {
 header("Content-Type", "text/plain")
 }
 }
}

You can also provide only one side of the communication with a regular expression. If you do so,
then the contract engine automatically provides the generated string that matches the provided
regular expression. The following code shows an example for Groovy:

org.springframework.cloud.contract.spec.Contract.make {
 request {
 method 'PUT'
 url value(consumer(regex('/foo/[0-9]{5}')))
 body([
 requestElement: $(consumer(regex('[0-9]{5}')))
])
 headers {
 header('header',
$(consumer(regex('application\\/vnd\\.fraud\\.v1\\+json;.*'))))
 }
 }
 response {
 status OK()
 body([
 responseElement: $(producer(regex('[0-9]{7}')))
])
 headers {
 contentType("application/vnd.fraud.v1+json")
 }
 }
}

In the preceding example, the opposite side of the communication has the respective data
generated for request and response.

Spring Cloud Contract comes with a series of predefined regular expressions that you can use in
your contracts, as the following example shows:

public static RegexProperty onlyAlphaUnicode() {
 return new RegexProperty(ONLY_ALPHA_UNICODE).asString();
}

public static RegexProperty alphaNumeric() {
 return new RegexProperty(ALPHA_NUMERIC).asString();
}

public static RegexProperty number() {
 return new RegexProperty(NUMBER).asDouble();
}

public static RegexProperty positiveInt() {
 return new RegexProperty(POSITIVE_INT).asInteger();
}

public static RegexProperty anyBoolean() {
 return new RegexProperty(TRUE_OR_FALSE).asBooleanType();
}

public static RegexProperty anInteger() {
 return new RegexProperty(INTEGER).asInteger();
}

public static RegexProperty aDouble() {
 return new RegexProperty(DOUBLE).asDouble();
}

public static RegexProperty ipAddress() {
 return new RegexProperty(IP_ADDRESS).asString();
}

public static RegexProperty hostname() {
 return new RegexProperty(HOSTNAME_PATTERN).asString();
}

public static RegexProperty email() {
 return new RegexProperty(EMAIL).asString();
}

public static RegexProperty url() {
 return new RegexProperty(URL).asString();
}

public static RegexProperty httpsUrl() {
 return new RegexProperty(HTTPS_URL).asString();
}

public static RegexProperty uuid() {
 return new RegexProperty(UUID).asString();
}

public static RegexProperty isoDate() {
 return new RegexProperty(ANY_DATE).asString();
}

public static RegexProperty isoDateTime() {
 return new RegexProperty(ANY_DATE_TIME).asString();
}

public static RegexProperty isoTime() {
 return new RegexProperty(ANY_TIME).asString();
}

public static RegexProperty iso8601WithOffset() {
 return new RegexProperty(ISO8601_WITH_OFFSET).asString();
}

public static RegexProperty nonEmpty() {
 return new RegexProperty(NON_EMPTY).asString();
}

public static RegexProperty nonBlank() {
 return new RegexProperty(NON_BLANK).asString();
}

In your contract, you can use it as follows (example for the Groovy DSL):

Contract dslWithOptionalsInString = Contract.make {
 priority 1
 request {
 method POST()
 url '/users/password'
 headers {
 contentType(applicationJson())
 }
 body(
 email: $(consumer(optional(regex(email()))), producer('abc@abc.com')),
 callback_url: $(consumer(regex(hostname())),
producer('http://partners.com'))
)
 }
 response {
 status 404
 headers {
 contentType(applicationJson())
 }
 body(
 code: value(consumer("123123"), producer(optional("123123"))),
 message: "User not found by email = [${value(producer(regex(email())),
consumer('not.existing@user.com'))}]"
)
 }
}

To make matters even simpler, you can use a set of predefined objects that automatically assume
that you want a regular expression to be passed. All of those methods start with the any prefix, as
follows:

T anyAlphaUnicode();

T anyAlphaNumeric();

T anyNumber();

T anyInteger();

T anyPositiveInt();

T anyDouble();

T anyHex();

T aBoolean();

T anyIpAddress();

T anyHostname();

T anyEmail();

T anyUrl();

T anyHttpsUrl();

T anyUuid();

T anyDate();

T anyDateTime();

T anyTime();

T anyIso8601WithOffset();

T anyNonBlankString();

T anyNonEmptyString();

T anyOf(String... values);

The following example shows how you can reference those methods:

groovy

Contract contractDsl = Contract.make {
 name "foo"
 label 'trigger_event'
 input {
 triggeredBy('toString()')
 }
 outputMessage {
 sentTo 'topic.rateablequote'
 body([
 alpha : $(anyAlphaUnicode()),
 number : $(anyNumber()),
 anInteger : $(anyInteger()),
 positiveInt : $(anyPositiveInt()),
 aDouble : $(anyDouble()),
 aBoolean : $(aBoolean()),
 ip : $(anyIpAddress()),
 hostname : $(anyHostname()),
 email : $(anyEmail()),
 url : $(anyUrl()),
 httpsUrl : $(anyHttpsUrl()),
 uuid : $(anyUuid()),
 date : $(anyDate()),
 dateTime : $(anyDateTime()),
 time : $(anyTime()),
 iso8601WithOffset: $(anyIso8601WithOffset()),
 nonBlankString : $(anyNonBlankString()),
 nonEmptyString : $(anyNonEmptyString()),
 anyOf : $(anyOf('foo', 'bar'))
])
 }
}

kotlin

contract {
 name = "foo"
 label = "trigger_event"
 input {
 triggeredBy = "toString()"
 }
 outputMessage {
 sentTo = sentTo("topic.rateablequote")
 body(mapOf(
 "alpha" to v(anyAlphaUnicode),
 "number" to v(anyNumber),
 "anInteger" to v(anyInteger),
 "positiveInt" to v(anyPositiveInt),
 "aDouble" to v(anyDouble),
 "aBoolean" to v(aBoolean),
 "ip" to v(anyIpAddress),
 "hostname" to v(anyAlphaUnicode),
 "email" to v(anyEmail),
 "url" to v(anyUrl),
 "httpsUrl" to v(anyHttpsUrl),
 "uuid" to v(anyUuid),
 "date" to v(anyDate),
 "dateTime" to v(anyDateTime),
 "time" to v(anyTime),
 "iso8601WithOffset" to v(anyIso8601WithOffset),
 "nonBlankString" to v(anyNonBlankString),
 "nonEmptyString" to v(anyNonEmptyString),
 "anyOf" to v(anyOf('foo', 'bar'))
))
 headers {
 header("Content-Type", "text/plain")
 }
 }
}

Limitations

Due to certain limitations of the Xeger library that generates a string out of a regex,
do not use the $ and ^ signs in your regex if you rely on automatic generation. See
Issue 899.

Do not use a LocalDate instance as a value for $ (for example,
$(consumer(LocalDate.now()))). It causes a java.lang.StackOverflowError. Use
$(consumer(LocalDate.now().toString())) instead. See Issue 900.

https://github.com/spring-cloud/spring-cloud-contract/issues/899
https://github.com/spring-cloud/spring-cloud-contract/issues/900

Passing Optional Parameters

This section is valid only for Groovy DSL. Check out the Dynamic Properties in the
Matchers Sections section for YAML examples of a similar feature.

You can provide optional parameters in your contract. However, you can provide optional
parameters only for the following:

• The STUB side of the Request

• The TEST side of the Response

The following example shows how to provide optional parameters:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 priority 1
 name "optionals"
 request {
 method 'POST'
 url '/users/password'
 headers {
 contentType(applicationJson())
 }
 body(
 email: $(consumer(optional(regex(email()))),
producer('abc@abc.com')),
 callback_url: $(consumer(regex(hostname())),
producer('https://partners.com'))
)
 }
 response {
 status 404
 headers {
 header 'Content-Type': 'application/json'
 }
 body(
 code: value(consumer("123123"), producer(optional("123123")))
)
 }
}

java

org.springframework.cloud.contract.spec.Contract.make(c -> {
 c.priority(1);
 c.name("optionals");
 c.request(r -> {
 r.method("POST");
 r.url("/users/password");
 r.headers(h -> {
 h.contentType(h.applicationJson());
 });
 r.body(ContractVerifierUtil.map()
 .entry("email",
 r.$(r.consumer(r.optional(r.regex(r.email()))),
 r.producer("abc@abc.com")))
 .entry("callback_url", r.$(r.consumer(r.regex(r.hostname())),
 r.producer("https://partners.com"))));
 });
 c.response(r -> {
 r.status(404);
 r.headers(h -> {
 h.header("Content-Type", "application/json");
 });
 r.body(ContractVerifierUtil.map().entry("code", r.value(
 r.consumer("123123"), r.producer(r.optional("123123")))));
 });
});

kotlin

contract { c ->
 priority = 1
 name = "optionals"
 request {
 method = POST
 url = url("/users/password")
 headers {
 contentType = APPLICATION_JSON
 }
 body = body(mapOf(
 "email" to v(consumer(optional(regex(email))),
producer("abc@abc.com")),
 "callback_url" to v(consumer(regex(hostname)),
producer("https://partners.com"))
))
 }
 response {
 status = NOT_FOUND
 headers {
 header("Content-Type", "application/json")
 }
 body(mapOf(
 "code" to value(consumer("123123"), producer(optional("123123")))
))
 }
}

By wrapping a part of the body with the optional() method, you create a regular expression that
must be present 0 or more times.

If you use Spock, the following test would be generated from the previous example:

groovy

 """\
package com.example

import com.jayway.jsonpath.DocumentContext
import com.jayway.jsonpath.JsonPath
import spock.lang.Specification
import io.restassured.module.mockmvc.specification.MockMvcRequestSpecification
import io.restassured.response.ResponseOptions

import static
org.springframework.cloud.contract.verifier.assertion.SpringCloudContractAssertion
s.assertThat
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.*
import static com.toomuchcoding.jsonassert.JsonAssertion.assertThatJson
import static io.restassured.module.mockmvc.RestAssuredMockMvc.*

@SuppressWarnings("rawtypes")
class FooSpec extends Specification {

\tdef validate_optionals() throws Exception {
\t\tgiven:
\t\t\tMockMvcRequestSpecification request = given()
\t\t\t\t\t.header("Content-Type", "application/json")
\t\t\t\t\t.body('''{"email":"abc@abc.com","callback_url":"https://partners.com"}''
')

\t\twhen:
\t\t\tResponseOptions response = given().spec(request)
\t\t\t\t\t.post("/users/password")

\t\tthen:
\t\t\tresponse.statusCode() == 404
\t\t\tresponse.header("Content-Type") == 'application/json'

\t\tand:
\t\t\tDocumentContext parsedJson = JsonPath.parse(response.body.asString())
\t\t\tassertThatJson(parsedJson).field("['code']").matches("(123123)?")
\t}

}
"""

The following stub would also be generated:

 '''
{
 "request" : {
 "url" : "/users/password",
 "method" : "POST",
 "bodyPatterns" : [{
 "matchesJsonPath" : "$[?(@.['email'] =~ /([a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-
]+\\\\.[a-zA-Z]{2,6})?/)]"
 }, {
 "matchesJsonPath" : "$[?(@.['callback_url'] =~
/((http[s]?|ftp):\\\\/)\\\\/?([^:\\\\/\\\\s]+)(:[0-9]{1,5})?/)]"
 }],
 "headers" : {
 "Content-Type" : {
 "equalTo" : "application/json"
 }
 }
 },
 "response" : {
 "status" : 404,
 "body" : "{\\"code\\":\\"123123\\",\\"message\\":\\"User not found by email ==
[not.existing@user.com]\\"}",
 "headers" : {
 "Content-Type" : "application/json"
 }
 },
 "priority" : 1
}
'''

Executing Custom Methods on the Server Side

This section is valid only for Groovy DSL. Check out the Dynamic Properties in the
Matchers Sections section for YAML examples of a similar feature.

You can define a method call that runs on the server side during the test. Such a method can be
added to the class defined as baseClassForTests in the configuration. The following code shows an
example of the contract portion of the test case:

groovy

method GET()

java

r.method(r.GET());

kotlin

method = GET

The following code shows the base class portion of the test case:

abstract class BaseMockMvcSpec extends Specification {

 def setup() {
 RestAssuredMockMvc.standaloneSetup(new PairIdController())
 }

 void isProperCorrelationId(Integer correlationId) {
 assert correlationId == 123456
 }

 void isEmpty(String value) {
 assert value == null
 }

}

You cannot use both a String and execute to perform concatenation. For example,
calling header('Authorization', 'Bearer ' + execute('authToken()')) leads to
improper results. Instead, call header('Authorization', execute('authToken()'))

and ensure that the authToken() method returns everything you need.

The type of the object read from the JSON can be one of the following, depending on the JSON path:

• String: If you point to a String value in the JSON.

• JSONArray: If you point to a List in the JSON.

• Map: If you point to a Map in the JSON.

• Number: If you point to Integer, Double, and other numeric type in the JSON.

• Boolean: If you point to a Boolean in the JSON.

In the request part of the contract, you can specify that the body should be taken from a method.

You must provide both the consumer and the producer side. The execute part is
applied for the whole body, not for parts of it.

The following example shows how to read an object from JSON:

Contract contractDsl = Contract.make {
 request {
 method 'GET'
 url '/something'
 body(
 $(c('foo'), p(execute('hashCode()')))
)
 }
 response {
 status OK()
 }
}

The preceding example results in calling the hashCode() method in the request body. It should
resemble the following code:

// given:
 MockMvcRequestSpecification request = given()
 .body(hashCode());

// when:
 ResponseOptions response = given().spec(request)
 .get("/something");

// then:
 assertThat(response.statusCode()).isEqualTo(200);

Referencing the Request from the Response

The best situation is to provide fixed values, but sometimes you need to reference a request in your
response.

If you write contracts in the Groovy DSL, you can use the fromRequest() method, which lets you
reference a bunch of elements from the HTTP request. You can use the following options:

• fromRequest().url(): Returns the request URL and query parameters.

• fromRequest().query(String key): Returns the first query parameter with a given name.

• fromRequest().query(String key, int index): Returns the nth query parameter with a given
name.

• fromRequest().path(): Returns the full path.

• fromRequest().path(int index): Returns the nth path element.

• fromRequest().header(String key): Returns the first header with a given name.

• fromRequest().header(String key, int index): Returns the nth header with a given name.

• fromRequest().body(): Returns the full request body.

• fromRequest().body(String jsonPath): Returns the element from the request that matches the
JSON Path.

If you use the YAML contract definition or the Java one, you have to use the Handlebars {{{ }}}
notation with custom Spring Cloud Contract functions to achieve this. In that case, you can use the
following options:

• {{{ request.url }}}: Returns the request URL and query parameters.

• {{{ request.query.key.[index] }}}: Returns the nth query parameter with a given name. For
example, for a key of thing, the first entry is {{{ request.query.thing.[0] }}}

• {{{ request.path }}}: Returns the full path.

• {{{ request.path.[index] }}}: Returns the nth path element. For example, the first entry is `{{{
request.path.[0] }}}

• {{{ request.headers.key }}}: Returns the first header with a given name.

• {{{ request.headers.key.[index] }}}: Returns the nth header with a given name.

• {{{ request.body }}}: Returns the full request body.

• {{{ jsonpath this 'your.json.path' }}}: Returns the element from the request that matches the
JSON Path. For example, for a JSON path of $.here, use {{{ jsonpath this '$.here' }}}

Consider the following contract:

groovy

Contract contractDsl = Contract.make {
 request {
 method 'GET'
 url('/api/v1/xxxx') {
 queryParameters {
 parameter('foo', 'bar')
 parameter('foo', 'bar2')
 }
 }
 headers {
 header(authorization(), 'secret')
 header(authorization(), 'secret2')
 }
 body(foo: 'bar', baz: 5)
 }
 response {
 status OK()
 headers {
 header(authorization(), "foo ${fromRequest().header(authorization())}

https://handlebarsjs.com/

bar")
 }
 body(
 url: fromRequest().url(),
 path: fromRequest().path(),
 pathIndex: fromRequest().path(1),
 param: fromRequest().query('foo'),
 paramIndex: fromRequest().query('foo', 1),
 authorization: fromRequest().header('Authorization'),
 authorization2: fromRequest().header('Authorization', 1),
 fullBody: fromRequest().body(),
 responseFoo: fromRequest().body('$.foo'),
 responseBaz: fromRequest().body('$.baz'),
 responseBaz2: "Bla bla ${fromRequest().body('$.foo')} bla bla",
 rawUrl: fromRequest().rawUrl(),
 rawPath: fromRequest().rawPath(),
 rawPathIndex: fromRequest().rawPath(1),
 rawParam: fromRequest().rawQuery('foo'),
 rawParamIndex: fromRequest().rawQuery('foo', 1),
 rawAuthorization: fromRequest().rawHeader('Authorization'),
 rawAuthorization2: fromRequest().rawHeader('Authorization', 1),
 rawResponseFoo: fromRequest().rawBody('$.foo'),
 rawResponseBaz: fromRequest().rawBody('$.baz'),
 rawResponseBaz2: "Bla bla ${fromRequest().rawBody('$.foo')} bla
bla"
)
 }
}
Contract contractDsl = Contract.make {
 request {
 method 'GET'
 url('/api/v1/xxxx') {
 queryParameters {
 parameter('foo', 'bar')
 parameter('foo', 'bar2')
 }
 }
 headers {
 header(authorization(), 'secret')
 header(authorization(), 'secret2')
 }
 body(foo: "bar", baz: 5)
 }
 response {
 status OK()
 headers {
 contentType(applicationJson())
 }
 body('''
 {
 "responseFoo": "{{{ jsonPath request.body '$.foo' }}}",

 "responseBaz": {{{ jsonPath request.body '$.baz' }}},
 "responseBaz2": "Bla bla {{{ jsonPath request.body '$.foo' }}}
bla bla"
 }
 '''.toString())
 }
}

yml

request:
 method: GET
 url: /api/v1/xxxx
 queryParameters:
 foo:
 - bar
 - bar2
 headers:
 Authorization:
 - secret
 - secret2
 body:
 foo: bar
 baz: 5
response:
 status: 200
 headers:
 Authorization: "foo {{{ request.headers.Authorization.0 }}} bar"
 body:
 url: "{{{ request.url }}}"
 path: "{{{ request.path }}}"
 pathIndex: "{{{ request.path.1 }}}"
 param: "{{{ request.query.foo }}}"
 paramIndex: "{{{ request.query.foo.1 }}}"
 authorization: "{{{ request.headers.Authorization.0 }}}"
 authorization2: "{{{ request.headers.Authorization.1 }}"
 fullBody: "{{{ request.body }}}"
 responseFoo: "{{{ jsonpath this '$.foo' }}}"
 responseBaz: "{{{ jsonpath this '$.baz' }}}"
 responseBaz2: "Bla bla {{{ jsonpath this '$.foo' }}} bla bla"

java

package contracts.beer.rest;

import java.util.function.Supplier;

import org.springframework.cloud.contract.spec.Contract;

import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.map;

class shouldReturnStatsForAUser implements Supplier<Contract> {

 @Override
 public Contract get() {
 return Contract.make(c -> {
 c.request(r -> {
 r.method("POST");
 r.url("/stats");
 r.body(map().entry("name", r.anyAlphaUnicode()));
 r.headers(h -> {
 h.contentType(h.applicationJson());
 });
 });
 c.response(r -> {
 r.status(r.OK());
 r.body(map()
 .entry("text",
 "Dear {{{jsonPath request.body '$.name'}}} thanks
for your interested in drinking beer")
 .entry("quantity", r.$(r.c(5), r.p(r.anyNumber()))));
 r.headers(h -> {
 h.contentType(h.applicationJson());
 });
 });
 });
 }

}

kotlin

package contracts.beer.rest

import org.springframework.cloud.contract.spec.ContractDsl.Companion.contract

contract {
 request {
 method = method("POST")
 url = url("/stats")
 body(mapOf(
 "name" to anyAlphaUnicode
))
 headers {
 contentType = APPLICATION_JSON
 }
 }
 response {
 status = OK
 body(mapOf(
 "text" to "Don't worry ${fromRequest().body("$.name")} thanks for your
interested in drinking beer",
 "quantity" to v(c(5), p(anyNumber))
))
 headers {
 contentType = fromRequest().header(CONTENT_TYPE)
 }
 }
}

Running a JUnit test generation leads to a test that resembles the following example:

// given:
 MockMvcRequestSpecification request = given()
 .header("Authorization", "secret")
 .header("Authorization", "secret2")
 .body("{\"foo\":\"bar\",\"baz\":5}");

// when:
 ResponseOptions response = given().spec(request)
 .queryParam("foo","bar")
 .queryParam("foo","bar2")
 .get("/api/v1/xxxx");

// then:
 assertThat(response.statusCode()).isEqualTo(200);
 assertThat(response.header("Authorization")).isEqualTo("foo secret bar");
// and:
 DocumentContext parsedJson = JsonPath.parse(response.getBody().asString());
 assertThatJson(parsedJson).field("['fullBody']").isEqualTo("{\"foo\":\"bar\",\"baz\":
5}");
 assertThatJson(parsedJson).field("['authorization']").isEqualTo("secret");
 assertThatJson(parsedJson).field("['authorization2']").isEqualTo("secret2");
 assertThatJson(parsedJson).field("['path']").isEqualTo("/api/v1/xxxx");
 assertThatJson(parsedJson).field("['param']").isEqualTo("bar");
 assertThatJson(parsedJson).field("['paramIndex']").isEqualTo("bar2");
 assertThatJson(parsedJson).field("['pathIndex']").isEqualTo("v1");
 assertThatJson(parsedJson).field("['responseBaz']").isEqualTo(5);
 assertThatJson(parsedJson).field("['responseFoo']").isEqualTo("bar");
 assertThatJson(parsedJson).field("['url']").isEqualTo("/api/v1/xxxx?foo=bar&foo=bar2"
);
 assertThatJson(parsedJson).field("['responseBaz2']").isEqualTo("Bla bla bar bla
bla");

As you can see, elements from the request have been properly referenced in the response.

The generated WireMock stub should resemble the following example:

{
 "request" : {
 "urlPath" : "/api/v1/xxxx",
 "method" : "POST",
 "headers" : {
 "Authorization" : {
 "equalTo" : "secret2"
 }
 },
 "queryParameters" : {
 "foo" : {
 "equalTo" : "bar2"
 }
 },
 "bodyPatterns" : [{
 "matchesJsonPath" : "$[?(@.['baz'] == 5)]"
 }, {
 "matchesJsonPath" : "$[?(@.['foo'] == 'bar')]"
 }]
 },
 "response" : {
 "status" : 200,
 "body" :
"{\"authorization\":\"{{{request.headers.Authorization.[0]}}}\",\"path\":\"{{{request.
path}}}\",\"responseBaz\":{{{jsonpath this '$.baz'}}}
,\"param\":\"{{{request.query.foo.[0]}}}\",\"pathIndex\":\"{{{request.path.[1]}}}\",\"
responseBaz2\":\"Bla bla {{{jsonpath this '$.foo'}}} bla
bla\",\"responseFoo\":\"{{{jsonpath this
'$.foo'}}}\",\"authorization2\":\"{{{request.headers.Authorization.[1]}}}\",\"fullBody
\":\"{{{escapejsonbody}}}\",\"url\":\"{{{request.url}}}\",\"paramIndex\":\"{{{request.
query.foo.[1]}}}\"}",
 "headers" : {
 "Authorization" : "{{{request.headers.Authorization.[0]}}};foo"
 },
 "transformers" : ["response-template"]
 }
}

Sending a request such as the one presented in the request part of the contract results in sending
the following response body:

{
 "url" : "/api/v1/xxxx?foo=bar&foo=bar2",
 "path" : "/api/v1/xxxx",
 "pathIndex" : "v1",
 "param" : "bar",
 "paramIndex" : "bar2",
 "authorization" : "secret",
 "authorization2" : "secret2",
 "fullBody" : "{\"foo\":\"bar\",\"baz\":5}",
 "responseFoo" : "bar",
 "responseBaz" : 5,
 "responseBaz2" : "Bla bla bar bla bla"
}

This feature works only with WireMock versions greater than or equal to 2.5.1.
The Spring Cloud Contract Verifier uses WireMock’s response-template response
transformer. It uses Handlebars to convert the Mustache {{{ }}} templates into
proper values. Additionally, it registers two helper functions:

• escapejsonbody: Escapes the request body in a format that can be embedded in a JSON.

• jsonpath: For a given parameter, find an object in the request body.

Dynamic Properties in the Matchers Sections

If you work with Pact, the following discussion may seem familiar. Quite a few users are used to
having a separation between the body and setting the dynamic parts of a contract.

You can use the bodyMatchers section for two reasons:

• Define the dynamic values that should end up in a stub. You can set it in the request or
inputMessage part of your contract.

• Verify the result of your test. This section is present in the response or outputMessage side of the
contract.

Currently, Spring Cloud Contract Verifier supports only JSON path-based matchers with the
following matching possibilities:

Coded DSL

• For the stubs (in tests on the consumer’s side):

◦ byEquality(): The value taken from the consumer’s request in the provided JSON path must
be equal to the value provided in the contract.

◦ byRegex(…): The value taken from the consumer’s request in the provided JSON path must
match the regex. You can also pass the type of the expected matched value (for example,
asString(), asLong(), and so on).

◦ byDate(): The value taken from the consumer’s request in the provided JSON path must
match the regex for an ISO Date value.

https://docs.pact.io/

◦ byTimestamp(): The value taken from the consumer’s request in the provided JSON path must
match the regex for an ISO DateTime value.

◦ byTime(): The value taken from the consumer’s request in the provided JSON path must
match the regex for an ISO Time value.

• For the verification (in generated tests on the Producer’s side):

◦ byEquality(): The value taken from the producer’s response in the provided JSON path must
be equal to the provided value in the contract.

◦ byRegex(…): The value taken from the producer’s response in the provided JSON path must
match the regex.

◦ byDate(): The value taken from the producer’s response in the provided JSON path must
match the regex for an ISO Date value.

◦ byTimestamp(): The value taken from the producer’s response in the provided JSON path
must match the regex for an ISO DateTime value.

◦ byTime(): The value taken from the producer’s response in the provided JSON path must
match the regex for an ISO Time value.

◦ byType(): The value taken from the producer’s response in the provided JSON path needs to
be of the same type as the type defined in the body of the response in the contract. byType
can take a closure, in which you can set minOccurrence and maxOccurrence. For the request
side, you should use the closure to assert size of the collection. That way, you can assert the
size of the flattened collection. To check the size of an unflattened collection, use a custom
method with the byCommand(…) testMatcher.

◦ byCommand(…): The value taken from the producer’s response in the provided JSON path is
passed as an input to the custom method that you provide. For example,
byCommand('thing($it)') results in calling a thing method to which the value matching the
JSON Path gets passed. The type of the object read from the JSON can be one of the following,
depending on the JSON path:

▪ String: If you point to a String value.

▪ JSONArray: If you point to a List.

▪ Map: If you point to a Map.

▪ Number: If you point to Integer, Double, or another kind of number.

▪ Boolean: If you point to a Boolean.

◦ byNull(): The value taken from the response in the provided JSON path must be null.

YAML

 See the Groovy section for detailed explanation of what the types mean.

For YAML, the structure of a matcher resembles the following example:

- path: $.thing1
 type: by_regex
 value: thing2
 regexType: as_string

Alternatively, if you want to use one of the predefined regular expressions [only_alpha_unicode,
number, any_boolean, ip_address, hostname, email, url, uuid, iso_date, iso_date_time, iso_time,

iso_8601_with_offset, non_empty, non_blank], you can use something similar to the following
example:

- path: $.thing1
 type: by_regex
 predefined: only_alpha_unicode

The following list shows the allowed list of type values:

• For stubMatchers:

◦ by_equality

◦ by_regex

◦ by_date

◦ by_timestamp

◦ by_time

◦ by_type

▪ Two additional fields (minOccurrence and maxOccurrence) are accepted.

• For testMatchers:

◦ by_equality

◦ by_regex

◦ by_date

◦ by_timestamp

◦ by_time

◦ by_type

▪ Two additional fields (minOccurrence and maxOccurrence) are accepted.

◦ by_command

◦ by_null

You can also define which type the regular expression corresponds to in the regexType field. The
following list shows the allowed regular expression types:

• as_integer

• as_double

• as_float

• as_long

• as_short

• as_boolean

• as_string

Consider the following example:

groovy

Contract contractDsl = Contract.make {
 request {
 method 'GET'
 urlPath '/get'
 body([
 duck : 123,
 alpha : 'abc',
 number : 123,
 aBoolean : true,
 date : '2017-01-01',
 dateTime : '2017-01-01T01:23:45',
 time : '01:02:34',
 valueWithoutAMatcher: 'foo',
 valueWithTypeMatch : 'string',
 key : [
 'complex.key': 'foo'
]
])
 bodyMatchers {
 jsonPath('$.duck', byRegex("[0-9]{3}").asInteger())
 jsonPath('$.duck', byEquality())
 jsonPath('$.alpha', byRegex(onlyAlphaUnicode()).asString())
 jsonPath('$.alpha', byEquality())
 jsonPath('$.number', byRegex(number()).asInteger())
 jsonPath('$.aBoolean', byRegex(anyBoolean()).asBooleanType())
 jsonPath('$.date', byDate())
 jsonPath('$.dateTime', byTimestamp())
 jsonPath('$.time', byTime())
 jsonPath("\$.['key'].['complex.key']", byEquality())
 }
 headers {
 contentType(applicationJson())
 }
 }
 response {
 status OK()
 body([
 duck : 123,
 alpha : 'abc',
 number : 123,
 positiveInteger : 1234567890,
 negativeInteger : -1234567890,
 positiveDecimalNumber: 123.4567890,

 negativeDecimalNumber: -123.4567890,
 aBoolean : true,
 date : '2017-01-01',
 dateTime : '2017-01-01T01:23:45',
 time : "01:02:34",
 valueWithoutAMatcher : 'foo',
 valueWithTypeMatch : 'string',
 valueWithMin : [
 1, 2, 3
],
 valueWithMax : [
 1, 2, 3
],
 valueWithMinMax : [
 1, 2, 3
],
 valueWithMinEmpty : [],
 valueWithMaxEmpty : [],
 key : [
 'complex.key': 'foo'
],
 nullValue : null
])
 bodyMatchers {
 // asserts the jsonpath value against manual regex
 jsonPath('$.duck', byRegex("[0-9]{3}").asInteger())
 // asserts the jsonpath value against the provided value
 jsonPath('$.duck', byEquality())
 // asserts the jsonpath value against some default regex
 jsonPath('$.alpha', byRegex(onlyAlphaUnicode()).asString())
 jsonPath('$.alpha', byEquality())
 jsonPath('$.number', byRegex(number()).asInteger())
 jsonPath('$.positiveInteger', byRegex(anInteger()).asInteger())
 jsonPath('$.negativeInteger', byRegex(anInteger()).asInteger())
 jsonPath('$.positiveDecimalNumber', byRegex(aDouble()).asDouble())
 jsonPath('$.negativeDecimalNumber', byRegex(aDouble()).asDouble())
 jsonPath('$.aBoolean', byRegex(anyBoolean()).asBooleanType())
 // asserts vs inbuilt time related regex
 jsonPath('$.date', byDate())
 jsonPath('$.dateTime', byTimestamp())
 jsonPath('$.time', byTime())
 // asserts that the resulting type is the same as in response body
 jsonPath('$.valueWithTypeMatch', byType())
 jsonPath('$.valueWithMin', byType {
 // results in verification of size of array (min 1)
 minOccurrence(1)
 })
 jsonPath('$.valueWithMax', byType {
 // results in verification of size of array (max 3)
 maxOccurrence(3)
 })

 jsonPath('$.valueWithMinMax', byType {
 // results in verification of size of array (min 1 & max 3)
 minOccurrence(1)
 maxOccurrence(3)
 })
 jsonPath('$.valueWithMinEmpty', byType {
 // results in verification of size of array (min 0)
 minOccurrence(0)
 })
 jsonPath('$.valueWithMaxEmpty', byType {
 // results in verification of size of array (max 0)
 maxOccurrence(0)
 })
 // will execute a method `assertThatValueIsANumber`
 jsonPath('$.duck', byCommand('assertThatValueIsANumber($it)'))
 jsonPath("\$.['key'].['complex.key']", byEquality())
 jsonPath('$.nullValue', byNull())
 }
 headers {
 contentType(applicationJson())
 header('Some-Header', $(c('someValue'), p(regex('[a-zA-Z]{9}'))))
 }
 }
}

yml

request:
 method: GET
 urlPath: /get/1
 headers:
 Content-Type: application/json
 cookies:
 foo: 2
 bar: 3
 queryParameters:
 limit: 10
 offset: 20
 filter: 'email'
 sort: name
 search: 55
 age: 99
 name: John.Doe
 email: 'bob@email.com'
 body:
 duck: 123
 alpha: "abc"
 number: 123
 aBoolean: true
 date: "2017-01-01"
 dateTime: "2017-01-01T01:23:45"

 time: "01:02:34"
 valueWithoutAMatcher: "foo"
 valueWithTypeMatch: "string"
 key:
 "complex.key": 'foo'
 nullValue: null
 valueWithMin:
 - 1
 - 2
 - 3
 valueWithMax:
 - 1
 - 2
 - 3
 valueWithMinMax:
 - 1
 - 2
 - 3
 valueWithMinEmpty: []
 valueWithMaxEmpty: []
 matchers:
 url:
 regex: /get/[0-9]
 # predefined:
 # execute a method
 #command: 'equals($it)'
 queryParameters:
 - key: limit
 type: equal_to
 value: 20
 - key: offset
 type: containing
 value: 20
 - key: sort
 type: equal_to
 value: name
 - key: search
 type: not_matching
 value: '^[0-9]{2}$'
 - key: age
 type: not_matching
 value: '^\\w*$'
 - key: name
 type: matching
 value: 'John.*'
 - key: hello
 type: absent
 cookies:
 - key: foo
 regex: '[0-9]'
 - key: bar

 command: 'equals($it)'
 headers:
 - key: Content-Type
 regex: "application/json.*"
 body:
 - path: $.duck
 type: by_regex
 value: "[0-9]{3}"
 - path: $.duck
 type: by_equality
 - path: $.alpha
 type: by_regex
 predefined: only_alpha_unicode
 - path: $.alpha
 type: by_equality
 - path: $.number
 type: by_regex
 predefined: number
 - path: $.aBoolean
 type: by_regex
 predefined: any_boolean
 - path: $.date
 type: by_date
 - path: $.dateTime
 type: by_timestamp
 - path: $.time
 type: by_time
 - path: "$.['key'].['complex.key']"
 type: by_equality
 - path: $.nullvalue
 type: by_null
 - path: $.valueWithMin
 type: by_type
 minOccurrence: 1
 - path: $.valueWithMax
 type: by_type
 maxOccurrence: 3
 - path: $.valueWithMinMax
 type: by_type
 minOccurrence: 1
 maxOccurrence: 3
response:
 status: 200
 cookies:
 foo: 1
 bar: 2
 body:
 duck: 123
 alpha: "abc"
 number: 123
 aBoolean: true

 date: "2017-01-01"
 dateTime: "2017-01-01T01:23:45"
 time: "01:02:34"
 valueWithoutAMatcher: "foo"
 valueWithTypeMatch: "string"
 valueWithMin:
 - 1
 - 2
 - 3
 valueWithMax:
 - 1
 - 2
 - 3
 valueWithMinMax:
 - 1
 - 2
 - 3
 valueWithMinEmpty: []
 valueWithMaxEmpty: []
 key:
 'complex.key': 'foo'
 nulValue: null
 matchers:
 headers:
 - key: Content-Type
 regex: "application/json.*"
 cookies:
 - key: foo
 regex: '[0-9]'
 - key: bar
 command: 'equals($it)'
 body:
 - path: $.duck
 type: by_regex
 value: "[0-9]{3}"
 - path: $.duck
 type: by_equality
 - path: $.alpha
 type: by_regex
 predefined: only_alpha_unicode
 - path: $.alpha
 type: by_equality
 - path: $.number
 type: by_regex
 predefined: number
 - path: $.aBoolean
 type: by_regex
 predefined: any_boolean
 - path: $.date
 type: by_date
 - path: $.dateTime

 type: by_timestamp
 - path: $.time
 type: by_time
 - path: $.valueWithTypeMatch
 type: by_type
 - path: $.valueWithMin
 type: by_type
 minOccurrence: 1
 - path: $.valueWithMax
 type: by_type
 maxOccurrence: 3
 - path: $.valueWithMinMax
 type: by_type
 minOccurrence: 1
 maxOccurrence: 3
 - path: $.valueWithMinEmpty
 type: by_type
 minOccurrence: 0
 - path: $.valueWithMaxEmpty
 type: by_type
 maxOccurrence: 0
 - path: $.duck
 type: by_command
 value: assertThatValueIsANumber($it)
 - path: $.nullValue
 type: by_null
 value: null
 headers:
 Content-Type: application/json

In the preceding example, you can see the dynamic portions of the contract in the matchers sections.
For the request part, you can see that, for all fields but valueWithoutAMatcher, the values of the
regular expressions that the stub should contain are explicitly set. For the valueWithoutAMatcher, the
verification takes place in the same way as without the use of matchers. In that case, the test
performs an equality check.

For the response side in the bodyMatchers section, we define the dynamic parts in a similar manner.
The only difference is that the byType matchers are also present. The verifier engine checks four
fields to verify whether the response from the test has a value for which the JSON path matches the
given field, is of the same type as the one defined in the response body, and passes the following
check (based on the method being called):

• For $.valueWithTypeMatch, the engine checks whether the type is the same.

• For $.valueWithMin, the engine checks the type and asserts whether the size is greater than or
equal to the minimum occurrence.

• For $.valueWithMax, the engine checks the type and asserts whether the size is smaller than or
equal to the maximum occurrence.

• For $.valueWithMinMax, the engine checks the type and asserts whether the size is between the

minimum and maximum occurrence.

The resulting test resembles the following example (note that an and section separates the
autogenerated assertions and the assertion from matchers):

// given:
 MockMvcRequestSpecification request = given()
 .header("Content-Type", "application/json")

.body("{\"duck\":123,\"alpha\":\"abc\",\"number\":123,\"aBoolean\":true,\"date\":\"201
7-01-01\",\"dateTime\":\"2017-01-
01T01:23:45\",\"time\":\"01:02:34\",\"valueWithoutAMatcher\":\"foo\",\"valueWithTypeMa
tch\":\"string\",\"key\":{\"complex.key\":\"foo\"}}");

// when:
 ResponseOptions response = given().spec(request)
 .get("/get");

// then:
 assertThat(response.statusCode()).isEqualTo(200);
 assertThat(response.header("Content-Type")).matches("application/json.*");
// and:
 DocumentContext parsedJson = JsonPath.parse(response.getBody().asString());
 assertThatJson(parsedJson).field("['valueWithoutAMatcher']").isEqualTo("foo");
// and:
 assertThat(parsedJson.read("$.duck", String.class)).matches("[0-9]{3}");
 assertThat(parsedJson.read("$.duck", Integer.class)).isEqualTo(123);
 assertThat(parsedJson.read("$.alpha", String.class)).matches("[\\p{L}]*");
 assertThat(parsedJson.read("$.alpha", String.class)).isEqualTo("abc");
 assertThat(parsedJson.read("$.number", String.class)).matches("-
?(\\d*\\.\\d+|\\d+)");
 assertThat(parsedJson.read("$.aBoolean", String.class)).matches("(true|false)");
 assertThat(parsedJson.read("$.date", String.class)).matches("(\\d\\d\\d\\d)-(0[1-
9]|1[012])-(0[1-9]|[12][0-9]|3[01])");
 assertThat(parsedJson.read("$.dateTime", String.class)).matches("([0-9]{4})-(1[0-
2]|0[1-9])-(3[01]|0[1-9]|[12][0-9])T(2[0-3]|[01][0-9]):([0-5][0-9]):([0-5][0-9])");
 assertThat(parsedJson.read("$.time", String.class)).matches("(2[0-3]|[01][0-9]):([0-
5][0-9]):([0-5][0-9])");
 assertThat((Object)
parsedJson.read("$.valueWithTypeMatch")).isInstanceOf(java.lang.String.class);
 assertThat((Object)
parsedJson.read("$.valueWithMin")).isInstanceOf(java.util.List.class);
 assertThat((java.lang.Iterable) parsedJson.read("$.valueWithMin",
java.util.Collection.class)).as("$.valueWithMin").hasSizeGreaterThanOrEqualTo(1);
 assertThat((Object)
parsedJson.read("$.valueWithMax")).isInstanceOf(java.util.List.class);
 assertThat((java.lang.Iterable) parsedJson.read("$.valueWithMax",
java.util.Collection.class)).as("$.valueWithMax").hasSizeLessThanOrEqualTo(3);
 assertThat((Object)
parsedJson.read("$.valueWithMinMax")).isInstanceOf(java.util.List.class);

 assertThat((java.lang.Iterable) parsedJson.read("$.valueWithMinMax",
java.util.Collection.class)).as("$.valueWithMinMax").hasSizeBetween(1, 3);
 assertThat((Object)
parsedJson.read("$.valueWithMinEmpty")).isInstanceOf(java.util.List.class);
 assertThat((java.lang.Iterable) parsedJson.read("$.valueWithMinEmpty",
java.util.Collection.class)).as("$.valueWithMinEmpty").hasSizeGreaterThanOrEqualTo(0);
 assertThat((Object)
parsedJson.read("$.valueWithMaxEmpty")).isInstanceOf(java.util.List.class);
 assertThat((java.lang.Iterable) parsedJson.read("$.valueWithMaxEmpty",
java.util.Collection.class)).as("$.valueWithMaxEmpty").hasSizeLessThanOrEqualTo(0);
 assertThatValueIsANumber(parsedJson.read("$.duck"));
 assertThat(parsedJson.read("$.['key'].['complex.key']",
String.class)).isEqualTo("foo");

Notice that, for the byCommand method, the example calls the
assertThatValueIsANumber. This method must be defined in the test base class or be
statically imported to your tests. Notice that the byCommand call was converted to
assertThatValueIsANumber(parsedJson.read("$.duck"));. That means that the engine
took the method name and passed the proper JSON path as a parameter to it.

The resulting WireMock stub is in the following example:

 '''
{
 "request" : {
 "urlPath" : "/get",
 "method" : "POST",
 "headers" : {
 "Content-Type" : {
 "matches" : "application/json.*"
 }
 },
 "bodyPatterns" : [{
 "matchesJsonPath" : "$.['list'].['some'].['nested'][?(@.['anothervalue'] == 4)]"
 }, {
 "matchesJsonPath" : "$[?(@.['valueWithoutAMatcher'] == 'foo')]"
 }, {
 "matchesJsonPath" : "$[?(@.['valueWithTypeMatch'] == 'string')]"
 }, {
 "matchesJsonPath" : "$.['list'].['someother'].['nested'][?(@.['json'] == 'with
value')]"
 }, {
 "matchesJsonPath" : "$.['list'].['someother'].['nested'][?(@.['anothervalue'] ==
4)]"
 }, {
 "matchesJsonPath" : "$[?(@.duck =~ /([0-9]{3})/)]"
 }, {
 "matchesJsonPath" : "$[?(@.duck == 123)]"
 }, {

 "matchesJsonPath" : "$[?(@.alpha =~ /([\\\\p{L}]*)/)]"
 }, {
 "matchesJsonPath" : "$[?(@.alpha == 'abc')]"
 }, {
 "matchesJsonPath" : "$[?(@.number =~ /(-?(\\\\d*\\\\.\\\\d+|\\\\d+))/)]"
 }, {
 "matchesJsonPath" : "$[?(@.aBoolean =~ /((true|false))/)]"
 }, {
 "matchesJsonPath" : "$[?(@.date =~ /((\\\\d\\\\d\\\\d\\\\d)-(0[1-9]|1[012])-
(0[1-9]|[12][0-9]|3[01]))/)]"
 }, {
 "matchesJsonPath" : "$[?(@.dateTime =~ /(([0-9]{4})-(1[0-2]|0[1-9])-(3[01]|0[1-
9]|[12][0-9])T(2[0-3]|[01][0-9]):([0-5][0-9]):([0-5][0-9]))/)]"
 }, {
 "matchesJsonPath" : "$[?(@.time =~ /((2[0-3]|[01][0-9]):([0-5][0-9]):([0-5][0-
9]))/)]"
 }, {
 "matchesJsonPath" : "$.list.some.nested[?(@.json =~ /(.*)/)]"
 }, {
 "matchesJsonPath" : "$[?(@.valueWithMin.size() >= 1)]"
 }, {
 "matchesJsonPath" : "$[?(@.valueWithMax.size() <= 3)]"
 }, {
 "matchesJsonPath" : "$[?(@.valueWithMinMax.size() >= 1 &&
@.valueWithMinMax.size() <= 3)]"
 }, {
 "matchesJsonPath" : "$[?(@.valueWithOccurrence.size() >= 4 &&
@.valueWithOccurrence.size() <= 4)]"
 }]
 },
 "response" : {
 "status" : 200,
 "body" :
"{\\"duck\\":123,\\"alpha\\":\\"abc\\",\\"number\\":123,\\"aBoolean\\":true,\\"date\\"
:\\"2017-01-01\\",\\"dateTime\\":\\"2017-01-
01T01:23:45\\",\\"time\\":\\"01:02:34\\",\\"valueWithoutAMatcher\\":\\"foo\\",\\"value
WithTypeMatch\\":\\"string\\",\\"valueWithMin\\":[1,2,3],\\"valueWithMax\\":[1,2,3],\\
"valueWithMinMax\\":[1,2,3],\\"valueWithOccurrence\\":[1,2,3,4]}",
 "headers" : {
 "Content-Type" : "application/json"
 },
 "transformers" : ["response-template"]
 }
}
'''

If you use a matcher, the part of the request and response that the matcher
addresses with the JSON Path gets removed from the assertion. In the case of
verifying a collection, you must create matchers for all the elements of the
collection.

Consider the following example:

Contract.make {
 request {
 method 'GET'
 url("/foo")
 }
 response {
 status OK()
 body(events: [[
 operation : 'EXPORT',
 eventId : '16f1ed75-0bcc-4f0d-a04d-
3121798faf99',
 status : 'OK'
], [
 operation : 'INPUT_PROCESSING',
 eventId : '3bb4ac82-6652-462f-b6d1-
75e424a0024a',
 status : 'OK'
]
]
)
 bodyMatchers {
 jsonPath('$.events[0].operation', byRegex('.+'))
 jsonPath('$.events[0].eventId', byRegex('^([a-fA-F0-9]{8}-[a-fA-F0-9]{4}-
[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12})$'))
 jsonPath('$.events[0].status', byRegex('.+'))
 }
 }
}

The preceding code leads to creating the following test (the code block shows only the assertion
section):

and:
 DocumentContext parsedJson = JsonPath.parse(response.body.asString())

assertThatJson(parsedJson).array("['events']").contains("['eventId']").isEqualTo("16f1
ed75-0bcc-4f0d-a04d-3121798faf99")

assertThatJson(parsedJson).array("['events']").contains("['operation']").isEqualTo("EX
PORT")

assertThatJson(parsedJson).array("['events']").contains("['operation']").isEqualTo("IN
PUT_PROCESSING")

assertThatJson(parsedJson).array("['events']").contains("['eventId']").isEqualTo("3bb4
ac82-6652-462f-b6d1-75e424a0024a")

assertThatJson(parsedJson).array("['events']").contains("['status']").isEqualTo("OK")
and:
 assertThat(parsedJson.read("\$.events[0].operation", String.class)).matches(".+")
 assertThat(parsedJson.read("\$.events[0].eventId", String.class)).matches("^([a-
fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12})\$")
 assertThat(parsedJson.read("\$.events[0].status", String.class)).matches(".+")

As you can see, the assertion is malformed. Only the first element of the array got asserted. In order
to fix this, you should apply the assertion to the whole $.events collection and assert it with the
byCommand(…) method.

Asynchronous Support

If you use asynchronous communication on the server side (your controllers are returning
Callable, DeferredResult, and so on), then, inside your contract, you must provide an async()
method in the response section. The following code shows an example:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 request {
 method GET()
 url '/get'
 }
 response {
 status OK()
 body 'Passed'
 async()
 }
}

yml

response:
 async: true

java

class contract implements Supplier<Collection<Contract>> {

 @Override
 public Collection<Contract> get() {
 return Collections.singletonList(Contract.make(c -> {
 c.request(r -> {
 // ...
 });
 c.response(r -> {
 r.async();
 // ...
 });
 }));
 }

}

kotlin

import org.springframework.cloud.contract.spec.ContractDsl.Companion.contract

contract {
 request {
 // ...
 }
 response {
 async = true
 // ...
 }
}

You can also use the fixedDelayMilliseconds method or property to add delay to your stubs. The
following example shows how to do so:

groovy

org.springframework.cloud.contract.spec.Contract.make {
 request {
 method GET()
 url '/get'
 }
 response {
 status 200
 body 'Passed'
 fixedDelayMilliseconds 1000
 }
}

yml

response:
 fixedDelayMilliseconds: 1000

java

class contract implements Supplier<Collection<Contract>> {

 @Override
 public Collection<Contract> get() {
 return Collections.singletonList(Contract.make(c -> {
 c.request(r -> {
 // ...
 });
 c.response(r -> {
 r.fixedDelayMilliseconds(1000);
 // ...
 });
 }));
 }

}

kotlin

import org.springframework.cloud.contract.spec.ContractDsl.Companion.contract

contract {
 request {
 // ...
 }
 response {
 delay = fixedMilliseconds(1000)
 // ...
 }
}

XML Support for HTTP

For HTTP contracts, we also support using XML in the request and response body. The XML body
has to be passed within the body element as a String or GString. Also, body matchers can be
provided for both the request and the response. In place of the jsonPath(…) method, the
org.springframework.cloud.contract.spec.internal.BodyMatchers.xPath method should be used, with
the desired xPath provided as the first argument and the appropriate MatchingType as second. All the
body matchers apart from byType() are supported.

The following example shows a Groovy DSL contract with XML in the response body:

groovy

 Contract.make {
 request {
 method GET()
 urlPath '/get'
 headers {
 contentType(applicationXml())
 }
 }
 response {
 status(OK())
 headers {
 contentType(applicationXml())
 }
 body """
<test>
<duck type='xtype'>123</duck>
<alpha>abc</alpha>
<list>
<elem>abc</elem>
<elem>def</elem>
<elem>ghi</elem>
</list>
<number>123</number>
<aBoolean>true</aBoolean>
<date>2017-01-01</date>
<dateTime>2017-01-01T01:23:45</dateTime>
<time>01:02:34</time>
<valueWithoutAMatcher>foo</valueWithoutAMatcher>
<key><complex>foo</complex></key>
</test>"""
 bodyMatchers {
 xPath('/test/duck/text()', byRegex("[0-9]{3}"))
 xPath('/test/duck/text()',
byCommand('equals($it)'))
 xPath('/test/duck/xxx', byNull())
 xPath('/test/duck/text()', byEquality())
 xPath('/test/alpha/text()',
byRegex(onlyAlphaUnicode()))
 xPath('/test/alpha/text()', byEquality())
 xPath('/test/number/text()', byRegex(number()))
 xPath('/test/date/text()', byDate())
 xPath('/test/dateTime/text()', byTimestamp())
 xPath('/test/time/text()', byTime())
 xPath('/test/*/complex/text()', byEquality())
 xPath('/test/duck/@type', byEquality())
 }
 }
 }

yml

include::/Users/ryanjbaxter/git-repos/spring-cloud-
samples/scripts/contract/spring-cloud-contract-
verifier/src/test/resources/yml/contract_rest_xml.yml

java

import java.util.function.Supplier;

import org.springframework.cloud.contract.spec.Contract;

class contract_xml implements Supplier<Contract> {

 @Override
 public Contract get() {
 return Contract.make(c -> {
 c.request(r -> {
 r.method(r.GET());
 r.urlPath("/get");
 r.headers(h -> {
 h.contentType(h.applicationXml());
 });
 });
 c.response(r -> {
 r.status(r.OK());
 r.headers(h -> {
 h.contentType(h.applicationXml());
 });
 r.body("<test>\n" + "<duck type='xtype'>123</duck>\n"
 + "<alpha>abc</alpha>\n" + "<list>\n" +
"<elem>abc</elem>\n"
 + "<elem>def</elem>\n" + "<elem>ghi</elem>\n" +
"</list>\n"
 + "<number>123</number>\n" + "<aBoolean>true</aBoolean>\n"
 + "<date>2017-01-01</date>\n"
 + "<dateTime>2017-01-01T01:23:45</dateTime>\n"
 + "<time>01:02:34</time>\n"
 + "<valueWithoutAMatcher>foo</valueWithoutAMatcher>\n"
 + "<key><complex>foo</complex></key>\n" + "</test>");
 r.bodyMatchers(m -> {
 m.xPath("/test/duck/text()", m.byRegex("[0-9]{3}"));
 m.xPath("/test/duck/text()", m.byCommand("equals($it)"));
 m.xPath("/test/duck/xxx", m.byNull());
 m.xPath("/test/duck/text()", m.byEquality());
 m.xPath("/test/alpha/text()",
m.byRegex(r.onlyAlphaUnicode()));
 m.xPath("/test/alpha/text()", m.byEquality());
 m.xPath("/test/number/text()", m.byRegex(r.number()));
 m.xPath("/test/date/text()", m.byDate());

 m.xPath("/test/dateTime/text()", m.byTimestamp());
 m.xPath("/test/time/text()", m.byTime());
 m.xPath("/test/*/complex/text()", m.byEquality());
 m.xPath("/test/duck/@type", m.byEquality());
 });
 });
 });
 };

}

kotlin

import org.springframework.cloud.contract.spec.ContractDsl.Companion.contract

contract {
 request {
 method = GET
 urlPath = path("/get")
 headers {
 contentType = APPLICATION_XML
 }
 }
 response {
 status = OK
 headers {
 contentType =APPLICATION_XML
 }
 body = body("<test>\n" + "<duck type='xtype'>123</duck>\n"
 + "<alpha>abc</alpha>\n" + "<list>\n" + "<elem>abc</elem>\n"
 + "<elem>def</elem>\n" + "<elem>ghi</elem>\n" + "</list>\n"
 + "<number>123</number>\n" + "<aBoolean>true</aBoolean>\n"
 + "<date>2017-01-01</date>\n"
 + "<dateTime>2017-01-01T01:23:45</dateTime>\n"
 + "<time>01:02:34</time>\n"
 + "<valueWithoutAMatcher>foo</valueWithoutAMatcher>\n"
 + "<key><complex>foo</complex></key>\n" + "</test>")
 bodyMatchers {
 xPath("/test/duck/text()", byRegex("[0-9]{3}"))
 xPath("/test/duck/text()", byCommand("equals(\$it)"))
 xPath("/test/duck/xxx", byNull)
 xPath("/test/duck/text()", byEquality)
 xPath("/test/alpha/text()", byRegex(onlyAlphaUnicode))
 xPath("/test/alpha/text()", byEquality)
 xPath("/test/number/text()", byRegex(number))
 xPath("/test/date/text()", byDate)
 xPath("/test/dateTime/text()", byTimestamp)
 xPath("/test/time/text()", byTime)
 xPath("/test/*/complex/text()", byEquality)
 xPath("/test/duck/@type", byEquality)
 }
 }
}

The following example shows an automatically generated test for XML in the response body:

@Test
public void validate_xmlMatches() throws Exception {
 // given:
 MockMvcRequestSpecification request = given()
 .header("Content-Type", "application/xml");

 // when:
 ResponseOptions response = given().spec(request).get("/get");

 // then:
 assertThat(response.statusCode()).isEqualTo(200);
 // and:
 DocumentBuilder documentBuilder = DocumentBuilderFactory.newInstance()
 .newDocumentBuilder();
 Document parsedXml = documentBuilder.parse(new InputSource(
 new StringReader(response.getBody().asString())));
 // and:
 assertThat(valueFromXPath(parsedXml, "/test/list/elem/text()")).isEqualTo("abc");

assertThat(valueFromXPath(parsedXml,"/test/list/elem[2]/text()")).isEqualTo("def");
 assertThat(valueFromXPath(parsedXml, "/test/duck/text()")).matches("[0-9]{3}");
 assertThat(nodeFromXPath(parsedXml, "/test/duck/xxx")).isNull();
 assertThat(valueFromXPath(parsedXml, "/test/alpha/text()")).matches("[\\p{L}]*");
 assertThat(valueFromXPath(parsedXml, "/test/*/complex/text()")).isEqualTo("foo");
 assertThat(valueFromXPath(parsedXml, "/test/duck/@type")).isEqualTo("xtype");
 }

Multiple Contracts in One File

You can define multiple contracts in one file. Such a contract might resemble the following
example:

groovy

import org.springframework.cloud.contract.spec.Contract

[
 Contract.make {
 name("should post a user")
 request {
 method 'POST'
 url('/users/1')
 }
 response {
 status OK()
 }
 },
 Contract.make {
 request {
 method 'POST'
 url('/users/2')
 }
 response {
 status OK()
 }
 }
]

yml

name: should post a user
request:
 method: POST
 url: /users/1
response:
 status: 200

request:
 method: POST
 url: /users/2
response:
 status: 200

request:
 method: POST
 url: /users/3
response:
 status: 200

java

class contract implements Supplier<Collection<Contract>> {

 @Override
 public Collection<Contract> get() {
 return Arrays.asList(
 Contract.make(c -> {
 c.name("should post a user");
 // ...
 }), Contract.make(c -> {
 // ...
 }), Contract.make(c -> {
 // ...
 })
);
 }

}

kotlin

import org.springframework.cloud.contract.spec.ContractDsl.Companion.contract

arrayOf(
 contract {
 name("should post a user")
 // ...
 },
 contract {
 // ...
 },
 contract {
 // ...
 }
}

In the preceding example, one contract has the name field and the other does not. This leads to
generation of two tests that look more or less like the following:

package org.springframework.cloud.contract.verifier.tests.com.hello;

import com.example.TestBase;
import com.jayway.jsonpath.DocumentContext;
import com.jayway.jsonpath.JsonPath;
import
com.jayway.restassured.module.mockmvc.specification.MockMvcRequestSpecification;
import com.jayway.restassured.response.ResponseOptions;
import org.junit.Test;

import static com.jayway.restassured.module.mockmvc.RestAssuredMockMvc.*;
import static com.toomuchcoding.jsonassert.JsonAssertion.assertThatJson;
import static org.assertj.core.api.Assertions.assertThat;

public class V1Test extends TestBase {

 @Test
 public void validate_should_post_a_user() throws Exception {
 // given:
 MockMvcRequestSpecification request = given();

 // when:
 ResponseOptions response = given().spec(request)
 .post("/users/1");

 // then:
 assertThat(response.statusCode()).isEqualTo(200);
 }

 @Test
 public void validate_withList_1() throws Exception {
 // given:
 MockMvcRequestSpecification request = given();

 // when:
 ResponseOptions response = given().spec(request)
 .post("/users/2");

 // then:
 assertThat(response.statusCode()).isEqualTo(200);
 }

}

Notice that, for the contract that has the name field, the generated test method is named
validate_should_post_a_user. The one that does not have the name field is called validate_withList_1.
It corresponds to the name of the file WithList.groovy and the index of the contract in the list.

The generated stubs are shown in the following example:

should post a user.json
1_WithList.json

The first file got the name parameter from the contract. The second got the name of the contract file
(WithList.groovy) prefixed with the index (in this case, the contract had an index of 1 in the list of
contracts in the file).

It is much better to name your contracts, because doing so makes your tests far
more meaningful.

Stateful Contracts

Stateful contracts (known also as scenarios) are contract definitions that should be read in order.
This might be useful in the following situations:

• You want to execute the contract in a precisely defined order, since you use Spring Cloud
Contract to test your stateful application

 We really discourage you from doing that, since contract tests should be stateless.

• You want the same endpoint to return different results for the same request.

To create stateful contracts (or scenarios), you need to use the proper naming convention while
creating your contracts. The convention requires including an order number followed by an
underscore. This works regardless of whether you work with YAML or Groovy. The following listing
shows an example:

my_contracts_dir\
 scenario1\
 1_login.groovy
 2_showCart.groovy
 3_logout.groovy

Such a tree causes Spring Cloud Contract Verifier to generate WireMock’s scenario with a name of
scenario1 and the three following steps:

1. login, marked as Started pointing to…

2. showCart, marked as Step1 pointing to…

3. logout, marked as Step2 (which closes the scenario).

You can find more details about WireMock scenarios at https://wiremock.org/docs/stateful-
behaviour/.

https://wiremock.org/docs/stateful-behaviour/
https://wiremock.org/docs/stateful-behaviour/

14.3.3. Integrations

JAX-RS

The Spring Cloud Contract supports the JAX-RS 2 Client API. The base class needs to define protected
WebTarget webTarget and server initialization. The only option for testing JAX-RS API is to start a
web server. Also, a request with a body needs to have a content type be set. Otherwise, the default
of application/octet-stream gets used.

In order to use JAX-RS mode, use the following settings:

testMode = 'JAXRSCLIENT'

The following example shows a generated test API:

 """\
package com.example;

import com.jayway.jsonpath.DocumentContext;
import com.jayway.jsonpath.JsonPath;
import org.junit.Test;
import org.junit.Rule;
import javax.ws.rs.client.Entity;
import javax.ws.rs.core.Response;

import static
org.springframework.cloud.contract.verifier.assertion.SpringCloudContractAssertions.as
sertThat;
import static org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.*;
import static com.toomuchcoding.jsonassert.JsonAssertion.assertThatJson;
import static javax.ws.rs.client.Entity.*;

@SuppressWarnings("rawtypes")
public class FooTest {
\tWebTarget webTarget;

\t@Test
\tpublic void validate_() throws Exception {

\t\t// when:
\t\t\tResponse response = webTarget
\t\t\t\t\t\t\t.path("/users")
\t\t\t\t\t\t\t.queryParam("limit", "10")
\t\t\t\t\t\t\t.queryParam("offset", "20")
\t\t\t\t\t\t\t.queryParam("filter", "email")
\t\t\t\t\t\t\t.queryParam("sort", "name")
\t\t\t\t\t\t\t.queryParam("search", "55")
\t\t\t\t\t\t\t.queryParam("age", "99")
\t\t\t\t\t\t\t.queryParam("name", "Denis.Stepanov")

\t\t\t\t\t\t\t.queryParam("email", "bob@email.com")
\t\t\t\t\t\t\t.request()
\t\t\t\t\t\t\t.build("GET")
\t\t\t\t\t\t\t.invoke();
\t\t\tString responseAsString = response.readEntity(String.class);

\t\t// then:
\t\t\tassertThat(response.getStatus()).isEqualTo(200);

\t\t// and:
\t\t\tDocumentContext parsedJson = JsonPath.parse(responseAsString);
\t\t\tassertThatJson(parsedJson).field("['property1']").isEqualTo("a");
\t}

}

"""

WebFlux with WebTestClient

You can work with WebFlux by using WebTestClient. The following listing shows how to configure
WebTestClient as the test mode:

Maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <testMode>WEBTESTCLIENT</testMode>
 </configuration>
</plugin>

Gradle

contracts {
 testMode = 'WEBTESTCLIENT'
}

The following example shows how to set up a WebTestClient base class and RestAssured for
WebFlux:

import io.restassured.module.webtestclient.RestAssuredWebTestClient;
import org.junit.Before;

public abstract class BeerRestBase {

 @Before
 public void setup() {
 RestAssuredWebTestClient.standaloneSetup(
 new ProducerController(personToCheck -> personToCheck.age >= 20));
 }
}
}

 The WebTestClient mode is faster than the EXPLICIT mode.

WebFlux with Explicit Mode

You can also use WebFlux with the explicit mode in your generated tests to work with WebFlux. The
following example shows how to configure using explicit mode:

Maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <testMode>EXPLICIT</testMode>
 </configuration>
</plugin>

Gradle

contracts {
 testMode = 'EXPLICIT'
}

The following example shows how to set up a base class and RestAssured for Web Flux:

@RunWith(SpringRunner.class)
@SpringBootTest(classes = BeerRestBase.Config.class,
 webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT,
 properties = "server.port=0")
public abstract class BeerRestBase {

 // your tests go here

 // in this config class you define all controllers and mocked services
@Configuration
@EnableAutoConfiguration
static class Config {

 @Bean
 PersonCheckingService personCheckingService() {
 return personToCheck -> personToCheck.age >= 20;
 }

 @Bean
 ProducerController producerController() {
 return new ProducerController(personCheckingService());
 }
}

}

Working with Context Paths

Spring Cloud Contract supports context paths.

The only change needed to fully support context paths is the switch on the
producer side. Also, the autogenerated tests must use explicit mode. The consumer
side remains untouched. In order for the generated test to pass, you must use
explicit mode. The following example shows how to set the test mode to EXPLICIT:

Maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <testMode>EXPLICIT</testMode>
 </configuration>
</plugin>

Gradle

contracts {
 testMode = 'EXPLICIT'
}

That way, you generate a test that does not use MockMvc. It means that you generate real requests
and you need to set up your generated test’s base class to work on a real socket.

Consider the following contract:

org.springframework.cloud.contract.spec.Contract.make {
 request {
 method 'GET'
 url '/my-context-path/url'
 }
 response {
 status OK()
 }
}

The following example shows how to set up a base class and RestAssured:

import io.restassured.RestAssured;
import org.junit.Before;
import org.springframework.boot.web.server.LocalServerPort;
import org.springframework.boot.test.context.SpringBootTest;

@SpringBootTest(classes = ContextPathTestingBaseClass.class, webEnvironment =
SpringBootTest.WebEnvironment.RANDOM_PORT)
class ContextPathTestingBaseClass {

 @LocalServerPort int port;

 @Before
 public void setup() {
 RestAssured.baseURI = "http://localhost";
 RestAssured.port = this.port;
 }
}

If you do it this way:

• All of your requests in the autogenerated tests are sent to the real endpoint with your context
path included (for example, /my-context-path/url).

• Your contracts reflect that you have a context path. Your generated stubs also have that
information (for example, in the stubs, you have to call /my-context-path/url).

Working with REST Docs

You can use Spring REST Docs to generate documentation (for example, in Asciidoc format) for an
HTTP API with Spring MockMvc, WebTestClient, or RestAssured. At the same time that you generate
documentation for your API, you can also generate WireMock stubs by using Spring Cloud Contract
WireMock. To do so, write your normal REST Docs test cases and use @AutoConfigureRestDocs to
have stubs be automatically generated in the REST Docs output directory.

[rest docs] | rest-docs.png

The following example uses MockMvc:

https://projects.spring.io/spring-restdocs

@RunWith(SpringRunner.class)
@SpringBootTest
@AutoConfigureRestDocs(outputDir = "target/snippets")
@AutoConfigureMockMvc
public class ApplicationTests {

 @Autowired
 private MockMvc mockMvc;

 @Test
 public void contextLoads() throws Exception {
 mockMvc.perform(get("/resource"))
 .andExpect(content().string("Hello World"))
 .andDo(document("resource"));
 }
}

This test generates a WireMock stub at target/snippets/stubs/resource.json. It matches all GET
requests to the /resource path. The same example with WebTestClient (used for testing Spring
WebFlux applications) would be as follows:

@RunWith(SpringRunner.class)
@SpringBootTest
@AutoConfigureRestDocs(outputDir = "target/snippets")
@AutoConfigureWebTestClient
public class ApplicationTests {

 @Autowired
 private WebTestClient client;

 @Test
 public void contextLoads() throws Exception {
 client.get().uri("/resource").exchange()
 .expectBody(String.class).isEqualTo("Hello World")
 .consumeWith(document("resource"));
 }
}

Without any additional configuration, these tests create a stub with a request matcher for the HTTP
method and all headers except host and content-length. To match the request more precisely (for
example, to match the body of a POST or PUT), we need to explicitly create a request matcher.
Doing so has two effects:

• Creating a stub that matches only in the way you specify.

• Asserting that the request in the test case also matches the same conditions.

The main entry point for this feature is WireMockRestDocs.verify(), which can be used as a
substitute for the document() convenience method, as the following example shows:

import static
org.springframework.cloud.contract.wiremock.restdocs.WireMockRestDocs.verify;

@RunWith(SpringRunner.class)
@SpringBootTest
@AutoConfigureRestDocs(outputDir = "target/snippets")
@AutoConfigureMockMvc
public class ApplicationTests {

 @Autowired
 private MockMvc mockMvc;

 @Test
 public void contextLoads() throws Exception {
 mockMvc.perform(post("/resource")
 .content("{\"id\":\"123456\",\"message\":\"Hello World\"}"))
 .andExpect(status().isOk())
 .andDo(verify().jsonPath("$.id")
 .andDo(document("resource"));
 }
}

The preceding contract specifies that any valid POST with an id field receives the response defined
in this test. You can chain together calls to .jsonPath() to add additional matchers. If JSON Path is
unfamiliar, the JayWay documentation can help you get up to speed. The WebTestClient version of
this test has a similar verify() static helper that you insert in the same place.

Instead of the jsonPath and contentType convenience methods, you can also use the WireMock APIs
to verify that the request matches the created stub, as the following example shows:

@Test
public void contextLoads() throws Exception {
 mockMvc.perform(post("/resource")
 .content("{\"id\":\"123456\",\"message\":\"Hello World\"}"))
 .andExpect(status().isOk())
 .andDo(verify()
 .wiremock(WireMock.post(
 urlPathEquals("/resource"))
 .withRequestBody(matchingJsonPath("$.id"))
 .andDo(document("post-resource"));
}

The WireMock API is rich. You can match headers, query parameters, and the request body by
regex as well as by JSON path. You can use these features to create stubs with a wider range of
parameters. The preceding example generates a stub resembling the following example:

https://github.com/jayway/JsonPath

post-resource.json

{
 "request" : {
 "url" : "/resource",
 "method" : "POST",
 "bodyPatterns" : [{
 "matchesJsonPath" : "$.id"
 }]
 },
 "response" : {
 "status" : 200,
 "body" : "Hello World",
 "headers" : {
 "X-Application-Context" : "application:-1",
 "Content-Type" : "text/plain"
 }
 }
}

You can use either the wiremock() method or the jsonPath() and contentType()
methods to create request matchers, but you cannot use both approaches.

On the consumer side, you can make the resource.json generated earlier in this section available on
the classpath (by Publishing Stubs as JARs, for example). After that, you can create a stub that uses
WireMock in a number of different ways, including by using
@AutoConfigureWireMock(stubs="classpath:resource.json"), as described earlier in this document.

Generating Contracts with REST Docs

You can also generate Spring Cloud Contract DSL files and documentation with Spring REST Docs. If
you do so in combination with Spring Cloud WireMock, you get both the contracts and the stubs.

Why would you want to use this feature? Some people in the community asked questions about a
situation in which they would like to move to DSL-based contract definition, but they already have
a lot of Spring MVC tests. Using this feature lets you generate the contract files that you can later
modify and move to folders (defined in your configuration) so that the plugin finds them.

You might wonder why this functionality is in the WireMock module. The
functionality is there because it makes sense to generate both the contracts and the
stubs.

Consider the following test:

 this.mockMvc
 .perform(post("/foo").accept(MediaType.APPLICATION_PDF)
 .accept(MediaType.APPLICATION_JSON)
 .contentType(MediaType.APPLICATION_JSON)
 .content("{\"foo\": 23, \"bar\" : \"baz\" }"))
 .andExpect(status().isOk()).andExpect(content().string("bar"))
 // first WireMock
 .andDo(WireMockRestDocs.verify().jsonPath("$[?(@.foo >= 20)]")
 .jsonPath("$[?(@.bar in ['baz','bazz','bazzz'])]")
 .contentType(MediaType.valueOf("application/json")))
 // then Contract DSL documentation
 .andDo(document("index",
SpringCloudContractRestDocs.dslContract()));

The preceding test creates the stub presented in the previous section, generating both the contract
and a documentation file.

The contract is called index.groovy and might resemble the following example:

import org.springframework.cloud.contract.spec.Contract

Contract.make {
 request {
 method 'POST'
 url '/foo'
 body('''
 {"foo": 23 }
 ''')
 headers {
 header('''Accept''', '''application/json''')
 header('''Content-Type''', '''application/json''')
 }
 }
 response {
 status OK()
 body('''
 bar
 ''')
 headers {
 header('''Content-Type''', '''application/json;charset=UTF-8''')
 header('''Content-Length''', '''3''')
 }
 bodyMatchers {
 jsonPath('$[?(@.foo >= 20)]', byType())
 }
 }
}

The generated document (formatted in Asciidoc in this case) contains a formatted contract. The
location of this file would be index/dsl-contract.adoc.

14.3.4. Messaging

Spring Cloud Contract lets you verify applications that use messaging as a means of
communication. All of the integrations shown in this document work with Spring, but you can also
create one of your own and use that.

Messaging DSL Top-Level Elements

The DSL for messaging looks a little bit different than the one that focuses on HTTP. The following
sections explain the differences:

• Output Triggered by a Method

• Output Triggered by a Message

• Consumer/Producer

• Common

Output Triggered by a Method

The output message can be triggered by calling a method (such as a Scheduler when a contract was
started and a message was sent), as shown in the following example:

groovy

def dsl = Contract.make {
 // Human readable description
 description 'Some description'
 // Label by means of which the output message can be triggered
 label 'some_label'
 // input to the contract
 input {
 // the contract will be triggered by a method
 triggeredBy('bookReturnedTriggered()')
 }
 // output message of the contract
 outputMessage {
 // destination to which the output message will be sent
 sentTo('output')
 // the body of the output message
 body('''{ "bookName" : "foo" }''')
 // the headers of the output message
 headers {
 header('BOOK-NAME', 'foo')
 }
 }
}

yml

Human readable description
description: Some description
Label by means of which the output message can be triggered
label: some_label
input:
 # the contract will be triggered by a method
 triggeredBy: bookReturnedTriggered()
output message of the contract
outputMessage:
 # destination to which the output message will be sent
 sentTo: output
 # the body of the output message
 body:
 bookName: foo
 # the headers of the output message
 headers:
 BOOK-NAME: foo

In the previous example case, the output message is sent to output if a method called
bookReturnedTriggered is executed. On the message publisher’s side, we generate a test that calls
that method to trigger the message. On the consumer side, you can use the some_label to trigger the

message.

Output Triggered by a Message

The output message can be triggered by receiving a message, as shown in the following example:

groovy

def dsl = Contract.make {
 description 'Some Description'
 label 'some_label'
 // input is a message
 input {
 // the message was received from this destination
 messageFrom('input')
 // has the following body
 messageBody([
 bookName: 'foo'
])
 // and the following headers
 messageHeaders {
 header('sample', 'header')
 }
 }
 outputMessage {
 sentTo('output')
 body([
 bookName: 'foo'
])
 headers {
 header('BOOK-NAME', 'foo')
 }
 }
}

yml

Human readable description
description: Some description
Label by means of which the output message can be triggered
label: some_label
input is a message
input:
 messageFrom: input
 # has the following body
 messageBody:
 bookName: 'foo'
 # and the following headers
 messageHeaders:
 sample: 'header'
output message of the contract
outputMessage:
 # destination to which the output message will be sent
 sentTo: output
 # the body of the output message
 body:
 bookName: foo
 # the headers of the output message
 headers:
 BOOK-NAME: foo

In the preceding example, the output message is sent to output if a proper message is received on
the input destination. On the message publisher’s side, the engine generates a test that sends the
input message to the defined destination. On the consumer side, you can either send a message to
the input destination or use a label (some_label in the example) to trigger the message.

Consumer/Producer

 This section is valid only for Groovy DSL.

In HTTP, you have a notion of client/stub and `server/test notation. You can also use those
paradigms in messaging. In addition, Spring Cloud Contract Verifier also provides the consumer and
producer methods, as presented in the following example (note that you can use either $ or value
methods to provide consumer and producer parts):

 Contract.make {
 name "foo"
 label 'some_label'
 input {
 messageFrom value(consumer('jms:output'),
producer('jms:input'))
 messageBody([
 bookName: 'foo'
])
 messageHeaders {
 header('sample', 'header')
 }
 }
 outputMessage {
 sentTo $(consumer('jms:input'), producer('jms:output'))
 body([
 bookName: 'foo'
])
 }
 }

Common

In the input or outputMessage section, you can call assertThat with the name of a method (for
example, assertThatMessageIsOnTheQueue()) that you have defined in the base class or in a static
import. Spring Cloud Contract runs that method in the generated test.

Integrations

You can use one of the following four integration configurations:

• Apache Camel

• Spring Integration

• Spring Cloud Stream

• Spring AMQP

• Spring JMS (requires embedded broker)

• Spring Kafka (requires embedded broker)

Since we use Spring Boot, if you have added one of these libraries to the classpath, all the
messaging configuration is automatically set up.

Remember to put @AutoConfigureMessageVerifier on the base class of your
generated tests. Otherwise, the messaging part of Spring Cloud Contract does not
work.

If you want to use Spring Cloud Stream, remember to add a dependency on
org.springframework.cloud:spring-cloud-stream-test-support, as follows:

Maven

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-test-support</artifactId>
 <scope>test</scope>
</dependency>

Gradle

testCompile "org.springframework.cloud:spring-cloud-stream-test-
support"

Manual Integration Testing

The main interface used by the tests is
org.springframework.cloud.contract.verifier.messaging.MessageVerifier. It defines how to send
and receive messages. You can create your own implementation to achieve the same goal.

In a test, you can inject a ContractVerifierMessageExchange to send and receive messages that follow
the contract. Then add @AutoConfigureMessageVerifier to your test. The following example shows
how to do so:

@RunWith(SpringTestRunner.class)
@SpringBootTest
@AutoConfigureMessageVerifier
public static class MessagingContractTests {

 @Autowired
 private MessageVerifier verifier;
 ...
}

If your tests require stubs as well, then @AutoConfigureStubRunner includes the
messaging configuration, so you only need the one annotation.

Producer Side Messaging Test Generation

Having the input or outputMessage sections in your DSL results in creation of tests on the publisher’s
side. By default, JUnit 4 tests are created. However, there is also a possibility to create JUnit 5,
TestNG, or Spock tests.

There are three main scenarios that we should take into consideration:

• Scenario 1: There is no input message that produces an output message. The output message is
triggered by a component inside the application (for example, a scheduler).

• Scenario 2: The input message triggers an output message.

• Scenario 3: The input message is consumed, and there is no output message.

The destination passed to messageFrom or sentTo can have different meanings for
different messaging implementations. For Stream and Integration, it is first
resolved as a destination of a channel. Then, if there is no such destination it is
resolved as a channel name. For Camel, that’s a certain component (for example,
jms).

Scenario 1: No Input Message

Consider the following contract:

groovy

def contractDsl = Contract.make {
 name "foo"
 label 'some_label'
 input {
 triggeredBy('bookReturnedTriggered()')
 }
 outputMessage {
 sentTo('activemq:output')
 body('''{ "bookName" : "foo" }''')
 headers {
 header('BOOK-NAME', 'foo')
 messagingContentType(applicationJson())
 }
 }
}

yml

label: some_label
input:
 triggeredBy: bookReturnedTriggered
outputMessage:
 sentTo: activemq:output
 body:
 bookName: foo
 headers:
 BOOK-NAME: foo
 contentType: application/json

For the preceding example, the following test would be created:

JUnit

 '''\
package com.example;

import com.jayway.jsonpath.DocumentContext;
import com.jayway.jsonpath.JsonPath;
import org.junit.Test;
import org.junit.Rule;
import javax.inject.Inject;
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierObj
ectMapper;
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
sage;
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
saging;

import static
org.springframework.cloud.contract.verifier.assertion.SpringCloudContractAssertion
s.assertThat;
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.*;
import static com.toomuchcoding.jsonassert.JsonAssertion.assertThatJson;
import static
org.springframework.cloud.contract.verifier.messaging.util.ContractVerifierMessagi
ngUtil.headers;
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.fileToBytes;

@SuppressWarnings("rawtypes")
public class FooTest {
\t@Inject ContractVerifierMessaging contractVerifierMessaging;
\t@Inject ContractVerifierObjectMapper contractVerifierObjectMapper;

\t@Test
\tpublic void validate_foo() throws Exception {
\t\t// when:
\t\t\tbookReturnedTriggered();

\t\t// then:
\t\t\tContractVerifierMessage response =
contractVerifierMessaging.receive("activemq:output");
\t\t\tassertThat(response).isNotNull();

\t\t// and:

\t\t\tassertThat(response.getHeader("BOOK-NAME")).isNotNull();
\t\t\tassertThat(response.getHeader("BOOK-NAME").toString()).isEqualTo("foo");
\t\t\tassertThat(response.getHeader("contentType")).isNotNull();
\t\t\tassertThat(response.getHeader("contentType").toString()).isEqualTo("applicat
ion/json");

\t\t// and:
\t\t\tDocumentContext parsedJson =
JsonPath.parse(contractVerifierObjectMapper.writeValueAsString(response.getPayload
()));
\t\t\tassertThatJson(parsedJson).field("['bookName']").isEqualTo("foo");
\t}

}

'''

Spock

 '''\
package com.example

import com.jayway.jsonpath.DocumentContext
import com.jayway.jsonpath.JsonPath
import spock.lang.Specification
import javax.inject.Inject
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierObj
ectMapper
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
sage
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
saging

import static
org.springframework.cloud.contract.verifier.assertion.SpringCloudContractAssertion
s.assertThat
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.*
import static com.toomuchcoding.jsonassert.JsonAssertion.assertThatJson
import static
org.springframework.cloud.contract.verifier.messaging.util.ContractVerifierMessagi
ngUtil.headers
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.fileToBytes

@SuppressWarnings("rawtypes")
class FooSpec extends Specification {
\t@Inject ContractVerifierMessaging contractVerifierMessaging

\t@Inject ContractVerifierObjectMapper contractVerifierObjectMapper

\tdef validate_foo() throws Exception {
\t\twhen:
\t\t\tbookReturnedTriggered()

\t\tthen:
\t\t\tContractVerifierMessage response =
contractVerifierMessaging.receive("activemq:output")
\t\t\tresponse != null

\t\tand:
\t\t\tresponse.getHeader("BOOK-NAME") != null
\t\t\tresponse.getHeader("BOOK-NAME").toString() == 'foo'
\t\t\tresponse.getHeader("contentType") != null
\t\t\tresponse.getHeader("contentType").toString() == 'application/json'

\t\tand:
\t\t\tDocumentContext parsedJson =
JsonPath.parse(contractVerifierObjectMapper.writeValueAsString(response.getPayload
()))
\t\t\tassertThatJson(parsedJson).field("['bookName']").isEqualTo("foo")
\t}

}

'''

Scenario 2: Output Triggered by Input

Consider the following contract:

groovy

def contractDsl = Contract.make {
 name "foo"
 label 'some_label'
 input {
 messageFrom('jms:input')
 messageBody([
 bookName: 'foo'
])
 messageHeaders {
 header('sample', 'header')
 }
 }
 outputMessage {
 sentTo('jms:output')
 body([
 bookName: 'foo'
])
 headers {
 header('BOOK-NAME', 'foo')
 }
 }
}

yml

label: some_label
input:
 messageFrom: jms:input
 messageBody:
 bookName: 'foo'
 messageHeaders:
 sample: header
outputMessage:
 sentTo: jms:output
 body:
 bookName: foo
 headers:
 BOOK-NAME: foo

For the preceding contract, the following test would be created:

JUnit

 '''\
package com.example;

import com.jayway.jsonpath.DocumentContext;
import com.jayway.jsonpath.JsonPath;
import org.junit.Test;
import org.junit.Rule;
import javax.inject.Inject;
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierObj
ectMapper;
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
sage;
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
saging;

import static
org.springframework.cloud.contract.verifier.assertion.SpringCloudContractAssertion
s.assertThat;
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.*;
import static com.toomuchcoding.jsonassert.JsonAssertion.assertThatJson;
import static
org.springframework.cloud.contract.verifier.messaging.util.ContractVerifierMessagi
ngUtil.headers;
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.fileToBytes;

@SuppressWarnings("rawtypes")
public class FooTest {
\t@Inject ContractVerifierMessaging contractVerifierMessaging;
\t@Inject ContractVerifierObjectMapper contractVerifierObjectMapper;

\t@Test
\tpublic void validate_foo() throws Exception {
\t\t// given:
\t\t\tContractVerifierMessage inputMessage = contractVerifierMessaging.create(
\t\t\t\t\t"{\\"bookName\\":\\"foo\\"}"
\t\t\t\t\t\t, headers()
\t\t\t\t\t\t\t.header("sample", "header")
\t\t\t);

\t\t// when:
\t\t\tcontractVerifierMessaging.send(inputMessage, "jms:input");

\t\t// then:
\t\t\tContractVerifierMessage response =
contractVerifierMessaging.receive("jms:output");
\t\t\tassertThat(response).isNotNull();

\t\t// and:

\t\t\tassertThat(response.getHeader("BOOK-NAME")).isNotNull();
\t\t\tassertThat(response.getHeader("BOOK-NAME").toString()).isEqualTo("foo");

\t\t// and:
\t\t\tDocumentContext parsedJson =
JsonPath.parse(contractVerifierObjectMapper.writeValueAsString(response.getPayload
()));
\t\t\tassertThatJson(parsedJson).field("['bookName']").isEqualTo("foo");
\t}

}

'''

Spock

 """\
package com.example

import com.jayway.jsonpath.DocumentContext
import com.jayway.jsonpath.JsonPath
import spock.lang.Specification
import javax.inject.Inject
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierObj
ectMapper
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
sage
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
saging

import static
org.springframework.cloud.contract.verifier.assertion.SpringCloudContractAssertion
s.assertThat
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.*
import static com.toomuchcoding.jsonassert.JsonAssertion.assertThatJson
import static
org.springframework.cloud.contract.verifier.messaging.util.ContractVerifierMessagi
ngUtil.headers
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.fileToBytes

@SuppressWarnings("rawtypes")
class FooSpec extends Specification {
\t@Inject ContractVerifierMessaging contractVerifierMessaging
\t@Inject ContractVerifierObjectMapper contractVerifierObjectMapper

\tdef validate_foo() throws Exception {

\t\tgiven:
\t\t\tContractVerifierMessage inputMessage = contractVerifierMessaging.create(
\t\t\t\t\t'''{"bookName":"foo"}'''
\t\t\t\t\t\t, headers()
\t\t\t\t\t\t\t.header("sample", "header")
\t\t\t)

\t\twhen:
\t\t\tcontractVerifierMessaging.send(inputMessage, "jms:input")

\t\tthen:
\t\t\tContractVerifierMessage response =
contractVerifierMessaging.receive("jms:output")
\t\t\tresponse != null

\t\tand:
\t\t\tresponse.getHeader("BOOK-NAME") != null
\t\t\tresponse.getHeader("BOOK-NAME").toString() == 'foo'

\t\tand:
\t\t\tDocumentContext parsedJson =
JsonPath.parse(contractVerifierObjectMapper.writeValueAsString(response.getPayload
()))
\t\t\tassertThatJson(parsedJson).field("['bookName']").isEqualTo("foo")
\t}

}

"""

Scenario 3: No Output Message

Consider the following contract:

groovy

def contractDsl = Contract.make {
 name "foo"
 label 'some_label'
 input {
 messageFrom('jms:delete')
 messageBody([
 bookName: 'foo'
])
 messageHeaders {
 header('sample', 'header')
 }
 assertThat('bookWasDeleted()')
 }
}

yml

label: some_label
input:
 messageFrom: jms:delete
 messageBody:
 bookName: 'foo'
 messageHeaders:
 sample: header
 assertThat: bookWasDeleted()

For the preceding contract, the following test would be created:

JUnit

 """\
package com.example;

import com.jayway.jsonpath.DocumentContext;
import com.jayway.jsonpath.JsonPath;
import org.junit.Test;
import org.junit.Rule;
import javax.inject.Inject;
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierObj
ectMapper;
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
sage;
import

org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
saging;

import static
org.springframework.cloud.contract.verifier.assertion.SpringCloudContractAssertion
s.assertThat;
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.*;
import static com.toomuchcoding.jsonassert.JsonAssertion.assertThatJson;
import static
org.springframework.cloud.contract.verifier.messaging.util.ContractVerifierMessagi
ngUtil.headers;
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.fileToBytes;

@SuppressWarnings("rawtypes")
public class FooTest {
\t@Inject ContractVerifierMessaging contractVerifierMessaging;
\t@Inject ContractVerifierObjectMapper contractVerifierObjectMapper;

\t@Test
\tpublic void validate_foo() throws Exception {
\t\t// given:
\t\t\tContractVerifierMessage inputMessage = contractVerifierMessaging.create(
\t\t\t\t\t"{\\"bookName\\":\\"foo\\"}"
\t\t\t\t\t\t, headers()
\t\t\t\t\t\t\t.header("sample", "header")
\t\t\t);

\t\t// when:
\t\t\tcontractVerifierMessaging.send(inputMessage, "jms:delete");
\t\t\tbookWasDeleted();

\t}

}

"""

Spock

 """\
package com.example

import com.jayway.jsonpath.DocumentContext
import com.jayway.jsonpath.JsonPath
import spock.lang.Specification
import javax.inject.Inject
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierObj
ectMapper

import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
sage
import
org.springframework.cloud.contract.verifier.messaging.internal.ContractVerifierMes
saging

import static
org.springframework.cloud.contract.verifier.assertion.SpringCloudContractAssertion
s.assertThat
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.*
import static com.toomuchcoding.jsonassert.JsonAssertion.assertThatJson
import static
org.springframework.cloud.contract.verifier.messaging.util.ContractVerifierMessagi
ngUtil.headers
import static
org.springframework.cloud.contract.verifier.util.ContractVerifierUtil.fileToBytes

@SuppressWarnings("rawtypes")
class FooSpec extends Specification {
\t@Inject ContractVerifierMessaging contractVerifierMessaging
\t@Inject ContractVerifierObjectMapper contractVerifierObjectMapper

\tdef validate_foo() throws Exception {
\t\tgiven:
\t\t\tContractVerifierMessage inputMessage = contractVerifierMessaging.create(
\t\t\t\t\t'''{"bookName":"foo"}'''
\t\t\t\t\t\t, headers()
\t\t\t\t\t\t\t.header("sample", "header")
\t\t\t)

\t\twhen:
\t\t\tcontractVerifierMessaging.send(inputMessage, "jms:delete")
\t\t\tbookWasDeleted()

\t\tthen:
\t\t\tnoExceptionThrown()
\t}

}
"""

Consumer Stub Generation

Unlike in the HTTP part, in messaging, we need to publish the contract definition inside the JAR
with a stub. Then it is parsed on the consumer side, and proper stubbed routes are created.

If you have multiple frameworks on the classpath, Stub Runner needs to define
which one should be used. Assume that you have AMQP, Spring Cloud Stream, and
Spring Integration on the classpath and that you want to use Spring AMQP. Then
you need to set stubrunner.stream.enabled=false and
stubrunner.integration.enabled=false. That way, the only remaining framework is
Spring AMQP.

Stub triggering

To trigger a message, use the StubTrigger interface, as the following example shows:

package org.springframework.cloud.contract.stubrunner;

import java.util.Collection;
import java.util.Map;

/**
 * Contract for triggering stub messages.
 *
 * @author Marcin Grzejszczak
 */
public interface StubTrigger {

 /**
 * Triggers an event by a given label for a given {@code groupid:artifactid}
notation.
 * You can use only {@code artifactId} too.
 *
 * Feature related to messaging.
 * @param ivyNotation ivy notation of a stub
 * @param labelName name of the label to trigger
 * @return true - if managed to run a trigger
 */
 boolean trigger(String ivyNotation, String labelName);

 /**
 * Triggers an event by a given label.
 *
 * Feature related to messaging.
 * @param labelName name of the label to trigger
 * @return true - if managed to run a trigger
 */
 boolean trigger(String labelName);

 /**
 * Triggers all possible events.
 *
 * Feature related to messaging.
 * @return true - if managed to run a trigger
 */
 boolean trigger();

 /**
 * Feature related to messaging.
 * @return a mapping of ivy notation of a dependency to all the labels it has.
 */
 Map<String, Collection<String>> labels();

}

For convenience, the StubFinder interface extends StubTrigger, so you only need one or the other in

your tests.

StubTrigger gives you the following options to trigger a message:

• Trigger by Label

• Trigger by Group and Artifact Ids

• Trigger by Artifact IDs

• Trigger All Messages

Trigger by Label

The following example shows how to trigger a message with a label:

stubFinder.trigger('return_book_1')

Trigger by Group and Artifact Ids

stubFinder.trigger('org.springframework.cloud.contract.verifier.stubs:streamService',
'return_book_1')

Trigger by Artifact IDs

The following example shows how to trigger a message from artifact IDs:

stubFinder.trigger('streamService', 'return_book_1')

Trigger All Messages

The following example shows how to trigger all messages:

stubFinder.trigger()

Consumer Side Messaging With Apache Camel

Spring Cloud Contract Stub Runner’s messaging module gives you an easy way to integrate with
Apache Camel. For the provided artifacts, it automatically downloads the stubs and registers the
required routes.

Adding Apache Camel to the Project

You can have both Apache Camel and Spring Cloud Contract Stub Runner on the classpath.
Remember to annotate your test class with @AutoConfigureStubRunner.

Disabling the Functionality

If you need to disable this functionality, set the stubrunner.camel.enabled=false property.

Examples

Assume that we have the following Maven repository with deployed stubs for the camelService
application.

└── .m2
 └── repository
 └── io
 └── codearte
 └── accurest
 └── stubs
 └── camelService
 ├── 0.0.1-SNAPSHOT
 │ ├── camelService-0.0.1-SNAPSHOT.pom
 │ ├── camelService-0.0.1-SNAPSHOT-stubs.jar
 │ └── maven-metadata-local.xml
 └── maven-metadata-local.xml

Further assume that the stubs contain the following structure:

├── META-INF
│ └── MANIFEST.MF
└── repository
 ├── accurest
 │ ├── bookDeleted.groovy
 │ ├── bookReturned1.groovy
 │ └── bookReturned2.groovy
 └── mappings

Now consider the following contracts (we number them 1 and 2):

Contract.make {
 label 'return_book_1'
 input {
 triggeredBy('bookReturnedTriggered()')
 }
 outputMessage {
 sentTo('jms:output')
 body('''{ "bookName" : "foo" }''')
 headers {
 header('BOOK-NAME', 'foo')
 }
 }
}

Contract.make {
 label 'return_book_2'
 input {
 messageFrom('jms:input')
 messageBody([
 bookName: 'foo'
])
 messageHeaders {
 header('sample', 'header')
 }
 }
 outputMessage {
 sentTo('jms:output')
 body([
 bookName: 'foo'
])
 headers {
 header('BOOK-NAME', 'foo')
 }
 }
}

Scenario 1 (No Input Message)

To trigger a message from the return_book_1 label, we use the StubTrigger interface, as follows:

stubFinder.trigger('return_book_1')

Next, we want to listen to the output of the message sent to jms:output:

Exchange receivedMessage = consumerTemplate.receive('jms:output', 5000)

The received message would then pass the following assertions:

receivedMessage != null
assertThatBodyContainsBookNameFoo(receivedMessage.in.body)
receivedMessage.in.headers.get('BOOK-NAME') == 'foo'

Scenario 2 (Output Triggered by Input)

Since the route is set for you, you can send a message to the jms:output destination.

producerTemplate.
 sendBodyAndHeaders('jms:input', new BookReturned('foo'), [sample:
'header'])

Next, we want to listen to the output of the message sent to jms:output, as follows:

Exchange receivedMessage = consumerTemplate.receive('jms:output', 5000)

The received message would pass the following assertions:

receivedMessage != null
assertThatBodyContainsBookNameFoo(receivedMessage.in.body)
receivedMessage.in.headers.get('BOOK-NAME') == 'foo'

Scenario 3 (Input with No Output)

Since the route is set for you, you can send a message to the jms:output destination, as follows:

producerTemplate.
 sendBodyAndHeaders('jms:delete', new BookReturned('foo'), [sample:
'header'])

Consumer Side Messaging with Spring Integration

Spring Cloud Contract Stub Runner’s messaging module gives you an easy way to integrate with
Spring Integration. For the provided artifacts, it automatically downloads the stubs and registers
the required routes.

Adding the Runner to the Project

You can have both Spring Integration and Spring Cloud Contract Stub Runner on the classpath.
Remember to annotate your test class with @AutoConfigureStubRunner.

Disabling the Functionality

If you need to disable this functionality, set the stubrunner.integration.enabled=false property.

Examples

Assume that you have the following Maven repository with deployed stubs for the
integrationService application:

└── .m2
 └── repository
 └── io
 └── codearte
 └── accurest
 └── stubs
 └── integrationService
 ├── 0.0.1-SNAPSHOT
 │ ├── integrationService-0.0.1-SNAPSHOT.pom
 │ ├── integrationService-0.0.1-SNAPSHOT-
stubs.jar
 │ └── maven-metadata-local.xml
 └── maven-metadata-local.xml

Further assume the stubs contain the following structure:

├── META-INF
│ └── MANIFEST.MF
└── repository
 ├── accurest
 │ ├── bookDeleted.groovy
 │ ├── bookReturned1.groovy
 │ └── bookReturned2.groovy
 └── mappings

Consider the following contracts (numbered 1 and 2):

Contract.make {
 label 'return_book_1'
 input {
 triggeredBy('bookReturnedTriggered()')
 }
 outputMessage {
 sentTo('output')
 body('''{ "bookName" : "foo" }''')
 headers {
 header('BOOK-NAME', 'foo')
 }
 }
}

Contract.make {
 label 'return_book_2'
 input {
 messageFrom('input')
 messageBody([
 bookName: 'foo'
])
 messageHeaders {
 header('sample', 'header')
 }
 }
 outputMessage {
 sentTo('output')
 body([
 bookName: 'foo'
])
 headers {
 header('BOOK-NAME', 'foo')
 }
 }
}

Now consider the following Spring Integration Route:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns="http://www.springframework.org/schema/integration"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/spring-
integration.xsd">

 <!-- REQUIRED FOR TESTING -->
 <bridge input-channel="output"
 output-channel="outputTest"/>

 <channel id="outputTest">
 <queue/>
 </channel>

</beans:beans>

These examples lend themselves to three scenarios:

1. Scenario 1 (No Input Message)

2. Scenario 2 (Output Triggered by Input)

3. Scenario 3 (Input with No Output)

Scenario 1 (No Input Message)

To trigger a message from the return_book_1 label, use the StubTrigger interface, as follows:

stubFinder.trigger('return_book_1')

The following listing shows how to listen to the output of the message sent to jms:output:

Message<?> receivedMessage = messaging.receive('outputTest')

The received message would pass the following assertions:

receivedMessage != null
assertJsons(receivedMessage.payload)
receivedMessage.headers.get('BOOK-NAME') == 'foo'

Scenario 2 (Output Triggered by Input)

Since the route is set for you, you can send a message to the jms:output destination, as follows:

messaging.send(new BookReturned('foo'), [sample: 'header'], 'input')

The following listing shows how to listen to the output of the message sent to jms:output:

Message<?> receivedMessage = messaging.receive('outputTest')

The received message passes the following assertions:

receivedMessage != null
assertJsons(receivedMessage.payload)
receivedMessage.headers.get('BOOK-NAME') == 'foo'

Scenario 3 (Input with No Output)

Since the route is set for you, you can send a message to the jms:input destination, as follows:

messaging.send(new BookReturned('foo'), [sample: 'header'], 'delete')

Consumer Side Messaging With Spring Cloud Stream

Spring Cloud Contract Stub Runner’s messaging module gives you an easy way to integrate with
Spring Stream. For the provided artifacts, it automatically downloads the stubs and registers the
required routes.

If Stub Runner’s integration with the Stream messageFrom or sentTo strings are
resolved first as the destination of a channel and no such destination exists, the
destination is resolved as a channel name.

If you want to use Spring Cloud Stream, remember to add a dependency on
org.springframework.cloud:spring-cloud-stream-test-support, as follows:

Maven

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-test-support</artifactId>
 <scope>test</scope>
</dependency>

Gradle

testCompile "org.springframework.cloud:spring-cloud-stream-test-
support"

Adding the Runner to the Project

You can have both Spring Cloud Stream and Spring Cloud Contract Stub Runner on the classpath.
Remember to annotate your test class with @AutoConfigureStubRunner.

Disabling the Functionality

If you need to disable this functionality, set the stubrunner.stream.enabled=false property.

Examples

Assume that you have the following Maven repository with deployed stubs for the streamService
application:

└── .m2
 └── repository
 └── io
 └── codearte
 └── accurest
 └── stubs
 └── streamService
 ├── 0.0.1-SNAPSHOT
 │ ├── streamService-0.0.1-SNAPSHOT.pom
 │ ├── streamService-0.0.1-SNAPSHOT-stubs.jar
 │ └── maven-metadata-local.xml
 └── maven-metadata-local.xml

Further assume the stubs contain the following structure:

├── META-INF
│ └── MANIFEST.MF
└── repository
 ├── accurest
 │ ├── bookDeleted.groovy
 │ ├── bookReturned1.groovy
 │ └── bookReturned2.groovy
 └── mappings

Consider the following contracts (numbered 1 and 2):

Contract.make {
 label 'return_book_1'
 input { triggeredBy('bookReturnedTriggered()') }
 outputMessage {
 sentTo('returnBook')
 body('''{ "bookName" : "foo" }''')
 headers { header('BOOK-NAME', 'foo') }
 }
}

Contract.make {
 label 'return_book_2'
 input {
 messageFrom('bookStorage')
 messageBody([
 bookName: 'foo'
])
 messageHeaders { header('sample', 'header') }
 }
 outputMessage {
 sentTo('returnBook')
 body([
 bookName: 'foo'
])
 headers { header('BOOK-NAME', 'foo') }
 }
}

Now consider the following Spring configuration:

stubrunner.repositoryRoot: classpath:m2repo/repository/
stubrunner.ids:
org.springframework.cloud.contract.verifier.stubs:streamService:0.0.1-
SNAPSHOT:stubs
stubrunner.stubs-mode: remote
spring:
 cloud:
 stream:
 bindings:
 output:
 destination: returnBook
 input:
 destination: bookStorage

server:
 port: 0

debug: true

These examples lend themselves to three scenarios:

• Scenario 1 (No Input Message)

• Scenario 2 (Output Triggered by Input)

• Scenario 3 (Input with No Output)

Scenario 1 (No Input Message)

To trigger a message from the return_book_1 label, use the StubTrigger interface as follows:

stubFinder.trigger('return_book_1')

The following example shows how to listen to the output of the message sent to a channel whose
destination is returnBook:

Message<?> receivedMessage = messaging.receive('returnBook')

The received message passes the following assertions:

receivedMessage != null
assertJsons(receivedMessage.payload)
receivedMessage.headers.get('BOOK-NAME') == 'foo'

Scenario 2 (Output Triggered by Input)

Since the route is set for you, you can send a message to the bookStorage destination, as follows:

messaging.send(new BookReturned('foo'), [sample: 'header'], 'bookStorage')

The following example shows how to listen to the output of the message sent to returnBook:

Message<?> receivedMessage = messaging.receive('returnBook')

The received message passes the following assertions:

receivedMessage != null
assertJsons(receivedMessage.payload)
receivedMessage.headers.get('BOOK-NAME') == 'foo'

Scenario 3 (Input with No Output)

Since the route is set for you, you can send a message to the jms:output destination, as follows:

messaging.send(new BookReturned('foo'), [sample: 'header'], 'delete')

Consumer Side Messaging With Spring AMQP

Spring Cloud Contract Stub Runner’s messaging module provides an easy way to integrate with
Spring AMQP’s Rabbit Template. For the provided artifacts, it automatically downloads the stubs
and registers the required routes.

The integration tries to work standalone (that is, without interaction with a running RabbitMQ
message broker). It expects a RabbitTemplate on the application context and uses it as a spring boot
test named @SpyBean. As a result, it can use the Mockito spy functionality to verify and inspect
messages sent by the application.

On the message consumer side, the stub runner considers all @RabbitListener annotated endpoints
and all SimpleMessageListenerContainer objects on the application context.

As messages are usually sent to exchanges in AMQP, the message contract contains the exchange
name as the destination. Message listeners on the other side are bound to queues. Bindings connect
an exchange to a queue. If message contracts are triggered, the Spring AMQP stub runner
integration looks for bindings on the application context that matches this exchange. Then it
collects the queues from the Spring exchanges and tries to find message listeners bound to these
queues. The message is triggered for all matching message listeners.

If you need to work with routing keys, you can pass them by using the amqp_receivedRoutingKey
messaging header.

Adding the Runner to the Project

You can have both Spring AMQP and Spring Cloud Contract Stub Runner on the classpath and set
the property stubrunner.amqp.enabled=true. Remember to annotate your test class with
@AutoConfigureStubRunner.

If you already have Stream and Integration on the classpath, you need to disable
them explicitly by setting the stubrunner.stream.enabled=false and
stubrunner.integration.enabled=false properties.

Examples

Assume that you have the following Maven repository with a deployed stubs for the spring-cloud-
contract-amqp-test application:

└── .m2
 └── repository
 └── com
 └── example
 └── spring-cloud-contract-amqp-test
 ├── 0.4.0-SNAPSHOT
 │ ├── spring-cloud-contract-amqp-test-0.4.0-SNAPSHOT.pom
 │ ├── spring-cloud-contract-amqp-test-0.4.0-SNAPSHOT-
stubs.jar
 │ └── maven-metadata-local.xml
 └── maven-metadata-local.xml

Further assume that the stubs contain the following structure:

├── META-INF
│ └── MANIFEST.MF
└── contracts
 └── shouldProduceValidPersonData.groovy

Then consider the following contract:

Contract.make {
 // Human readable description
 description 'Should produce valid person data'
 // Label by means of which the output message can be triggered
 label 'contract-test.person.created.event'
 // input to the contract
 input {
 // the contract will be triggered by a method
 triggeredBy('createPerson()')
 }
 // output message of the contract
 outputMessage {
 // destination to which the output message will be sent
 sentTo 'contract-test.exchange'
 headers {
 header('contentType': 'application/json')
 header('__TypeId__':
'org.springframework.cloud.contract.stubrunner.messaging.amqp.Person')
 }
 // the body of the output message
 body([
 id : $(consumer(9), producer(regex("[0-9]+"))),
 name: "me"
])
 }
}

Now consider the following Spring configuration:

stubrunner:
 repositoryRoot: classpath:m2repo/repository/
 ids: org.springframework.cloud.contract.verifier.stubs.amqp:spring-cloud-
contract-amqp-test:0.4.0-SNAPSHOT:stubs
 stubs-mode: remote
 amqp:
 enabled: true
server:
 port: 0

Triggering the Message

To trigger a message using the contract in the preceding section, use the StubTrigger interface as
follows:

stubTrigger.trigger("contract-test.person.created.event")

The message has a destination of contract-test.exchange, so the Spring AMQP stub runner
integration looks for bindings related to this exchange, as the following example shows:

@Bean
public Binding binding() {
 return BindingBuilder.bind(new Queue("test.queue"))
 .to(new DirectExchange("contract-test.exchange")).with("#");
}

The binding definition binds the queue called test.queue. As a result, the following listener
definition is matched and invoked with the contract message:

@Bean
public SimpleMessageListenerContainer simpleMessageListenerContainer(
 ConnectionFactory connectionFactory,
 MessageListenerAdapter listenerAdapter) {
 SimpleMessageListenerContainer container = new
SimpleMessageListenerContainer();
 container.setConnectionFactory(connectionFactory);
 container.setQueueNames("test.queue");
 container.setMessageListener(listenerAdapter);

 return container;
}

Also, the following annotated listener matches and is invoked:

@RabbitListener(bindings = @QueueBinding(value = @Queue("test.queue"),
 exchange = @Exchange(value = "contract-test.exchange",
 ignoreDeclarationExceptions = "true")))
public void handlePerson(Person person) {
 this.person = person;
}

The message is directly handed over to the onMessage method of the
MessageListener associated with the matching SimpleMessageListenerContainer.

Spring AMQP Test Configuration

In order to avoid Spring AMQP trying to connect to a running broker during our tests, we configure
a mock ConnectionFactory.

To disable the mocked ConnectionFactory, set the following property:
stubrunner.amqp.mockConnection=false, as follows:

stubrunner:
 amqp:
 mockConnection: false

Consumer Side Messaging With Spring JMS

Spring Cloud Contract Stub Runner’s messaging module provides an easy way to integrate with
Spring JMS.

The integration assumes that you have a running instance of a JMS broker (e.g. activemq embedded
broker).

Adding the Runner to the Project

You need to have both Spring JMS and Spring Cloud Contract Stub Runner on the classpath.
Remember to annotate your test class with @AutoConfigureStubRunner.

Examples

Assume that the stub structure looks as follows:

├── stubs
 ├── bookDeleted.groovy
 ├── bookReturned1.groovy
 └── bookReturned2.groovy

Further assume the following test configuration:

stubrunner:
 repository-root: stubs:classpath:/stubs/
 ids: my:stubs
 stubs-mode: remote
spring:
 activemq:
 send-timeout: 1000
 jms:
 template:
 receive-timeout: 1000

Now consider the following contracts (we number them 1 and 2):

Contract.make {
 label 'return_book_1'
 input {
 triggeredBy('bookReturnedTriggered()')
 }
 outputMessage {
 sentTo('output')
 body('''{ "bookName" : "foo" }''')
 headers {
 header('BOOK-NAME', 'foo')
 }
 }
}

Contract.make {
 label 'return_book_2'
 input {
 messageFrom('input')
 messageBody([
 bookName: 'foo'
])
 messageHeaders {
 header('sample', 'header')
 }
 }
 outputMessage {
 sentTo('output')
 body([
 bookName: 'foo'
])
 headers {
 header('BOOK-NAME', 'foo')
 }
 }
}

Scenario 1 (No Input Message)

To trigger a message from the return_book_1 label, we use the StubTrigger interface, as follows:

stubFinder.trigger('return_book_1')

Next, we want to listen to the output of the message sent to output:

TextMessage receivedMessage = (TextMessage) jmsTemplate.receive('output')

The received message would then pass the following assertions:

receivedMessage != null
assertThatBodyContainsBookNameFoo(receivedMessage.getText())
receivedMessage.getStringProperty('BOOK-NAME') == 'foo'

Scenario 2 (Output Triggered by Input)

Since the route is set for you, you can send a message to the output destination.

jmsTemplate.
 convertAndSend('input', new BookReturned('foo'), new
MessagePostProcessor() {
 @Override
 Message postProcessMessage(Message message) throws JMSException {
 message.setStringProperty("sample", "header")
 return message
 }
 })

Next, we want to listen to the output of the message sent to output, as follows:

TextMessage receivedMessage = (TextMessage) jmsTemplate.receive('output')

The received message would pass the following assertions:

receivedMessage != null
assertThatBodyContainsBookNameFoo(receivedMessage.getText())
receivedMessage.getStringProperty('BOOK-NAME') == 'foo'

Scenario 3 (Input with No Output)

Since the route is set for you, you can send a message to the output destination, as follows:

jmsTemplate.
 convertAndSend('delete', new BookReturned('foo'), new
MessagePostProcessor() {
 @Override
 Message postProcessMessage(Message message) throws JMSException {
 message.setStringProperty("sample", "header")
 return message
 }
 })

Consumer Side Messaging With Spring Kafka

Spring Cloud Contract Stub Runner’s messaging module provides an easy way to integrate with
Spring Kafka.

The integration assumes that you have a running instance of a embedded Kafka broker (via the
spring-kafka-test dependency).

Adding the Runner to the Project

You need to have both Spring Kafka, Spring Kafka Test (to run the @EmbeddedBroker) and Spring
Cloud Contract Stub Runner on the classpath. Remember to annotate your test class with
@AutoConfigureStubRunner.

With Kafka integration, in order to poll for a single message we need to register a consumer upon
Spring context startup. That may lead to a situation that, when you’re on the consumer side, Stub
Runner can register an additional consumer for the same group id and topic. That could lead to a
situation that only one of the components would actually poll for the message. Since on the
consumer side you have both the Spring Cloud Contract Stub Runner and Spring Cloud Contract
Verifier classpath, we need to be able to switch off such behaviour. That’s done automatically via
the stubrunner.kafka.initializer.enabled flag, that will disable the Contact Verifier consumer
registration. If your application is both the consumer and the producer of a kafka message, you
might need to manually toggle that property to false in the base class of your generated tests.

Examples

Assume that the stub structure looks as follows:

├── stubs
 ├── bookDeleted.groovy
 ├── bookReturned1.groovy
 └── bookReturned2.groovy

Further assume the following test configuration (notice the spring.kafka.bootstrap-servers

pointing to the embedded broker’s IP via ${spring.embedded.kafka.brokers}):

stubrunner:
 repository-root: stubs:classpath:/stubs/
 ids: my:stubs
 stubs-mode: remote
spring:
 kafka:
 bootstrap-servers: ${spring.embedded.kafka.brokers}
 producer:
 properties:
 "value.serializer":
"org.springframework.kafka.support.serializer.JsonSerializer"
 "spring.json.trusted.packages": "*"
 consumer:
 properties:
 "value.deserializer":
"org.springframework.kafka.support.serializer.JsonDeserializer"
 "value.serializer":
"org.springframework.kafka.support.serializer.JsonSerializer"
 "spring.json.trusted.packages": "*"
 group-id: groupId

Now consider the following contracts (we number them 1 and 2):

Contract.make {
 label 'return_book_1'
 input {
 triggeredBy('bookReturnedTriggered()')
 }
 outputMessage {
 sentTo('output')
 body('''{ "bookName" : "foo" }''')
 headers {
 header('BOOK-NAME', 'foo')
 }
 }
}

Contract.make {
 label 'return_book_2'
 input {
 messageFrom('input')
 messageBody([
 bookName: 'foo'
])
 messageHeaders {
 header('sample', 'header')
 }
 }
 outputMessage {
 sentTo('output')
 body([
 bookName: 'foo'
])
 headers {
 header('BOOK-NAME', 'foo')
 }
 }
}

Scenario 1 (No Input Message)

To trigger a message from the return_book_1 label, we use the StubTrigger interface, as follows:

stubFinder.trigger('return_book_1')

Next, we want to listen to the output of the message sent to output:

Message receivedMessage = receiveFromOutput()

The received message would then pass the following assertions:

assert receivedMessage != null
assert assertThatBodyContainsBookNameFoo(receivedMessage.getPayload())
assert receivedMessage.getHeaders().get('BOOK-NAME') == 'foo'

Scenario 2 (Output Triggered by Input)

Since the route is set for you, you can send a message to the output destination.

Message message = MessageBuilder.createMessage(new BookReturned('foo'), new
MessageHeaders([sample: "header",]))
kafkaTemplate.setDefaultTopic('input')
kafkaTemplate.send(message)

Next, we want to listen to the output of the message sent to output, as follows:

Message receivedMessage = receiveFromOutput()

The received message would pass the following assertions:

assert receivedMessage != null
assert assertThatBodyContainsBookNameFoo(receivedMessage.getPayload())
assert receivedMessage.getHeaders().get('BOOK-NAME') == 'foo'

Scenario 3 (Input with No Output)

Since the route is set for you, you can send a message to the output destination, as follows:

Message message = MessageBuilder.createMessage(new BookReturned('foo'), new
MessageHeaders([sample: "header",]))
kafkaTemplate.setDefaultTopic('delete')
kafkaTemplate.send(message)

14.3.5. Spring Cloud Contract Stub Runner

One of the issues that you might encounter while using Spring Cloud Contract Verifier is passing the
generated WireMock JSON stubs from the server side to the client side (or to various clients). The
same takes place in terms of client-side generation for messaging.

Copying the JSON files and setting the client side for messaging manually is out of the question.
That is why we introduced Spring Cloud Contract Stub Runner. It can automatically download and
run the stubs for you.

Snapshot Versions

You can add the additional snapshot repository to your build.gradle file to use snapshot versions,
which are automatically uploaded after every successful build, as follows:

Maven

<repositories>
 <repository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>spring-releases</id>
 <name>Spring Releases</name>
 <url>https://repo.spring.io/release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>

</repositories>
<pluginRepositories>
 <pluginRepository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>spring-releases</id>
 <name>Spring Releases</name>
 <url>https://repo.spring.io/release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
</pluginRepositories>

Gradle

/*
 We need to use the [buildscript {}] section when we have to modify
 the classpath for the plugins. If that's not the case this section
 can be skipped.

 If you don't need to modify the classpath (e.g. add a Pact dependency),
 then you can just set the [pluginManagement {}] section in [settings.gradle]
file.

 // settings.gradle
 pluginManagement {
 repositories {
 // for snapshots
 maven {url "https://repo.spring.io/snapshot"}
 // for milestones
 maven {url "https://repo.spring.io/milestone"}
 // for GA versions
 gradlePluginPortal()
 }
 }

 */
buildscript {
 repositories {
 mavenCentral()
 mavenLocal()
 maven { url "https://repo.spring.io/snapshot" }
 maven { url "https://repo.spring.io/milestone" }
 maven { url "https://repo.spring.io/release" }
 }

Publishing Stubs as JARs

The easiest approach to publishing stubs as jars is to centralize the way stubs are kept. For example,
you can keep them as jars in a Maven repository.

For both Maven and Gradle, the setup comes ready to work. However, you can
customize it if you want to.

The following example shows how to publish stubs as jars:

Maven

<!-- First disable the default jar setup in the properties section -->
<!-- we don't want the verifier to do a jar for us -->
<spring.cloud.contract.verifier.skip>true</spring.cloud.contract.verifier.skip>

<!-- Next add the assembly plugin to your build -->
<!-- we want the assembly plugin to generate the JAR -->
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <id>stub</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <inherited>false</inherited>
 <configuration>
 <attach>true</attach>
 <descriptors>
 $/Users/ryanjbaxter/git-repos/spring-cloud-
samples/scripts/src/assembly/stub.xml
 </descriptors>
 </configuration>
 </execution>
 </executions>
</plugin>

<!-- Finally setup your assembly. Below you can find the contents of
src/main/assembly/stub.xml -->
<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.3 https://maven.apache.org/xsd/assembly-1.1.3.xsd">
 <id>stubs</id>
 <formats>
 <format>jar</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <fileSet>
 <directory>src/main/java</directory>
 <outputDirectory>/</outputDirectory>
 <includes>
 <include>**com/example/model/*.*</include>
 </includes>
 </fileSet>
 <fileSet>
 <directory>${project.build.directory}/classes</directory>
 <outputDirectory>/</outputDirectory>
 <includes>
 <include>**com/example/model/*.*</include>
 </includes>

 </fileSet>
 <fileSet>
 <directory>${project.build.directory}/snippets/stubs</directory>
 <outputDirectory>META-
INF/${project.groupId}/${project.artifactId}/${project.version}/mappings</outputDi
rectory>
 <includes>
 <include>**/*</include>
 </includes>
 </fileSet>
 <fileSet>
 <directory>$/Users/ryanjbaxter/git-repos/spring-cloud-
samples/scripts/src/test/resources/contracts</directory>
 <outputDirectory>META-
INF/${project.groupId}/${project.artifactId}/${project.version}/contracts</outputD
irectory>
 <includes>
 <include>**/*.groovy</include>
 </includes>
 </fileSet>
 </fileSets>
</assembly>

Gradle

ext {
 contractsDir = file("mappings")
 stubsOutputDirRoot = file("${project.buildDir}/production/${project.name}-
stubs/")
}

// Automatically added by plugin:
// copyContracts - copies contracts to the output folder from which JAR will be
created
// verifierStubsJar - JAR with a provided stub suffix
// the presented publication is also added by the plugin but you can modify it as
you wish

publishing {
 publications {
 stubs(MavenPublication) {
 artifactId "${project.name}-stubs"
 artifact verifierStubsJar
 }
 }
}

Stub Runner Core

The stub runner core runs stubs for service collaborators. Treating stubs as contracts of services
lets you use stub-runner as an implementation of Consumer-driven Contracts.

Stub Runner lets you automatically download the stubs of the provided dependencies (or pick those
from the classpath), start WireMock servers for them, and feed them with proper stub definitions.
For messaging, special stub routes are defined.

Retrieving stubs

You can pick from the following options of acquiring stubs:

• Aether-based solution that downloads JARs with stubs from Artifactory or Nexus

• Classpath-scanning solution that searches the classpath with a pattern to retrieve stubs

• Writing your own implementation of the
org.springframework.cloud.contract.stubrunner.StubDownloaderBuilder for full customization

The latter example is described in the Custom Stub Runner section.

Downloading Stubs

You can control the downloading of stubs with the stubsMode switch. It picks value from the
StubRunnerProperties.StubsMode enumeration. You can use the following options:

• StubRunnerProperties.StubsMode.CLASSPATH (default value): Picks stubs from the classpath

• StubRunnerProperties.StubsMode.LOCAL: Picks stubs from a local storage (for example, .m2)

• StubRunnerProperties.StubsMode.REMOTE: Picks stubs from a remote location

The following example picks stubs from a local location:

@AutoConfigureStubRunner(repositoryRoot="https://foo.bar", ids =
"com.example:beer-api-producer:+:stubs:8095", stubsMode =
StubRunnerProperties.StubsMode.LOCAL)

Classpath scanning

If you set the stubsMode property to StubRunnerProperties.StubsMode.CLASSPATH (or set nothing since
CLASSPATH is the default value), the classpath is scanned. Consider the following example:

@AutoConfigureStubRunner(ids = {
 "com.example:beer-api-producer:+:stubs:8095",
 "com.example.foo:bar:1.0.0:superstubs:8096"
})

https://martinfowler.com/articles/consumerDrivenContracts.html
advanced.pdf#customization-custom-stub-runner

You can add the dependencies to your classpath, as follows:

Maven

<dependency>
 <groupId>com.example</groupId>
 <artifactId>beer-api-producer-restdocs</artifactId>
 <classifier>stubs</classifier>
 <version>0.0.1-SNAPSHOT</version>
 <scope>test</scope>
 <exclusions>
 <exclusion>
 <groupId>*</groupId>
 <artifactId>*</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>com.example.thing1</groupId>
 <artifactId>thing2</artifactId>
 <classifier>superstubs</classifier>
 <version>1.0.0</version>
 <scope>test</scope>
 <exclusions>
 <exclusion>
 <groupId>*</groupId>
 <artifactId>*</artifactId>
 </exclusion>
 </exclusions>
</dependency>

Gradle

testCompile("com.example:beer-api-producer-restdocs:0.0.1-SNAPSHOT:stubs") {
 transitive = false
}
testCompile("com.example.thing1:thing2:1.0.0:superstubs") {
 transitive = false
}

Then the specified locations on your classpath get scanned. For com.example:beer-api-producer-
restdocs, the following locations are scanned:

• /META-INF/com.example/beer-api-producer-restdocs/*/.*

• /contracts/com.example/beer-api-producer-restdocs/*/.*

• /mappings/com.example/beer-api-producer-restdocs/*/.*

For com.example.thing1:thing2, the following locations are scanned:

• /META-INF/com.example.thing1/thing2/*/.*

• /contracts/com.example.thing1/thing2/*/.*

• /mappings/com.example.thing1/thing2/*/.*

You have to explicitly provide the group and artifact IDs when you package the
producer stubs.

To achieve proper stub packaging, the producer would set up the contracts as follows:

└── src
 └── test
 └── resources
 └── contracts
 └── com.example
 └── beer-api-producer-restdocs
 └── nested
 └── contract3.groovy

By using the Maven assembly plugin or Gradle Jar task, you have to create the following structure in
your stubs jar:

└── META-INF
 └── com.example
 └── beer-api-producer-restdocs
 └── 2.0.0
 ├── contracts
 │ └── nested
 │ └── contract2.groovy
 └── mappings
 └── mapping.json

By maintaining this structure, the classpath gets scanned and you can profit from the messaging or
HTTP stubs without the need to download artifacts.

Configuring HTTP Server Stubs

Stub Runner has a notion of a HttpServerStub that abstracts the underlying concrete
implementation of the HTTP server (for example, WireMock is one of the implementations).
Sometimes, you need to perform some additional tuning (which is concrete for the given
implementation) of the stub servers. To do that, Stub Runner gives you the
httpServerStubConfigurer property that is available in the annotation and the JUnit rule and is
accessible through system properties, where you can provide your implementation of the

https://github.com/spring-cloud-samples/spring-cloud-contract-samples/blob/2.2.x/producer_with_restdocs/pom.xml
https://github.com/spring-cloud-samples/spring-cloud-contract-samples/blob/2.2.x/producer_with_restdocs/pom.xml
https://github.com/spring-cloud-samples/spring-cloud-contract-samples/blob/2.2.x/producer_with_restdocs/pom.xml
https://github.com/spring-cloud-samples/spring-cloud-contract-samples/blob/2.2.x/producer_with_restdocs/build.gradle

org.springframework.cloud.contract.stubrunner.HttpServerStubConfigurer interface. The
implementations can alter the configuration files for the given HTTP server stub.

Spring Cloud Contract Stub Runner comes with an implementation that you can extend for
WireMock:
org.springframework.cloud.contract.stubrunner.provider.wiremock.WireMockHttpServerStubConfigure

r. In the configure method, you can provide your own custom configuration for the given stub. The
use case might be starting WireMock for the given artifact ID, on an HTTPS port. The following
example shows how to do so:

Example 5. WireMockHttpServerStubConfigurer implementation

@CompileStatic
static class HttpsForFraudDetection extends WireMockHttpServerStubConfigurer {

 private static final Log log = LogFactory.getLog(HttpsForFraudDetection)

 @Override
 WireMockConfiguration configure(WireMockConfiguration httpStubConfiguration,
HttpServerStubConfiguration httpServerStubConfiguration) {
 if (httpServerStubConfiguration.stubConfiguration.artifactId ==
"fraudDetectionServer") {
 int httpsPort = SocketUtils.findAvailableTcpPort()
 log.info("Will set HTTPs port [" + httpsPort + "] for fraud detection
server")
 return httpStubConfiguration
 .httpsPort(httpsPort)
 }
 return httpStubConfiguration
 }
}

You can then reuse it with the @AutoConfigureStubRunner annotation, as follows:

@AutoConfigureStubRunner(mappingsOutputFolder = "target/outputmappings/",
 httpServerStubConfigurer = HttpsForFraudDetection)

Whenever an HTTPS port is found, it takes precedence over the HTTP port.

Running stubs

This section describes how to run stubs. It contains the following topics:

• HTTP Stubs

• Viewing Registered Mappings

• Messaging Stubs

HTTP Stubs

Stubs are defined in JSON documents, whose syntax is defined in WireMock documentation

The following example defines a stub in JSON:

{
 "request": {
 "method": "GET",
 "url": "/ping"
 },
 "response": {
 "status": 200,
 "body": "pong",
 "headers": {
 "Content-Type": "text/plain"
 }
 }
}

Viewing Registered Mappings

Every stubbed collaborator exposes a list of defined mappings under the __/admin/ endpoint.

You can also use the mappingsOutputFolder property to dump the mappings to files. For the
annotation-based approach, it would resembling the following example:

@AutoConfigureStubRunner(ids="a.b.c:loanIssuance,a.b.c:fraudDetectionServer",
mappingsOutputFolder = "target/outputmappings/")

For the JUnit approach, it resembles the following example:

@ClassRule @Shared StubRunnerRule rule = new StubRunnerRule()
 .repoRoot("https://some_url")
 .downloadStub("a.b.c", "loanIssuance")
 .downloadStub("a.b.c:fraudDetectionServer")
 .withMappingsOutputFolder("target/outputmappings")

Then, if you check out the target/outputmappings folder, you would see the following structure;

http://wiremock.org/stubbing.html

.
├── fraudDetectionServer_13705
└── loanIssuance_12255

That means that there were two stubs registered. fraudDetectionServer was registered at port 13705
and loanIssuance at port 12255. If we take a look at one of the files, we would see (for WireMock) the
mappings available for the given server:

[{
 "id" : "f9152eb9-bf77-4c38-8289-90be7d10d0d7",
 "request" : {
 "url" : "/name",
 "method" : "GET"
 },
 "response" : {
 "status" : 200,
 "body" : "fraudDetectionServer"
 },
 "uuid" : "f9152eb9-bf77-4c38-8289-90be7d10d0d7"
},
...
]

Messaging Stubs

Depending on the provided Stub Runner dependency and the DSL, the messaging routes are
automatically set up.

Stub Runner JUnit Rule and Stub Runner JUnit5 Extension

Stub Runner comes with a JUnit rule that lets you can download and run stubs for a given group
and artifact ID, as the following example shows:

@ClassRule
public static StubRunnerRule rule = new StubRunnerRule().repoRoot(repoRoot())
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE)
 .downloadStub("org.springframework.cloud.contract.verifier.stubs",
 "loanIssuance")
 .downloadStub(

"org.springframework.cloud.contract.verifier.stubs:fraudDetectionServer");

@BeforeClass
@AfterClass
public static void setupProps() {
 System.clearProperty("stubrunner.repository.root");
 System.clearProperty("stubrunner.classifier");
}

A StubRunnerExtension is also available for JUnit 5. StubRunnerRule and StubRunnerExtension work in
a very similar fashion. After the rule or extension is executed, Stub Runner connects to your Maven
repository and, for the given list of dependencies, tries to:

• Download them

• Cache them locally

• Unzip them to a temporary folder

• Start a WireMock server for each Maven dependency on a random port from the provided
range of ports or the provided port

• Feed the WireMock server with all JSON files that are valid WireMock definitions

• Send messages (remember to pass an implementation of MessageVerifier interface)

Stub Runner uses the Eclipse Aether mechanism to download the Maven dependencies. Check their
docs for more information.

Since the StubRunnerRule and StubRunnerExtension implement the StubFinder they let you find the
started stubs, as the following example shows:

package org.springframework.cloud.contract.stubrunner;

import java.net.URL;
import java.util.Collection;
import java.util.Map;

import org.springframework.cloud.contract.spec.Contract;

/**
 * Contract for finding registered stubs.

https://wiki.eclipse.org/Aether
https://wiki.eclipse.org/Aether

 *
 * @author Marcin Grzejszczak
 */
public interface StubFinder extends StubTrigger {

 /**
 * For the given groupId and artifactId tries to find the matching URL of the
running
 * stub.
 * @param groupId - might be null. In that case a search only via artifactId
takes
 * place
 * @param artifactId - artifact id of the stub
 * @return URL of a running stub or throws exception if not found
 * @throws StubNotFoundException in case of not finding a stub
 */
 URL findStubUrl(String groupId, String artifactId) throws
StubNotFoundException;

 /**
 * For the given Ivy notation {@code
[groupId]:artifactId:[version]:[classifier]}
 * tries to find the matching URL of the running stub. You can also pass only
 * {@code artifactId}.
 * @param ivyNotation - Ivy representation of the Maven artifact
 * @return URL of a running stub or throws exception if not found
 * @throws StubNotFoundException in case of not finding a stub
 */
 URL findStubUrl(String ivyNotation) throws StubNotFoundException;

 /**
 * @return all running stubs
 */
 RunningStubs findAllRunningStubs();

 /**
 * @return the list of Contracts
 */
 Map<StubConfiguration, Collection<Contract>> getContracts();

}

The following examples provide more detail about using Stub Runner:

spock

@ClassRule
@Shared
StubRunnerRule rule = new StubRunnerRule()
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE)

.repoRoot(StubRunnerRuleSpec.getResource("/m2repo/repository").toURI().toString())
 .downloadStub("org.springframework.cloud.contract.verifier.stubs",
"loanIssuance")

.downloadStub("org.springframework.cloud.contract.verifier.stubs:fraudDetectionSer
ver")
 .withMappingsOutputFolder("target/outputmappingsforrule")

def 'should start WireMock servers'() {
 expect: 'WireMocks are running'
 rule.findStubUrl('org.springframework.cloud.contract.verifier.stubs',
'loanIssuance') != null
 rule.findStubUrl('loanIssuance') != null
 rule.findStubUrl('loanIssuance') ==
rule.findStubUrl('org.springframework.cloud.contract.verifier.stubs',
'loanIssuance')

rule.findStubUrl('org.springframework.cloud.contract.verifier.stubs:fraudDetection
Server') != null
 and:
 rule.findAllRunningStubs().isPresent('loanIssuance')

rule.findAllRunningStubs().isPresent('org.springframework.cloud.contract.verifier.
stubs', 'fraudDetectionServer')

rule.findAllRunningStubs().isPresent('org.springframework.cloud.contract.verifier.
stubs:fraudDetectionServer')
 and: 'Stubs were registered'
 "${rule.findStubUrl('loanIssuance').toString()}/name".toURL().text ==
'loanIssuance'
 "${rule.findStubUrl('fraudDetectionServer').toString()}/name".toURL().text
== 'fraudDetectionServer'
}

def 'should output mappings to output folder'() {
 when:
 def url = rule.findStubUrl('fraudDetectionServer')
 then:
 new File("target/outputmappingsforrule",
"fraudDetectionServer_${url.port}").exists()
}

junit 4

@Test
public void should_start_wiremock_servers() throws Exception {
 // expect: 'WireMocks are running'
 then(rule.findStubUrl("org.springframework.cloud.contract.verifier.stubs",
 "loanIssuance")).isNotNull();
 then(rule.findStubUrl("loanIssuance")).isNotNull();
 then(rule.findStubUrl("loanIssuance")).isEqualTo(rule.findStubUrl(
 "org.springframework.cloud.contract.verifier.stubs", "loanIssuance"));
 then(rule.findStubUrl(

"org.springframework.cloud.contract.verifier.stubs:fraudDetectionServer"))
 .isNotNull();
 // and:
 then(rule.findAllRunningStubs().isPresent("loanIssuance")).isTrue();
 then(rule.findAllRunningStubs().isPresent(
 "org.springframework.cloud.contract.verifier.stubs",
 "fraudDetectionServer")).isTrue();
 then(rule.findAllRunningStubs().isPresent(

"org.springframework.cloud.contract.verifier.stubs:fraudDetectionServer"))
 .isTrue();
 // and: 'Stubs were registered'
 then(httpGet(rule.findStubUrl("loanIssuance").toString() + "/name"))
 .isEqualTo("loanIssuance");
 then(httpGet(rule.findStubUrl("fraudDetectionServer").toString() + "/name"))
 .isEqualTo("fraudDetectionServer");
}

junit 5

// Visible for Junit
@RegisterExtension
static StubRunnerExtension stubRunnerExtension = new StubRunnerExtension()
 .repoRoot(repoRoot()).stubsMode(StubRunnerProperties.StubsMode.REMOTE)
 .downloadStub("org.springframework.cloud.contract.verifier.stubs",
 "loanIssuance")
 .downloadStub(

"org.springframework.cloud.contract.verifier.stubs:fraudDetectionServer")
 .withMappingsOutputFolder("target/outputmappingsforrule");

@BeforeAll
@AfterAll
static void setupProps() {
 System.clearProperty("stubrunner.repository.root");
 System.clearProperty("stubrunner.classifier");
}

private static String repoRoot() {
 try {
 return StubRunnerRuleJUnitTest.class.getResource("/m2repo/repository/")
 .toURI().toString();
 }
 catch (Exception e) {
 return "";
 }
}

See the Common Properties for JUnit and Spring for more information on how to apply global
configuration of Stub Runner.

To use the JUnit rule or JUnit 5 extension together with messaging, you have to
provide an implementation of the MessageVerifier interface to the rule builder (for
example, rule.messageVerifier(new MyMessageVerifier())). If you do not do this,
then, whenever you try to send a message, an exception is thrown.

Maven Settings

The stub downloader honors Maven settings for a different local repository folder. Authentication
details for repositories and profiles are currently not taken into account, so you need to specify it by
using the properties mentioned above.

Providing Fixed Ports

You can also run your stubs on fixed ports. You can do it in two different ways. One is to pass it in
the properties, and the other is to use the fluent API of JUnit rule.

Fluent API

When using the StubRunnerRule or StubRunnerExtension, you can add a stub to download and then
pass the port for the last downloaded stub. The following example shows how to do so:

@ClassRule
public static StubRunnerRule rule = new StubRunnerRule().repoRoot(repoRoot())
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE)
 .downloadStub("org.springframework.cloud.contract.verifier.stubs",
 "loanIssuance")
 .withPort(12345).downloadStub(

"org.springframework.cloud.contract.verifier.stubs:fraudDetectionServer:12346");

@BeforeClass
@AfterClass
public static void setupProps() {
 System.clearProperty("stubrunner.repository.root");
 System.clearProperty("stubrunner.classifier");
}

For the preceding example, the following test is valid:

then(rule.findStubUrl("loanIssuance"))
 .isEqualTo(URI.create("http://localhost:12345").toURL());
then(rule.findStubUrl("fraudDetectionServer"))
 .isEqualTo(URI.create("http://localhost:12346").toURL());

Stub Runner with Spring

Stub Runner with Spring sets up Spring configuration of the Stub Runner project.

By providing a list of stubs inside your configuration file, Stub Runner automatically downloads
and registers in WireMock the selected stubs.

If you want to find the URL of your stubbed dependency, you can autowire the StubFinder interface
and use its methods, as follows:

@ContextConfiguration(classes = Config, loader = SpringBootContextLoader)
@SpringBootTest(properties = [" stubrunner.cloud.enabled=false",
 'foo=${stubrunner.runningstubs.fraudDetectionServer.port}',

'fooWithGroup=${stubrunner.runningstubs.org.springframework.cloud.contract.verifie
r.stubs.fraudDetectionServer.port}'])

@AutoConfigureStubRunner(mappingsOutputFolder = "target/outputmappings/",
 httpServerStubConfigurer = HttpsForFraudDetection)
@ActiveProfiles("test")
class StubRunnerConfigurationSpec extends Specification {

 @Autowired
 StubFinder stubFinder
 @Autowired
 Environment environment
 @StubRunnerPort("fraudDetectionServer")
 int fraudDetectionServerPort

@StubRunnerPort("org.springframework.cloud.contract.verifier.stubs:fraudDetectionS
erver")
 int fraudDetectionServerPortWithGroupId
 @Value('${foo}')
 Integer foo

 @BeforeClass
 @AfterClass
 void setupProps() {
 System.clearProperty("stubrunner.repository.root")
 System.clearProperty("stubrunner.classifier")
 WireMockHttpServerStubAccessor.clear()
 }

 def 'should mark all ports as random'() {
 expect:
 WireMockHttpServerStubAccessor.everyPortRandom()
 }

 def 'should start WireMock servers'() {
 expect: 'WireMocks are running'

stubFinder.findStubUrl('org.springframework.cloud.contract.verifier.stubs',
'loanIssuance') != null
 stubFinder.findStubUrl('loanIssuance') != null
 stubFinder.findStubUrl('loanIssuance') ==
stubFinder.findStubUrl('org.springframework.cloud.contract.verifier.stubs',
'loanIssuance')
 stubFinder.findStubUrl('loanIssuance') ==
stubFinder.findStubUrl('org.springframework.cloud.contract.verifier.stubs:loanIssu
ance')

stubFinder.findStubUrl('org.springframework.cloud.contract.verifier.stubs:loanIssu
ance:0.0.1-SNAPSHOT') ==
stubFinder.findStubUrl('org.springframework.cloud.contract.verifier.stubs:loanIssu
ance:0.0.1-SNAPSHOT:stubs')

stubFinder.findStubUrl('org.springframework.cloud.contract.verifier.stubs:fraudDet
ectionServer') != null

 and:
 stubFinder.findAllRunningStubs().isPresent('loanIssuance')

stubFinder.findAllRunningStubs().isPresent('org.springframework.cloud.contract.ver
ifier.stubs', 'fraudDetectionServer')

stubFinder.findAllRunningStubs().isPresent('org.springframework.cloud.contract.ver
ifier.stubs:fraudDetectionServer')
 and: 'Stubs were registered'

"${stubFinder.findStubUrl('loanIssuance').toString()}/name".toURL().text ==
'loanIssuance'

"${stubFinder.findStubUrl('fraudDetectionServer').toString()}/name".toURL().text
== 'fraudDetectionServer'
 and: 'Fraud Detection is an HTTPS endpoint'

stubFinder.findStubUrl('fraudDetectionServer').toString().startsWith("https")
 }

 def 'should throw an exception when stub is not found'() {
 when:
 stubFinder.findStubUrl('nonExistingService')
 then:
 thrown(StubNotFoundException)
 when:
 stubFinder.findStubUrl('nonExistingGroupId', 'nonExistingArtifactId')
 then:
 thrown(StubNotFoundException)
 }

 def 'should register started servers as environment variables'() {
 expect:
 environment.getProperty("stubrunner.runningstubs.loanIssuance.port")
!= null
 stubFinder.findAllRunningStubs().getPort("loanIssuance") ==
(environment.getProperty("stubrunner.runningstubs.loanIssuance.port") as Integer)
 and:

environment.getProperty("stubrunner.runningstubs.fraudDetectionServer.port") !=
null
 stubFinder.findAllRunningStubs().getPort("fraudDetectionServer") ==
(environment.getProperty("stubrunner.runningstubs.fraudDetectionServer.port") as
Integer)
 and:

environment.getProperty("stubrunner.runningstubs.fraudDetectionServer.port") !=
null
 stubFinder.findAllRunningStubs().getPort("fraudDetectionServer") ==
(environment.getProperty("stubrunner.runningstubs.org.springframework.cloud.contra
ct.verifier.stubs.fraudDetectionServer.port") as Integer)

 }

 def 'should be able to interpolate a running stub in the passed test
property'() {
 given:
 int fraudPort =
stubFinder.findAllRunningStubs().getPort("fraudDetectionServer")
 expect:
 fraudPort > 0
 environment.getProperty("foo", Integer) == fraudPort
 environment.getProperty("fooWithGroup", Integer) == fraudPort
 foo == fraudPort
 }

 @Issue("#573")
 def 'should be able to retrieve the port of a running stub via an
annotation'() {
 given:
 int fraudPort =
stubFinder.findAllRunningStubs().getPort("fraudDetectionServer")
 expect:
 fraudPort > 0
 fraudDetectionServerPort == fraudPort
 fraudDetectionServerPortWithGroupId == fraudPort
 }

 def 'should dump all mappings to a file'() {
 when:
 def url = stubFinder.findStubUrl("fraudDetectionServer")
 then:
 new File("target/outputmappings/",
"fraudDetectionServer_${url.port}").exists()
 }

 @Configuration
 @EnableAutoConfiguration
 static class Config {}

 @CompileStatic
 static class HttpsForFraudDetection extends WireMockHttpServerStubConfigurer {

 private static final Log log = LogFactory.getLog(HttpsForFraudDetection)

 @Override
 WireMockConfiguration configure(WireMockConfiguration
httpStubConfiguration, HttpServerStubConfiguration httpServerStubConfiguration) {
 if (httpServerStubConfiguration.stubConfiguration.artifactId ==
"fraudDetectionServer") {
 int httpsPort = SocketUtils.findAvailableTcpPort()
 log.info("Will set HTTPs port [" + httpsPort + "] for fraud
detection server")

 return httpStubConfiguration
 .httpsPort(httpsPort)
 }
 return httpStubConfiguration
 }
 }
}

Doing so depends on the following configuration file:

stubrunner:
 repositoryRoot: classpath:m2repo/repository/
 ids:
 - org.springframework.cloud.contract.verifier.stubs:loanIssuance
 - org.springframework.cloud.contract.verifier.stubs:fraudDetectionServer
 - org.springframework.cloud.contract.verifier.stubs:bootService
 stubs-mode: remote

Instead of using the properties, you can also use the properties inside the @AutoConfigureStubRunner.
The following example achieves the same result by setting values on the annotation:

@AutoConfigureStubRunner(
 ids = ["org.springframework.cloud.contract.verifier.stubs:loanIssuance",

"org.springframework.cloud.contract.verifier.stubs:fraudDetectionServer",
 "org.springframework.cloud.contract.verifier.stubs:bootService"],
 stubsMode = StubRunnerProperties.StubsMode.REMOTE,
 repositoryRoot = "classpath:m2repo/repository/")

Stub Runner Spring registers environment variables in the following manner for every registered
WireMock server. The following example shows Stub Runner IDs for com.example:thing1 and
com.example:thing2:

• stubrunner.runningstubs.thing1.port

• stubrunner.runningstubs.com.example.thing1.port

• stubrunner.runningstubs.thing2.port

• stubrunner.runningstubs.com.example.thing2.port

You can reference these values in your code.

You can also use the @StubRunnerPort annotation to inject the port of a running stub. The value of
the annotation can be the groupid:artifactid or just the artifactid. The following example works
shows Stub Runner IDs for com.example:thing1 and com.example:thing2.

@StubRunnerPort("thing1")
int thing1Port;
@StubRunnerPort("com.example:thing2")
int thing2Port;

Stub Runner Spring Cloud

Stub Runner can integrate with Spring Cloud.

For real life examples, see:

• The producer app sample

• The consumer app sample

Stubbing Service Discovery

The most important feature of Stub Runner Spring Cloud is the fact that it stubs:

• DiscoveryClient

• Ribbon ServerList

That means that, regardless of whether you use Zookeeper, Consul, Eureka, or anything else, you do
not need that in your tests. We are starting WireMock instances of your dependencies and we are
telling your application, whenever you use Feign, to load a balanced RestTemplate or
DiscoveryClient directly, to call those stubbed servers instead of calling the real Service Discovery
tool.

For example, the following test passes:

def 'should make service discovery work'() {
 expect: 'WireMocks are running'
 "${stubFinder.findStubUrl('loanIssuance').toString()}/name".toURL().text
== 'loanIssuance'

"${stubFinder.findStubUrl('fraudDetectionServer').toString()}/name".toURL().text
== 'fraudDetectionServer'
 and: 'Stubs can be reached via load service discovery'
 restTemplate.getForObject('http://loanIssuance/name', String) ==
'loanIssuance'

restTemplate.getForObject('http://someNameThatShouldMapFraudDetectionServer/name',
String) == 'fraudDetectionServer'
}

Note that the preceding example requires the following configuration file:

https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x/producer
https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x/consumer_with_discovery

stubrunner:
 idsToServiceIds:
 ivyNotation: someValueInsideYourCode
 fraudDetectionServer: someNameThatShouldMapFraudDetectionServer

Test Profiles and Service Discovery

In your integration tests, you typically do not want to call either a discovery service (such as
Eureka) or Config Server. That is why you create an additional test configuration in which you want
to disable these features.

Due to certain limitations of spring-cloud-commons, to achieve this, you have to disable these
properties in a static block such as the following example (for Eureka):

 //Hack to work around https://github.com/spring-cloud/spring-cloud-
commons/issues/156
 static {
 System.setProperty("eureka.client.enabled", "false");
 System.setProperty("spring.cloud.config.failFast", "false");
 }

Additional Configuration

You can match the artifactId of the stub with the name of your application by using the
stubrunner.idsToServiceIds: map. You can disable Stub Runner Ribbon support by setting
stubrunner.cloud.ribbon.enabled to false You can disable Stub Runner support by setting
stubrunner.cloud.enabled to false

By default, all service discovery is stubbed. This means that, regardless of whether
you have an existing DiscoveryClient, its results are ignored. However, if you want
to reuse it, you can set stubrunner.cloud.delegate.enabled to true, and then your
existing DiscoveryClient results are merged with the stubbed ones.

The default Maven configuration used by Stub Runner can be tweaked either by setting the
following system properties or by setting the corresponding environment variables:

• maven.repo.local: Path to the custom maven local repository location

• org.apache.maven.user-settings: Path to custom maven user settings location

• org.apache.maven.global-settings: Path to maven global settings location

Using the Stub Runner Boot Application

Spring Cloud Contract Stub Runner Boot is a Spring Boot application that exposes REST endpoints to

https://github.com/spring-cloud/spring-cloud-commons/issues/156

trigger the messaging labels and to access WireMock servers.

One of the use cases is to run some smoke (end-to-end) tests on a deployed application. You can
check out the Spring Cloud Pipelines project for more information.

Stub Runner Server

To use the Stub Runner Server, add the following dependency:

compile "org.springframework.cloud:spring-cloud-starter-stub-runner"

Then annotate a class with @EnableStubRunnerServer, build a fat jar, and it is ready to work.

For the properties, see the Stub Runner Spring section.

Stub Runner Server Fat Jar

You can download a standalone JAR from Maven (for example, for version 2.0.1.RELEASE) by
running the following commands:

$ wget -O stub-runner.jar
'https://search.maven.org/remotecontent?filepath=org/springframework/cloud/spring-
cloud-contract-stub-runner-boot/2.0.1.RELEASE/spring-cloud-contract-stub-runner-
boot-2.0.1.RELEASE.jar'
$ java -jar stub-runner.jar --stubrunner.ids=... --stubrunner.repositoryRoot=...

Spring Cloud CLI

Starting from the 1.4.0.RELEASE version of the Spring Cloud CLI project, you can start Stub Runner
Boot by running spring cloud stubrunner.

In order to pass the configuration, you can create a stubrunner.yml file in the current working
directory, in a subdirectory called config, or in ~/.spring-cloud. The file could resemble the
following example for running stubs installed locally:

Example 6. stubrunner.yml

stubrunner:
 stubsMode: LOCAL
 ids:
 - com.example:beer-api-producer:+:9876

Then you can call spring cloud stubrunner from your terminal window to start the Stub Runner
server. It is available at port 8750.

https://github.com/spring-cloud/spring-cloud-pipelines
https://cloud.spring.io/spring-cloud-cli

Endpoints

Stub Runner Boot offers two endpoints:

• HTTP

• Messaging

HTTP

For HTTP, Stub Runner Boot makes the following endpoints available:

• GET /stubs: Returns a list of all running stubs in ivy:integer notation

• GET /stubs/{ivy}: Returns a port for the given ivy notation (when calling the endpoint ivy can
also be artifactId only)

Messaging

For Messaging, Stub Runner Boot makes the following endpoints available:

• GET /triggers: Returns a list of all running labels in ivy : [label1, label2 …] notation

• POST /triggers/{label}: Runs a trigger with label

• POST /triggers/{ivy}/{label}: Runs a trigger with a label for the given ivy notation (when
calling the endpoint, ivy can also be artifactId only)

Example

The following example shows typical usage of Stub Runner Boot:

@ContextConfiguration(classes = StubRunnerBoot, loader = SpringBootContextLoader)
@SpringBootTest(properties = "spring.cloud.zookeeper.enabled=false")
@ActiveProfiles("test")
class StubRunnerBootSpec extends Specification {

 @Autowired
 StubRunning stubRunning

 def setup() {
 RestAssuredMockMvc.standaloneSetup(new HttpStubsController(stubRunning),
 new TriggerController(stubRunning))
 }

 def 'should return a list of running stub servers in "full ivy:port" notation'() {
 when:
 String response = RestAssuredMockMvc.get('/stubs').body.asString()
 then:
 def root = new JsonSlurper().parseText(response)
 root.'org.springframework.cloud.contract.verifier.stubs:bootService:0.0.1-
SNAPSHOT:stubs' instanceof Integer
 }

 def 'should return a port on which a [#stubId] stub is running'() {
 when:
 def response = RestAssuredMockMvc.get("/stubs/${stubId}")
 then:
 response.statusCode == 200
 Integer.valueOf(response.body.asString()) > 0
 where:
 stubId <<
['org.springframework.cloud.contract.verifier.stubs:bootService:+:stubs',

'org.springframework.cloud.contract.verifier.stubs:bootService:0.0.1-SNAPSHOT:stubs',

'org.springframework.cloud.contract.verifier.stubs:bootService:+',

'org.springframework.cloud.contract.verifier.stubs:bootService',
 'bootService']
 }

 def 'should return 404 when missing stub was called'() {
 when:
 def response = RestAssuredMockMvc.get("/stubs/a:b:c:d")
 then:
 response.statusCode == 404
 }

 def 'should return a list of messaging labels that can be triggered when version
and classifier are passed'() {
 when:
 String response = RestAssuredMockMvc.get('/triggers').body.asString()
 then:
 def root = new JsonSlurper().parseText(response)
 root.'org.springframework.cloud.contract.verifier.stubs:bootService:0.0.1-
SNAPSHOT:stubs'?.containsAll(["delete_book", "return_book_1", "return_book_2"])
 }

 def 'should trigger a messaging label'() {
 given:
 StubRunning stubRunning = Mock()
 RestAssuredMockMvc.standaloneSetup(new HttpStubsController(stubRunning),
new TriggerController(stubRunning))
 when:
 def response = RestAssuredMockMvc.post("/triggers/delete_book")
 then:
 response.statusCode == 200
 and:
 1 * stubRunning.trigger('delete_book')
 }

 def 'should trigger a messaging label for a stub with [#stubId] ivy notation'() {
 given:

 StubRunning stubRunning = Mock()
 RestAssuredMockMvc.standaloneSetup(new HttpStubsController(stubRunning),
new TriggerController(stubRunning))
 when:
 def response = RestAssuredMockMvc.post("/triggers/$stubId/delete_book")
 then:
 response.statusCode == 200
 and:
 1 * stubRunning.trigger(stubId, 'delete_book')
 where:
 stubId <<
['org.springframework.cloud.contract.verifier.stubs:bootService:stubs',
'org.springframework.cloud.contract.verifier.stubs:bootService', 'bootService']
 }

 def 'should throw exception when trigger is missing'() {
 when:
 RestAssuredMockMvc.post("/triggers/missing_label")
 then:
 Exception e = thrown(Exception)
 e.message.contains("Exception occurred while trying to return
[missing_label] label.")
 e.message.contains("Available labels are")

e.message.contains("org.springframework.cloud.contract.verifier.stubs:loanIssuance:0.0
.1-SNAPSHOT:stubs=[]")

e.message.contains("org.springframework.cloud.contract.verifier.stubs:bootService:0.0.
1-SNAPSHOT:stubs=")
 }

}

Stub Runner Boot with Service Discovery

One way to use Stub Runner Boot is to use it as a feed of stubs for “smoke tests”. What does that
mean? Assume that you do not want to deploy 50 microservices to a test environment in order to
see whether your application works. You have already executed a suite of tests during the build
process, but you would also like to ensure that the packaging of your application works. You can
deploy your application to an environment, start it, and run a couple of tests on it to see whether it
works. We can call those tests “smoke tests”, because their purpose is to check only a handful of
testing scenarios.

The problem with this approach is thatm if you use microservices, you most likely also use a service
discovery tool. Stub Runner Boot lets you solve this issue by starting the required stubs and
registering them in a service discovery tool. Consider the following example of such a setup with
Eureka (assume that Eureka is already running):

@SpringBootApplication
@EnableStubRunnerServer
@EnableEurekaClient
@AutoConfigureStubRunner
public class StubRunnerBootEurekaExample {

 public static void main(String[] args) {
 SpringApplication.run(StubRunnerBootEurekaExample.class, args);
 }

}

We want to start a Stub Runner Boot server (@EnableStubRunnerServer), enable the Eureka client
(@EnableEurekaClient), and have the stub runner feature turned on (@AutoConfigureStubRunner).

Now assume that we want to start this application so that the stubs get automatically registered. We
can do so by running the application with java -jar ${SYSTEM_PROPS} stub-runner-boot-eureka-
example.jar, where ${SYSTEM_PROPS} contains the following list of properties:

* -Dstubrunner.repositoryRoot=https://repo.spring.io/snapshot (1)
* -Dstubrunner.cloud.stubbed.discovery.enabled=false (2)
*
-Dstubrunner.ids=org.springframework.cloud.contract.verifier.stubs:loanIssuance,or
g.
*
springframework.cloud.contract.verifier.stubs:fraudDetectionServer,org.springframe
work.
* cloud.contract.verifier.stubs:bootService (3)
* -Dstubrunner.idsToServiceIds.fraudDetectionServer=
* someNameThatShouldMapFraudDetectionServer (4)
*
* (1) - we tell Stub Runner where all the stubs reside (2) - we don't want the
default
* behaviour where the discovery service is stubbed. That's why the stub
registration will
* be picked (3) - we provide a list of stubs to download (4) - we provide a list
of

That way, your deployed application can send requests to started WireMock servers through
service discovery. Most likely, points 1 through 3 could be set by default in application.yml, because
they are not likely to change. That way, you can provide only the list of stubs to download
whenever you start the Stub Runner Boot.

Consumer-Driven Contracts: Stubs Per Consumer

There are cases in which two consumers of the same endpoint want to have two different
responses.

This approach also lets you immediately know which consumer uses which part of
your API. You can remove part of a response that your API produces and see which
of your autogenerated tests fails. If none fails, you can safely delete that part of the
response, because nobody uses it.

Consider the following example of a contract defined for the producer called producer, which has
two consumers (foo-consumer and bar-consumer):

Consumer foo-service

request {
 url '/foo'
 method GET()
}
response {
 status OK()
 body(
 foo: "foo"
 }
}

Consumer bar-service

request {
 url '/bar'
 method GET()
}
response {
 status OK()
 body(
 bar: "bar"
 }
}

You cannot produce two different responses for the same request. That is why you can properly
package the contracts and then profit from the stubsPerConsumer feature.

On the producer side, the consumers can have a folder that contains contracts related only to them.
By setting the stubrunner.stubs-per-consumer flag to true, we no longer register all stubs but only
those that correspond to the consumer application’s name. In other words, we scan the path of
every stub and, if it contains a subfolder with name of the consumer in the path, only then is it
registered.

On the foo producer side the contracts would look like this

.
└── contracts
 ├── bar-consumer
 │ ├── bookReturnedForBar.groovy
 │ └── shouldCallBar.groovy
 └── foo-consumer
 ├── bookReturnedForFoo.groovy
 └── shouldCallFoo.groovy

The bar-consumer consumer can either set the spring.application.name or the stubrunner.consumer-
name to bar-consumer Alternatively, you can set the test as follows:

@ContextConfiguration(classes = Config, loader = SpringBootContextLoader)
@SpringBootTest(properties = ["spring.application.name=bar-consumer"])
@AutoConfigureStubRunner(ids =
"org.springframework.cloud.contract.verifier.stubs:producerWithMultipleConsumers",
 repositoryRoot = "classpath:m2repo/repository/",
 stubsMode = StubRunnerProperties.StubsMode.REMOTE,
 stubsPerConsumer = true)
class StubRunnerStubsPerConsumerSpec extends Specification {
...
}

Then only the stubs registered under a path that contains bar-consumer in its name (that is, those
from the src/test/resources/contracts/bar-consumer/some/contracts/… folder) are allowed to be
referenced.

You can also set the consumer name explicitly, as follows:

@ContextConfiguration(classes = Config, loader = SpringBootContextLoader)
@SpringBootTest
@AutoConfigureStubRunner(ids =
"org.springframework.cloud.contract.verifier.stubs:producerWithMultipleConsumers",
 repositoryRoot = "classpath:m2repo/repository/",
 consumerName = "foo-consumer",
 stubsMode = StubRunnerProperties.StubsMode.REMOTE,
 stubsPerConsumer = true)
class StubRunnerStubsPerConsumerWithConsumerNameSpec extends Specification {
...
}

Then only the stubs registered under a path that contains the foo-consumer in its name (that is, those

from the src/test/resources/contracts/foo-consumer/some/contracts/… folder) are allowed to be
referenced.

See issue 224 for more information about the reasons behind this change.

Fetching Stubs or Contract Definitions From A Location

Instead of picking the stubs or contract definitions from Artifactory / Nexus or Git, one can just
want to point to a location on drive or classpath. This can be especially useful in a multimodule
project, where one module wants to reuse stubs or contracts from another module without the
need to actually install those in a local maven repository ot commit those changes to Git.

In order to achieve this it’s enough to use the stubs:// protocol when the repository root parameter
is set either in Stub Runner or in a Spring Cloud Contract plugin.

In this example the producer project has been successfully built and stubs were generated under the
target/stubs folder. As a consumer one can setup the Stub Runner to pick the stubs from that
location using the stubs:// protocol.

Annotation

@AutoConfigureStubRunner(
stubsMode = StubRunnerProperties.StubsMode.REMOTE,
 repositoryRoot = "stubs://file://location/to/the/producer/target/stubs/",
 ids = "com.example:some-producer")

JUnit 4 Rule

@Rule
 public StubRunnerRule rule = new StubRunnerRule()
 .downloadStub("com.example:some-producer")
 .repoRoot("stubs://file://location/to/the/producer/target/stubs/")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE);

JUnit 5 Extension

@RegisterExtension
 public StubRunnerExtension stubRunnerExtension = new StubRunnerExtension()
 .downloadStub("com.example:some-producer")
 .repoRoot("stubs://file://location/to/the/producer/target/stubs/")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE);

Contracts and stubs may be stored in a location, where each producer has its own, dedicated folder
for contracts and stub mappings. Under that folder each consumer can have its own setup. To make
Stub Runner find the dedicated folder from the provided ids one can pass a property stubs.find-
producer=true or a system property stubrunner.stubs.find-producer=true .

https://github.com/spring-cloud/spring-cloud-contract/issues/224

└── com.example ①
 ├── some-artifact-id ②
 │ └── 0.0.1
 │ ├── contracts ③
 │ │ └── shouldReturnStuffForArtifactId.groovy
 │ └── mappings ④
 │ └── shouldReturnStuffForArtifactId.json
 └── some-other-artifact-id ⑤
 ├── contracts
 │ └── shouldReturnStuffForOtherArtifactId.groovy
 └── mappings
 └── shouldReturnStuffForOtherArtifactId.json

① group id of the consumers

② consumer with artifact id [some-artifact-id]

③ contracts for the consumer with artifact id [some-artifact-id]

④ mappings for the consumer with artifact id [some-artifact-id]

⑤ consumer with artifact id [some-other-artifact-id]

Annotation

@AutoConfigureStubRunner(
stubsMode = StubRunnerProperties.StubsMode.REMOTE,
 repositoryRoot = "stubs://file://location/to/the/contracts/directory",
 ids = "com.example:some-producer",
 properties="stubs.find-producer=true")

JUnit 4 Rule

 static Map<String, String> contractProperties() {
 Map<String, String> map = new HashMap<>();
 map.put("stubs.find-producer", "true");
 return map;
 }

@Rule
 public StubRunnerRule rule = new StubRunnerRule()
 .downloadStub("com.example:some-producer")
 .repoRoot("stubs://file://location/to/the/contracts/directory")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE)
 .properties(contractProperties());

JUnit 5 Extension

 static Map<String, String> contractProperties() {
 Map<String, String> map = new HashMap<>();
 map.put("stubs.find-producer", "true");
 return map;
 }

@RegisterExtension
 public StubRunnerExtension stubRunnerExtension = new StubRunnerExtension()
 .downloadStub("com.example:some-producer")
 .repoRoot("stubs://file://location/to/the/contracts/directory")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE)
 .properties(contractProperties());

Generating Stubs at Runtime

As a consumer, you might not want to wait for the producer to finish its implementation and then
publish their stubs. A solution to this problem can be generation of stubs at runtime.

As a producer, when a contract is defined, you are required to make the generated tests pass in
order for the stubs to be published. There are cases where you would like to unblock the consumers
so that they can fetch the stubs before your tests are actually passing. In this case you should set
such contracts as in progress. You can read more about this under the Contracts in Progress section.

That way your tests will not be generated, but the stubs will.

As a consumer, you can toggle a switch to generate stubs at runtime. Stub Runner will ignore all the
existing stub mappings and will generate new ones for all the contract definitions. Another option
is to pass the stubrunner.generate-stubs system property. Below you can find an example of such
setup.

Annotation

@AutoConfigureStubRunner(
stubsMode = StubRunnerProperties.StubsMode.REMOTE,
 repositoryRoot = "stubs://file://location/to/the/contracts",
 ids = "com.example:some-producer",
 generateStubs = true)

JUnit 4 Rule

@Rule
 public StubRunnerRule rule = new StubRunnerRule()
 .downloadStub("com.example:some-producer")
 .repoRoot("stubs://file://location/to/the/contracts")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE)
 .withGenerateStubs(true);

JUnit 5 Extension

@RegisterExtension
 public StubRunnerExtension stubRunnerExtension = new StubRunnerExtension()
 .downloadStub("com.example:some-producer")
 .repoRoot("stubs://file://location/to/the/contracts")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE)
 .withGenerateStubs(true);

Fail On No Stubs

By default Stub Runner will fail if no stubs were found. In order to change that behaviour, just set
to false the failOnNoStubs property in the annotation or call the withFailOnNoStubs(false) method
on a JUnit Rule or Extension.

Annotation

@AutoConfigureStubRunner(
stubsMode = StubRunnerProperties.StubsMode.REMOTE,
 repositoryRoot = "stubs://file://location/to/the/contracts",
 ids = "com.example:some-producer",
 failOnNoStubs = false)

JUnit 4 Rule

@Rule
 public StubRunnerRule rule = new StubRunnerRule()
 .downloadStub("com.example:some-producer")
 .repoRoot("stubs://file://location/to/the/contracts")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE)
 .withFailOnNoStubs(false);

JUnit 5 Extension

@RegisterExtension
 public StubRunnerExtension stubRunnerExtension = new StubRunnerExtension()
 .downloadStub("com.example:some-producer")
 .repoRoot("stubs://file://location/to/the/contracts")
 .stubsMode(StubRunnerProperties.StubsMode.REMOTE)
 .withFailOnNoStubs(false);

Common Properties

This section briefly describes common properties, including:

• Common Properties for JUnit and Spring

• Stub Runner Stubs IDs

Common Properties for JUnit and Spring

You can set repetitive properties by using system properties or Spring configuration properties. The
following table shows their names with their default values:

Property name Default value Description

stubrunner.minPort 10000 Minimum value of a port for a
started WireMock with stubs.

stubrunner.maxPort 15000 Maximum value of a port for a
started WireMock with stubs.

stubrunner.repositoryRoot Maven repo URL. If blank, then
call the local Maven repo.

Property name Default value Description

stubrunner.classifier stubs Default classifier for the stub
artifacts.

stubrunner.stubsMode CLASSPATH The way you want to fetch and
register the stubs

stubrunner.ids Array of Ivy notation stubs to
download.

stubrunner.username Optional username to access
the tool that stores the JARs
with stubs.

stubrunner.password Optional password to access the
tool that stores the JARs with
stubs.

stubrunner.stubsPerConsumer false Set to true if you want to use
different stubs for each
consumer instead of registering
all stubs for every consumer.

stubrunner.consumerName If you want to use a stub for
each consumer and want to
override the consumer name,
change this value.

Stub Runner Stubs IDs

You can set the stubs to download in the stubrunner.ids system property. They use the following
pattern:

groupId:artifactId:version:classifier:port

Note that version, classifier, and port are optional.

• If you do not provide the port, a random one is picked.

• If you do not provide the classifier, the default is used. (Note that you can pass an empty
classifier this way: groupId:artifactId:version:).

• If you do not provide the version, then + is passed, and the latest one is downloaded.

port means the port of the WireMock server.

Starting with version 1.0.4, you can provide a range of versions that you would like
the Stub Runner to take into consideration. You can read more about the Aether
versioning ranges here.

https://wiki.eclipse.org/Aether/New_and_Noteworthy#Version_Ranges
https://wiki.eclipse.org/Aether/New_and_Noteworthy#Version_Ranges

14.3.6. Spring Cloud Contract WireMock

The Spring Cloud Contract WireMock modules let you use WireMock in a Spring Boot application.
Check out the samples for more details.

If you have a Spring Boot application that uses Tomcat as an embedded server (which is the default
with spring-boot-starter-web), you can add spring-cloud-starter-contract-stub-runner to your
classpath and add @AutoConfigureWireMock to use Wiremock in your tests. Wiremock runs as a stub
server, and you can register stub behavior by using a Java API or by using static JSON declarations
as part of your test. The following code shows an example:

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)
@AutoConfigureWireMock(port = 0)
public class WiremockForDocsTests {

 // A service that calls out over HTTP
 @Autowired
 private Service service;

 @Before
 public void setup() {
 this.service.setBase("http://localhost:"
 + this.environment.getProperty("wiremock.server.port"));
 }

 // Using the WireMock APIs in the normal way:
 @Test
 public void contextLoads() throws Exception {
 // Stubbing WireMock
 stubFor(get(urlEqualTo("/resource")).willReturn(aResponse()
 .withHeader("Content-Type", "text/plain").withBody("Hello
World!")));
 // We're asserting if WireMock responded properly
 assertThat(this.service.go()).isEqualTo("Hello World!");
 }

}

To start the stub server on a different port, use (for example), @AutoConfigureWireMock(port=9999).
For a random port, use a value of 0. The stub server port can be bound in the test application
context with the "wiremock.server.port" property. Using @AutoConfigureWireMock adds a bean of type
WiremockConfiguration to your test application context, where it is cached between methods and
classes having the same context. The same is true for Spring integration tests. Also, you can inject a
bean of type WireMockServer into your test. The registered WireMock server is reset after each test
class, however, if you need to reset it after each test method, just set the wiremock.reset-mappings-
after-each-test property to true.

https://github.com/tomakehurst/wiremock
https://github.com/spring-cloud/spring-cloud-contract/tree/master/samples

Registering Stubs Automatically

If you use @AutoConfigureWireMock, it registers WireMock JSON stubs from the file system or
classpath (by default, from file:src/test/resources/mappings). You can customize the locations by
using the stubs attribute in the annotation, which can be an Ant-style resource pattern or a
directory. In the case of a directory, */.json is appended. The following code shows an example:

@RunWith(SpringRunner.class)
@SpringBootTest
@AutoConfigureWireMock(stubs="classpath:/stubs")
public class WiremockImportApplicationTests {

 @Autowired
 private Service service;

 @Test
 public void contextLoads() throws Exception {
 assertThat(this.service.go()).isEqualTo("Hello World!");
 }

}

Actually, WireMock always loads mappings from src/test/resources/mappings as
well as the custom locations in the stubs attribute. To change this behavior, you
can also specify a files root, as described in the next section of this document.

If you use Spring Cloud Contract’s default stub jars, your stubs are stored in the /META-INF/group-
id/artifact-id/versions/mappings/ folder. If you want to register all stubs from that location, from
all embedded JARs, you can use the following syntax:

@AutoConfigureWireMock(port = 0, stubs = "classpath*:/META-
INF/**/mappings/**/*.json")

Using Files to Specify the Stub Bodies

WireMock can read response bodies from files on the classpath or the file system. In the case of the
file system, you can see in the JSON DSL that the response has a bodyFileName instead of a (literal)
body. The files are resolved relative to a root directory (by default, src/test/resources/__files). To
customize this location, you can set the files attribute in the @AutoConfigureWireMock annotation to
the location of the parent directory (in other words, __files is a subdirectory). You can use Spring
resource notation to refer to file:… or classpath:… locations. Generic URLs are not supported. A
list of values can be given — in which case, WireMock resolves the first file that exists when it
needs to find a response body.

When you configure the files root, it also affects the automatic loading of stubs,
because they come from the root location in a subdirectory called mappings. The
value of files has no effect on the stubs loaded explicitly from the stubs attribute.

Alternative: Using JUnit Rules

For a more conventional WireMock experience, you can use JUnit @Rules to start and stop the
server. To do so, use the WireMockSpring convenience class to obtain an Options instance, as the
following example shows:

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)
public class WiremockForDocsClassRuleTests {

 // Start WireMock on some dynamic port
 // for some reason `dynamicPort()` is not working properly
 @ClassRule
 public static WireMockClassRule wiremock = new WireMockClassRule(
 WireMockSpring.options().dynamicPort());

 // A service that calls out over HTTP to wiremock's port
 @Autowired
 private Service service;

 @Before
 public void setup() {
 this.service.setBase("http://localhost:" + wiremock.port());
 }

 // Using the WireMock APIs in the normal way:
 @Test
 public void contextLoads() throws Exception {
 // Stubbing WireMock
 wiremock.stubFor(get(urlEqualTo("/resource")).willReturn(aResponse()
 .withHeader("Content-Type", "text/plain").withBody("Hello
World!")));
 // We're asserting if WireMock responded properly
 assertThat(this.service.go()).isEqualTo("Hello World!");
 }

}

The @ClassRule means that the server shuts down after all the methods in this class have been run.

Relaxed SSL Validation for Rest Template

WireMock lets you stub a “secure” server with an https URL protocol. If your application wants to

contact that stub server in an integration test, it will find that the SSL certificates are not valid (the
usual problem with self-installed certificates). The best option is often to re-configure the client to
use http. If that is not an option, you can ask Spring to configure an HTTP client that ignores SSL
validation errors (do so only for tests, of course).

To make this work with minimum fuss, you need to use the Spring Boot RestTemplateBuilder in your
application, as the following example shows:

@Bean
public RestTemplate restTemplate(RestTemplateBuilder builder) {
 return builder.build();
}

You need RestTemplateBuilder because the builder is passed through callbacks to initialize it, so the
SSL validation can be set up in the client at that point. This happens automatically in your test if
you use the @AutoConfigureWireMock annotation or the stub runner. If you use the JUnit @Rule
approach, you need to add the @AutoConfigureHttpClient annotation as well, as the following
example shows:

@RunWith(SpringRunner.class)
@SpringBootTest("app.baseUrl=https://localhost:6443")
@AutoConfigureHttpClient
public class WiremockHttpsServerApplicationTests {

 @ClassRule
 public static WireMockClassRule wiremock = new WireMockClassRule(
 WireMockSpring.options().httpsPort(6443));
...
}

If you use spring-boot-starter-test, you have the Apache HTTP client on the classpath, and it is
selected by the RestTemplateBuilder and configured to ignore SSL errors. If you use the default
java.net client, you do not need the annotation (but it does no harm). There is currently no support
for other clients, but it may be added in future releases.

To disable the custom RestTemplateBuilder, set the wiremock.rest-template-ssl-enabled property to
false.

WireMock and Spring MVC Mocks

Spring Cloud Contract provides a convenience class that can load JSON WireMock stubs into a
Spring MockRestServiceServer. The following code shows an example:

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.NONE)
public class WiremockForDocsMockServerApplicationTests {

 @Autowired
 private RestTemplate restTemplate;

 @Autowired
 private Service service;

 @Test
 public void contextLoads() throws Exception {
 // will read stubs classpath
 MockRestServiceServer server =
WireMockRestServiceServer.with(this.restTemplate)

.baseUrl("https://example.org").stubs("classpath:/stubs/resource.json")
 .build();
 // We're asserting if WireMock responded properly
 assertThat(this.service.go()).isEqualTo("Hello World");
 server.verify();
 }

}

The baseUrl value is prepended to all mock calls, and the stubs() method takes a stub path resource
pattern as an argument. In the preceding example, the stub defined at /stubs/resource.json is
loaded into the mock server. If the RestTemplate is asked to visit example.org/, it gets the responses
as being declared at that URL. More than one stub pattern can be specified, and each one can be a
directory (for a recursive list of all .json), a fixed filename (as in the preceding example), or an Ant-
style pattern. The JSON format is the normal WireMock format, which you can read about at the
WireMock website.

Currently, the Spring Cloud Contract Verifier supports Tomcat, Jetty, and Undertow as Spring Boot
embedded servers, and Wiremock itself has “native” support for a particular version of Jetty
(currently 9.2). To use the native Jetty, you need to add the native Wiremock dependencies and
exclude the Spring Boot container (if there is one).

14.3.7. Build Tools Integration

You can run test generation and stub execution in various ways. The most common ones are as
follows:

• Maven

• Gradle

• Docker

https://example.org/
https://wiremock.org/docs/stubbing/
maven-project.html
gradle-project.html
docker-project.html

14.3.8. What to Read Next

If you want to learn more about any of the classes discussed in this section, you can browse the
source code directly. If you have specific questions, see the how-to section.

If you are comfortable with Spring Cloud Contract’s core features, you can continue on and read
about Spring Cloud Contract’s advanced features.

14.4. Maven Project
To learn how to set up the Maven project for Spring Cloud Contract Verifier, read the following
sections:

• Adding the Maven Plugin

• Maven and Rest Assured 2.0

• Using Snapshot and Milestone Versions for Maven

• Adding stubs

• Run plugin

• Configure plugin

• Configuration Options

• Single Base Class for All Tests

• Using Different Base Classes for Contracts

• Invoking Generated Tests

• Pushing Stubs to SCM

• Maven Plugin and STS

You can also check the plugin’s documentation here.

14.4.1. Adding the Maven Plugin

Add the Spring Cloud Contract BOM in a fashion similar to the following:

https://github.com/spring-cloud/tree/master
howto.pdf#howto
../../spring-cloud-contract-maven-plugin/index.html

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud-release.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Next, add the Spring Cloud Contract Verifier Maven plugin, as follows:

 <plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>

<packageWithBaseClasses>com.example.fraud</packageWithBaseClasses>
<!-- <convertToYaml>true</convertToYaml>-->
 </configuration>
 <!-- if additional dependencies are needed e.g. for Pact -->
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-pact</artifactId>
 <version>${spring-cloud-contract.version}</version>
 </dependency>
 </dependencies>
 </plugin>

You can read more in the spring-cloud-contract-maven-plugin/index.html[Spring Cloud Contract
Maven Plugin Documentation].

Sometimes, regardless of the picked IDE, you can see that the target/generated-test-source folder is
not visible on the IDE’s classpath. To ensure that it’s always there, you can add the following entry
to your pom.xml

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-test-sources</phase>
 <goals>
 <goal>add-test-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>${project.build.directory}/generated-test-
sources/contracts/</source>
 </sources>
 </configuration>
 </execution>
 </executions>
 </plugin>

14.4.2. Maven and Rest Assured 2.0

By default, Rest Assured 3.x is added to the classpath. However, you can use Rest Assured 2.x by
adding it to the plugins classpath, as follows:

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <packageWithBaseClasses>com.example</packageWithBaseClasses>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-verifier</artifactId>
 <version>${spring-cloud-contract.version}</version>
 </dependency>
 <dependency>
 <groupId>com.jayway.restassured</groupId>
 <artifactId>rest-assured</artifactId>
 <version>2.5.0</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>com.jayway.restassured</groupId>
 <artifactId>spring-mock-mvc</artifactId>
 <version>2.5.0</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>
</plugin>

<dependencies>
 <!-- all dependencies -->
 <!-- you can exclude rest-assured from spring-cloud-contract-verifier -->
 <dependency>
 <groupId>com.jayway.restassured</groupId>
 <artifactId>rest-assured</artifactId>
 <version>2.5.0</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.jayway.restassured</groupId>
 <artifactId>spring-mock-mvc</artifactId>
 <version>2.5.0</version>
 <scope>test</scope>
 </dependency>
</dependencies>

That way, the plugin automatically sees that Rest Assured 2.x is present on the classpath and
modifies the imports accordingly.

14.4.3. Using Snapshot and Milestone Versions for Maven

To use Snapshot and Milestone versions, you have to add the following section to your pom.xml:

<repositories>
 <repository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>spring-releases</id>
 <name>Spring Releases</name>
 <url>https://repo.spring.io/release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>spring-releases</id>
 <name>Spring Releases</name>

 <url>https://repo.spring.io/release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
</pluginRepositories>

14.4.4. Adding stubs

By default, Spring Cloud Contract Verifier looks for stubs in the src/test/resources/contracts
directory. The directory containing stub definitions is treated as a class name, and each stub
definition is treated as a single test. We assume that it contains at least one directory to be used as
the test class name. If there is more than one level of nested directories, all except the last one is
used as the package name. Consider the following structure:

src/test/resources/contracts/myservice/shouldCreateUser.groovy
src/test/resources/contracts/myservice/shouldReturnUser.groovy

Given that structure, Spring Cloud Contract Verifier creates a test class named
defaultBasePackage.MyService with two methods:

• shouldCreateUser()

• shouldReturnUser()

14.4.5. Run plugin

The generateTests plugin goal is assigned to be invoked in the phase called generate-test-sources. If
you want it to be part of your build process, you need not do anything. If you want only to generate
tests, invoke the generateTests goal.

If you want to run stubs via Maven it’s enough to call the run goal with the stubs to run as the
spring.cloud.contract.verifier.stubs system property as follows:

mvn org.springframework.cloud:spring-cloud-contract-maven-plugin:run \
-Dspring.cloud.contract.verifier.stubs="com.acme:service-name"

14.4.6. Configure plugin

To change the default configuration, you can add a configuration section to the plugin definition or
the execution definition, as follows:

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>convert</goal>
 <goal>generateStubs</goal>
 <goal>generateTests</goal>
 </goals>
 </execution>
 </executions>
 <configuration>

<basePackageForTests>org.springframework.cloud.verifier.twitter.place</basePackage
ForTests>

<baseClassForTests>org.springframework.cloud.verifier.twitter.place.BaseMockMvcSpe
c</baseClassForTests>
 </configuration>
</plugin>

14.4.7. Configuration Options

• testMode: Defines the mode for acceptance tests. By default, the mode is MockMvc, which is based
on Spring’s MockMvc. You can also change it to WebTestClient, JaxRsClient, or Explicit (for real
HTTP calls).

• basePackageForTests: Specifies the base package for all generated tests. If not set, the value is
picked from the package of baseClassForTests and from packageWithBaseClasses. If neither of
these values are set, the value is set to org.springframework.cloud.contract.verifier.tests.

• ruleClassForTests: Specifies a rule that should be added to the generated test classes.

• baseClassForTests: Creates a base class for all generated tests. By default, if you use Spock
classes, the class is spock.lang.Specification.

• contractsDirectory: Specifies a directory that contains contracts written with the Groovyn DSL.
The default directory is /src/test/resources/contracts.

• generatedTestSourcesDir: Specifies the test source directory where tests generated from the
Groovy DSL should be placed. By default, its value is $buildDir/generated-test-

sources/contracts.

• generatedTestResourcesDir: Specifies the test resource directory for resources used by the
generated tests.

• testFramework: Specifies the target test framework to be used. Currently, Spock, JUnit 4
(TestFramework.JUNIT), and JUnit 5 are supported, with JUnit 4 being the default framework.

• packageWithBaseClasses: Defines a package where all the base classes reside. This setting takes

precedence over baseClassForTests. The convention is such that, if you have a contract under
(for example) src/test/resources/contract/foo/bar/baz/ and set the value of the
packageWithBaseClasses property to com.example.base, Spring Cloud Contract Verifier assumes
that there is a BarBazBase class under the com.example.base package. In other words, the system
takes the last two parts of the package, if they exist, and forms a class with Base as a suffix.

• baseClassMappings: Specifies a list of base class mappings that provide contractPackageRegex
(which is checked against the package where the contract is located) and baseClassFQN(which
maps to the fully qualified name of the base class for the matched contract). For example, if you
have a contract under src/test/resources/contract/foo/bar/baz/ and map the .* →
com.example.base.BaseClass property, the test class generated from these contracts extends
com.example.base.BaseClass. This setting takes precedence over packageWithBaseClasses and
baseClassForTests.

• contractsProperties: A map that contains properties to be passed to Spring Cloud Contract
components. Those properties might be used by (for example) built-in or custom Stub
Downloaders.

• failOnNoContracts: When enabled, will throw an exception when no contracts were found.
Defaults to true.

• failOnInProgress: If set to true then if any contracts that are in progress are found, will break
the build. On the producer side you need to be explicit about the fact that you have contracts in
progress and take into consideration that you might be causing false positive test execution
results on the consumer side.. Defaults to true.

If you want to download your contract definitions from a Maven repository, you can use the
following options:

• contractDependency: The contract dependency that contains all the packaged contracts.

• contractsPath: The path to the concrete contracts in the JAR with packaged contracts. Defaults to
groupid/artifactid where gropuid is slash separated.

• contractsMode: Picks the mode in which stubs are found and registered.

• deleteStubsAfterTest: If set to false will not remove any downloaded contracts from temporary
directories.

• contractsRepositoryUrl: URL to a repository with the artifacts that have contracts. If it is not
provided, use the current Maven ones.

• contractsRepositoryUsername: The user name to be used to connect to the repo with contracts.

• contractsRepositoryPassword: The password to be used to connect to the repo with contracts.

• contractsRepositoryProxyHost: The proxy host to be used to connect to the repo with contracts.

• contractsRepositoryProxyPort: The proxy port to be used to connect to the repo with contracts.

We cache only non-snapshot, explicitly provided versions (for example + or 1.0.0.BUILD-SNAPSHOT do
not get cached). By default, this feature is turned on.

The following list describes experimental features that you can turn on in the plugin:

• convertToYaml: Converts all DSLs to the declarative YAML format. This can be extremely useful

when you use external libraries in your Groovy DSLs. By turning this feature on (by setting it to
true) you need not add the library dependency on the consumer side.

• assertJsonSize: You can check the size of JSON arrays in the generated tests. This feature is
disabled by default.

14.4.8. Single Base Class for All Tests

When using Spring Cloud Contract Verifier in the default (MockMvc), you need to create a base
specification for all generated acceptance tests. In this class, you need to point to an endpoint,
which should be verified. The following example shows how to do so:

package org.mycompany.tests

import org.mycompany.ExampleSpringController
import com.jayway.restassured.module.mockmvc.RestAssuredMockMvc
import spock.lang.Specification

class MvcSpec extends Specification {
 def setup() {
 RestAssuredMockMvc.standaloneSetup(new ExampleSpringController())
 }
}

You can also setup the whole context if necessary, as the following example shows:

import io.restassured.module.mockmvc.RestAssuredMockMvc;
import org.junit.Before;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.web.context.WebApplicationContext;

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT, classes =
SomeConfig.class, properties="some=property")
public abstract class BaseTestClass {

 @Autowired
 WebApplicationContext context;

 @Before
 public void setup() {
 RestAssuredMockMvc.webAppContextSetup(this.context);
 }
}

If you use EXPLICIT mode, you can use a base class to initialize the whole tested app, similar to what
you might do in regular integration tests. The following example shows how to do so:

import io.restassured.RestAssured;
import org.junit.Before;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.boot.web.server.LocalServerPort
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.web.context.WebApplicationContext;

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT, classes =
SomeConfig.class, properties="some=property")
public abstract class BaseTestClass {

 @LocalServerPort
 int port;

 @Before
 public void setup() {
 RestAssured.baseURI = "http://localhost:" + this.port;
 }
}

If you use the JAXRSCLIENT mode, this base class should also contain a protected WebTarget webTarget
field. Right now, the only way to test the JAX-RS API is to start a web server.

14.4.9. Using Different Base Classes for Contracts

If your base classes differ between contracts, you can tell the Spring Cloud Contract plugin which
class should get extended by the autogenerated tests. You have two options:

• Follow a convention by providing a value for packageWithBaseClasses

• Provide explicit mapping with baseClassMappings

By Convention

The convention is such that if you have a contract under (for example)
src/test/resources/contract/foo/bar/baz/ and set the value of the packageWithBaseClasses property
to com.example.base, then Spring Cloud Contract Verifier assumes that there is a BarBazBase class
under the com.example.base package. In other words, the system takes the last two parts of the
package, if they exist, and forms a class with a Base suffix. This rule takes precedence over
baseClassForTests. The following example shows how it works in the contracts closure:

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <configuration>
 <packageWithBaseClasses>hello</packageWithBaseClasses>
 </configuration>
</plugin>

By Mapping

You can manually map a regular expression of the contract’s package to the fully qualified name of
the base class for the matched contract. You have to provide a list called baseClassMappings that
consists of baseClassMapping objects that each take a contractPackageRegex to baseClassFQN mapping.
Consider the following example:

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <configuration>
 <baseClassForTests>com.example.FooBase</baseClassForTests>
 <baseClassMappings>
 <baseClassMapping>
 <contractPackageRegex>.*com.*</contractPackageRegex>
 <baseClassFQN>com.example.TestBase</baseClassFQN>
 </baseClassMapping>
 </baseClassMappings>
 </configuration>
</plugin>

Assume that you have contracts under these two locations: * src/test/resources/contract/com/ *
src/test/resources/contract/foo/

By providing the baseClassForTests, we have a fallback in case mapping did not succeed. (You can
also provide the packageWithBaseClasses as a fallback.) That way, the tests generated from
src/test/resources/contract/com/ contracts extend the com.example.ComBase, whereas the rest of the
tests extend com.example.FooBase.

14.4.10. Invoking Generated Tests

The Spring Cloud Contract Maven Plugin generates verification code in a directory called
/generated-test-sources/contractVerifier and attaches this directory to testCompile goal.

For Groovy Spock code, you can use the following:

<plugin>
 <groupId>org.codehaus.gmavenplus</groupId>
 <artifactId>gmavenplus-plugin</artifactId>
 <version>1.5</version>
 <executions>
 <execution>
 <goals>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <testSources>
 <testSource>
 <directory>${project.basedir}/src/test/groovy</directory>
 <includes>
 <include>**/*.groovy</include>
 </includes>
 </testSource>
 <testSource>
 <directory>${project.build.directory}/generated-test-
sources/contractVerifier</directory>
 <includes>
 <include>**/*.groovy</include>
 </includes>
 </testSource>
 </testSources>
 </configuration>
</plugin>

To ensure that the provider side is compliant with defined contracts, you need to invoke mvn
generateTest test.

14.4.11. Pushing Stubs to SCM

If you use the SCM (Source Control Management) repository to keep the contracts and stubs, you
might want to automate the step of pushing stubs to the repository. To do that, you can add the
pushStubsToScm goal. The following example shows how to do so:

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <!-- Base class mappings etc. -->

 <!-- We want to pick contracts from a Git repository -->
 <contractsRepositoryUrl>git://https://github.com/spring-cloud-
samples/spring-cloud-contract-nodejs-contracts-git.git</contractsRepositoryUrl>

 <!-- We reuse the contract dependency section to set up the path
 to the folder that contains the contract definitions. In our case the
 path will be /groupId/artifactId/version/contracts -->
 <contractDependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>${project.artifactId}</artifactId>
 <version>${project.version}</version>
 </contractDependency>

 <!-- The contracts mode can't be classpath -->
 <contractsMode>REMOTE</contractsMode>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <!-- By default we will not push the stubs back to SCM,
 you have to explicitly add it as a goal -->
 <goal>pushStubsToScm</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Under Using the SCM Stub Downloader, you can find all possible configuration options that you can
pass through the <configuration><contractProperties> map, a system property, or an environment
variable.

14.4.12. Maven Plugin and STS

The following image shows an exception that you may see when you use STS:

[STS Exception] | https://raw.github.com/spring-

cloud/master/docs/src/main/asciidoc/images/sts_exception.png

When you click on the error marker you should see something like the following:

 plugin:1.1.0.M1:convert:default-convert:process-test-resources)
org.apache.maven.plugin.PluginExecutionException: Execution default-convert of
goal org.springframework.cloud:spring-
 cloud-contract-maven-plugin:1.1.0.M1:convert failed. at
org.apache.maven.plugin.DefaultBuildPluginManager.executeMojo(DefaultBuildPluginMa
nager.java:145) at
 org.eclipse.m2e.core.internal.embedder.MavenImpl.execute(MavenImpl.java:331) at
org.eclipse.m2e.core.internal.embedder.MavenImpl$11.call(MavenImpl.java:1362) at
...
 org.eclipse.core.internal.jobs.Worker.run(Worker.java:55) Caused by:
java.lang.NullPointerException at
 org.eclipse.m2e.core.internal.builder.plexusbuildapi.EclipseIncrementalBuildConte
xt.hasDelta(EclipseIncrementalBuildContext.java:53) at
 org.sonatype.plexus.build.incremental.ThreadBuildContext.hasDelta(ThreadBuildCont
ext.java:59) at

In order to fix this issue, provide the following section in your pom.xml:

<build>
 <pluginManagement>
 <plugins>
 <!--This plugin's configuration is used to store Eclipse m2e settings
 only. It has no influence on the Maven build itself. -->
 <plugin>
 <groupId>org.eclipse.m2e</groupId>
 <artifactId>lifecycle-mapping</artifactId>
 <version>1.0.0</version>
 <configuration>
 <lifecycleMappingMetadata>
 <pluginExecutions>
 <pluginExecution>
 <pluginExecutionFilter>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-
plugin</artifactId>
 <versionRange>[1.0,)</versionRange>
 <goals>
 <goal>convert</goal>
 </goals>
 </pluginExecutionFilter>
 <action>
 <execute />
 </action>
 </pluginExecution>
 </pluginExecutions>
 </lifecycleMappingMetadata>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
</build>

14.4.13. Maven Plugin with Spock Tests

You can select the Spock Framework for creating and running the auto-generated contract
verification tests with both Maven and Gradle. However, whereas using Gradle is straightforward,
in Maven, you will require some additional setup in order to make the tests compile and execute
properly.

First of all, you must use a plugin, such as the GMavenPlus plugin, to add Groovy to your project. In
GMavenPlus plugin, you need to explicitly set test sources, including both the path where your base
test classes are defined and the path were the generated contract tests are added. The following
example shows how to do so:

http://spockframework.org/
https://github.com/groovy/GMavenPlus

<plugin>
 <groupId>org.codehaus.gmavenplus</groupId>
 <artifactId>gmavenplus-plugin</artifactId>
 <version>1.6.1</version>
 <executions>
 <execution>
 <goals>
 <goal>compileTests</goal>
 <goal>addTestSources</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <testSources>
 <testSource>
 <directory>${project.basedir}/src/test/groovy</directory>
 <includes>
 <include>**/*.groovy</include>
 </includes>
 </testSource>
 <testSource>
 <directory>
 ${project.basedir}/target/generated-test-
sources/contracts/com/example/beer
 </directory>
 <includes>
 <include>**/*.groovy</include>
 <include>**/*.gvy</include>
 </includes>
 </testSource>
 </testSources>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all</artifactId>
 <version>${groovy.version}</version>
 <scope>runtime</scope>
 <type>pom</type>
 </dependency>
 </dependencies>

If you uphold the Spock convention of ending the test class names with Spec, you also need to adjust
your Maven Surefire plugin setup, as the following example shows:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <includes>
 <include>**/*Test.java</include>
 <include>**/*Spec.java</include>
 </includes>
 <failIfNoTests>true</failIfNoTests>
 </configuration>
</plugin>

14.5. Gradle Project
To learn how to set up the Gradle project for Spring Cloud Contract Verifier, read the following
sections:

• Prerequisites

• Add Gradle Plugin with Dependencies

• Gradle and Rest Assured 2.0

• Snapshot Versions for Gradle

• Add stubs

• Default Setup

• Configuring the Plugin

• Configuration Options

• Single Base Class for All Tests

• Different Base Classes for Contracts

• Invoking Generated Tests

• Pushing Stubs to SCM

• Spring Cloud Contract Verifier on the Consumer Side

14.5.1. Prerequisites

In order to use Spring Cloud Contract Verifier with WireMock, you must use either a Gradle or a
Maven plugin.

If you want to use Spock in your projects, you must separately add the spock-core
and spock-spring modules. See Spock’s documnetation for more information

https://spockframework.github.io/

14.5.2. Add Gradle Plugin with Dependencies

To add a Gradle plugin with dependencies, you can use code similar to the following:

Plugin DSL GA versions

// build.gradle
plugins {
 id "groovy"
 // this will work only for GA versions of Spring Cloud Contract
 id "org.springframework.cloud.contract" version "${GAVerifierVersion}"
}

dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-contract-
dependencies:${GAVerifierVersion}"
 }
}

dependencies {
 testCompile "org.codehaus.groovy:groovy-all:${groovyVersion}"
 // example with adding Spock core and Spock Spring
 testCompile "org.spockframework:spock-core:${spockVersion}"
 testCompile "org.spockframework:spock-spring:${spockVersion}"
 testCompile 'org.springframework.cloud:spring-cloud-starter-contract-verifier'
}

Plugin DSL non GA versions

// settings.gradle
pluginManagement {
 plugins {
 id "org.springframework.cloud.contract" version "${verifierVersion}"
 }
 repositories {
 // to pick from local .m2
 mavenLocal()
 // for snapshots
 maven { url "https://repo.spring.io/snapshot" }
 // for milestones
 maven { url "https://repo.spring.io/milestone" }
 // for GA versions
 gradlePluginPortal()
 }
}

// build.gradle
plugins {
 id "groovy"
 id "org.springframework.cloud.contract"
}

dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-contract-
dependencies:${verifierVersion}"
 }
}

dependencies {
 testCompile "org.codehaus.groovy:groovy-all:${groovyVersion}"
 // example with adding Spock core and Spock Spring
 testCompile "org.spockframework:spock-core:${spockVersion}"
 testCompile "org.spockframework:spock-spring:${spockVersion}"
 testCompile 'org.springframework.cloud:spring-cloud-starter-contract-verifier'
}

Legacy Plugin Application

// build.gradle
buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "org.springframework.boot:spring-boot-gradle-
plugin:${springboot_version}"
 classpath "org.springframework.cloud:spring-cloud-contract-gradle-
plugin:${verifier_version}"
 // here you can also pass additional dependencies such as Pact or Kotlin
spec e.g.:
 // classpath "org.springframework.cloud:spring-cloud-contract-spec-
kotlin:${verifier_version}"
 }
}

apply plugin: 'groovy'
apply plugin: 'spring-cloud-contract'

dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-contract-
dependencies:${verifier_version}"
 }
}

dependencies {
 testCompile "org.codehaus.groovy:groovy-all:${groovyVersion}"
 // example with adding Spock core and Spock Spring
 testCompile "org.spockframework:spock-core:${spockVersion}"
 testCompile "org.spockframework:spock-spring:${spockVersion}"
 testCompile 'org.springframework.cloud:spring-cloud-starter-contract-verifier'
}

14.5.3. Gradle and Rest Assured 2.0

By default, Rest Assured 3.x is added to the classpath. However, to use Rest Assured 2.x you can add
it to the plugins classpath, as the following listing shows:

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "org.springframework.boot:spring-boot-gradle-
plugin:${springboot_version}"
 classpath "org.springframework.cloud:spring-cloud-contract-gradle-
plugin:${verifier_version}"
 classpath "com.jayway.restassured:rest-assured:2.5.0"
 classpath "com.jayway.restassured:spring-mock-mvc:2.5.0"
 }
}

depenendencies {
 // all dependencies
 // you can exclude rest-assured from spring-cloud-contract-verifier
 testCompile "com.jayway.restassured:rest-assured:2.5.0"
 testCompile "com.jayway.restassured:spring-mock-mvc:2.5.0"
}

That way, the plugin automatically sees that Rest Assured 2.x is present on the classpath and
modifies the imports accordingly.

14.5.4. Snapshot Versions for Gradle

You can add the additional snapshot repository to your build.gradle to use snapshot versions,
which are automatically uploaded after every successful build, as the following listing shows:

/*
 We need to use the [buildscript {}] section when we have to modify
 the classpath for the plugins. If that's not the case this section
 can be skipped.

 If you don't need to modify the classpath (e.g. add a Pact dependency),
 then you can just set the [pluginManagement {}] section in [settings.gradle]
file.

 // settings.gradle
 pluginManagement {
 repositories {
 // for snapshots
 maven {url "https://repo.spring.io/snapshot"}
 // for milestones
 maven {url "https://repo.spring.io/milestone"}
 // for GA versions
 gradlePluginPortal()
 }
 }

 */
buildscript {
 repositories {
 mavenCentral()
 mavenLocal()
 maven { url "https://repo.spring.io/snapshot" }
 maven { url "https://repo.spring.io/milestone" }
 maven { url "https://repo.spring.io/release" }
 }
}

14.5.5. Add stubs

By default, Spring Cloud Contract Verifier looks for stubs in the src/test/resources/contracts
directory.

The directory that contains stub definitions is treated as a class name, and each stub definition is
treated as a single test. Spring Cloud Contract Verifier assumes that it contains at least one level of
directories that are to be used as the test class name. If more than one level of nested directories is
present, all except the last one is used as the package name. Consider the following structure:

src/test/resources/contracts/myservice/shouldCreateUser.groovy
src/test/resources/contracts/myservice/shouldReturnUser.groovy

Given the preceding structure, Spring Cloud Contract Verifier creates a test class named
defaultBasePackage.MyService with two methods:

• shouldCreateUser()

• shouldReturnUser()

14.5.6. Running the Plugin

The plugin registers itself to be invoked before a check task. If you want it to be part of your build
process, you need do nothing more. If you just want to generate tests, invoke the
generateContractTests task.

14.5.7. Default Setup

The default Gradle Plugin setup creates the following Gradle part of the build (in pseudocode):

contracts {
 testFramework ='JUNIT'
 testMode = 'MockMvc'
 generatedTestSourcesDir = project.file("${project.buildDir}/generated-test-
sources/contracts")
 generatedTestResourcesDir = project.file("${project.buildDir}/generated-test-
resources/contracts")
 contractsDslDir =
project.file("${project.rootDir}/src/test/resources/contracts")
 basePackageForTests = 'org.springframework.cloud.verifier.tests'
 stubsOutputDir = project.file("${project.buildDir}/stubs")
 sourceSet = null

 // the following properties are used when you want to provide where the JAR
with contract lays
 contractDependency {
 stringNotation = ''
 }
 contractsPath = ''
 contractsWorkOffline = false
 contractRepository {
 cacheDownloadedContracts(true)
 }
}

tasks.create(type: Jar, name: 'verifierStubsJar', dependsOn:
'generateClientStubs') {
 baseName = project.name
 classifier = contracts.stubsSuffix
 from contractVerifier.stubsOutputDir
}

project.artifacts {

 archives task
}

tasks.create(type: Copy, name: 'copyContracts') {
 from contracts.contractsDslDir
 into contracts.stubsOutputDir
}

verifierStubsJar.dependsOn 'copyContracts'

publishing {
 publications {
 stubs(MavenPublication) {
 artifactId project.name
 artifact verifierStubsJar
 }
 }
}

14.5.8. Configuring the Plugin

To change the default configuration, you can add a contracts snippet to your Gradle configuration,
as the following listing shows:

contracts {
 testMode = 'MockMvc'
 baseClassForTests = 'org.mycompany.tests'
 generatedTestSourcesDir = project.file('src/generatedContract')
}

14.5.9. Configuration Options

• testMode: Defines the mode for acceptance tests. By default, the mode is MockMvc, which is
based on Spring’s MockMvc. It can also be changed to WebTestClient, JaxRsClient, or Explicit
(for real HTTP calls).

• imports: Creates an array with imports that should be included in the generated tests (for
example, ['org.myorg.Matchers']). By default, it creates an empty array.

• staticImports: Creates an array with static imports that should be included in generated
tests(for example, ['org.myorg.Matchers.*']). By default, it creates an empty array.

• basePackageForTests: Specifies the base package for all generated tests. If not set, the value is
picked from the package of baseClassForTests and from packageWithBaseClasses. If neither of
these values are set, the value is set to org.springframework.cloud.contract.verifier.tests.

• baseClassForTests: Creates a base class for all generated tests. By default, if you use Spock
classes, the class is spock.lang.Specification.

• packageWithBaseClasses: Defines a package where all the base classes reside. This setting takes
precedence over baseClassForTests.

• baseClassMappings: Explicitly maps a contract package to a FQN of a base class. This setting takes
precedence over packageWithBaseClasses and baseClassForTests.

• ruleClassForTests: Specifies a rule that should be added to the generated test classes.

• ignoredFiles: Uses an Antmatcher to allow defining stub files for which processing should be
skipped. By default, it is an empty array.

• contractsDslDir: Specifies the directory that contains contracts written by using the GroovyDSL.
By default, its value is $rootDir/src/test/resources/contracts.

• generatedTestSourcesDir: Specifies the test source directory where tests generated from the
Groovy DSL should be placed. By default, its value is $buildDir/generated-test-

sources/contracts.

• generatedTestResourcesDir: Specifies the test resource directory where resources used by the
tests generated from the Groovy DSL should be placed. By default, its value is
$buildDir/generated-test-resources/contracts.

• stubsOutputDir: Specifies the directory where the generated WireMock stubs from the Groovy
DSL should be placed.

• testFramework: Specifies the target test framework to be used. Currently, Spock, JUnit 4
(TestFramework.JUNIT), and JUnit 5 are supported, with JUnit 4 being the default framework.

• contractsProperties: A map that contains properties to be passed to Spring Cloud Contract
components. Those properties might be used by (for example) built-in or custom Stub
Downloaders.

• sourceSet: Source set where the contracts are stored. If not provided will assume test (e.g.
project.sourceSets.test.java for JUnit or project.sourceSets.test.groovy for Spock).

You can use the following properties when you want to specify the location of the JAR that contains
the contracts:

• contractDependency: Specifies the Dependency that provides
groupid:artifactid:version:classifier coordinates. You can use the contractDependency closure
to set it up.

• contractsPath: Specifies the path to the jar. If contract dependencies are downloaded, the path
defaults to groupid/artifactid where groupid is slash separated. Otherwise, it scans contracts
under the provided directory.

• contractsMode: Specifies the mode for downloading contracts (whether the JAR is available
offline, remotely, and so on).

• deleteStubsAfterTest: If set to false, do not remove any downloaded contracts from temporary
directories.

• failOnNoContracts: When enabled, will throw an exception when no contracts were found.
Defaults to true.

• failOnInProgress: If set to true then if any contracts that are in progress are found, will break
the build. On the producer side you need to be explicit about the fact that you have contracts in

progress and take into consideration that you might be causing false positive test execution
results on the consumer side.. Defaults to true.

There is also the contractRepository { … } closure that contains the following properties

• repositoryUrl: the URL to the repository with contract definitions

• username : Repository username

• password : Repository password

• proxyPort : the port of the proxy

• proxyHost : the host of the proxy

• cacheDownloadedContracts : If set to true then will cache the folder where non snapshot contract
artifacts got downloaded. Defaults to true.

You can also turn on the following experimental features in the plugin:

• convertToYaml: Converts all DSLs to the declarative YAML format. This can be extremely useful
when you use external libraries in your Groovy DSLs. By turning this feature on (by setting it to
true) you need not add the library dependency on the consumer side.

• assertJsonSize: You can check the size of JSON arrays in the generated tests. This feature is
disabled by default.

14.5.10. Single Base Class for All Tests

When using Spring Cloud Contract Verifier in default MockMvc, you need to create a base
specification for all generated acceptance tests. In this class, you need to point to an endpoint,
which should be verified. The following example shows how to do so:

abstract class BaseMockMvcSpec extends Specification {

 def setup() {
 RestAssuredMockMvc.standaloneSetup(new PairIdController())
 }

 void isProperCorrelationId(Integer correlationId) {
 assert correlationId == 123456
 }

 void isEmpty(String value) {
 assert value == null
 }

}

If you use Explicit mode, you can use a base class to initialize the whole tested application, as you
might see in regular integration tests. If you use the JAXRSCLIENT mode, this base class should also

contain a protected WebTarget webTarget field. Right now, the only option to test the JAX-RS API is to
start a web server.

14.5.11. Different Base Classes for Contracts

If your base classes differ between contracts, you can tell the Spring Cloud Contract plugin which
class should get extended by the autogenerated tests. You have two options:

• Follow a convention by providing the packageWithBaseClasses

• Provide explicit mapping by using baseClassMappings

By Convention

The convention is such that if you have a contract in (for example)
src/test/resources/contract/foo/bar/baz/ and set the value of the packageWithBaseClasses property
to com.example.base, then Spring Cloud Contract Verifier assumes that there is a BarBazBase class
under the com.example.base package. In other words, the system takes the last two parts of the
package, if they exist, and forms a class with a Base suffix. This rule takes precedence over
baseClassForTests. The following example shows how it works in the contracts closure:

packageWithBaseClasses = 'com.example.base'

By Mapping

You can manually map a regular expression of the contract’s package to the fully qualified name of
the base class for the matched contract. You have to provide a list called baseClassMappings that
consists of baseClassMapping objects that take a contractPackageRegex to baseClassFQN mapping.
Consider the following example:

baseClassForTests = "com.example.FooBase"
baseClassMappings {
 baseClassMapping('.*/com/.*', 'com.example.ComBase')
 baseClassMapping('.*/bar/.*': 'com.example.BarBase')
}

Let’s assume that you have contracts in the following directories: -
src/test/resources/contract/com/ - src/test/resources/contract/foo/

By providing baseClassForTests, we have a fallback in case mapping did not succeed. (You could
also provide the packageWithBaseClasses as a fallback.) That way, the tests generated from
src/test/resources/contract/com/ contracts extend the com.example.ComBase, whereas the rest of the
tests extend com.example.FooBase.

14.5.12. Invoking Generated Tests

To ensure that the provider side is compliant with your defined contracts, you need to run the
following command:

./gradlew generateContractTests test

14.5.13. Pushing Stubs to SCM

If you use the SCM repository to keep the contracts and stubs, you might want to automate the step
of pushing stubs to the repository. To do that, you can call the pushStubsToScm task by running the
following command:

$./gradlew pushStubsToScm

Under Using the SCM Stub Downloader you can find all possible configuration options that you can
pass either through the contractsProperties field (for example, contracts { contractsProperties =
[foo:"bar"] }), through the contractsProperties method (for example, contracts {

contractsProperties([foo:"bar"]) }), or through a system property or an environment variable.

14.5.14. Spring Cloud Contract Verifier on the Consumer Side

In a consuming service, you need to configure the Spring Cloud Contract Verifier plugin in exactly
the same way as in the case of a provider. If you do not want to use Stub Runner, you need to copy
the contracts stored in src/test/resources/contracts and generate WireMock JSON stubs by using
the following command:

./gradlew generateClientStubs

 The stubsOutputDir option has to be set for stub generation to work.

When present, JSON stubs can be used in automated tests to consume a service. The following
example shows how to do so:

@ContextConfiguration(loader == SpringApplicationContextLoader, classes ==
Application)
class LoanApplicationServiceSpec extends Specification {

 @ClassRule
 @Shared
 WireMockClassRule wireMockRule == new WireMockClassRule()

 @Autowired
 LoanApplicationService sut

 def 'should successfully apply for loan'() {
 given:
 LoanApplication application =
 new LoanApplication(client: new Client(clientPesel: '12345678901'),
amount: 123.123)
 when:
 LoanApplicationResult loanApplication == sut.loanApplication(application)
 then:
 loanApplication.loanApplicationStatus == LoanApplicationStatus.LOAN_APPLIED
 loanApplication.rejectionReason == null
 }
}

In the preceding example, LoanApplication makes a call to the FraudDetection service. This request is
handled by a WireMock server configured with stubs that were generated by Spring Cloud Contract
Verifier.

14.6. Docker Project
In this section, we publish a springcloud/spring-cloud-contract Docker image that contains a
project that generates tests and runs them in EXPLICIT mode against a running application.

The EXPLICIT mode means that the tests generated from contracts send real
requests and not the mocked ones.

We also publish a spring-cloud/spring-cloud-contract-stub-runner Docker image that starts the
standalone version of Stub Runner.

14.6.1. A Short Introduction to Maven, JARs and Binary storage

Since non-JVM projects can use the Docker image, it is good to explain the basic terms behind
Spring Cloud Contract packaging defaults.

Parts of the following definitions were taken from the Maven Glossary:

• Project: Maven thinks in terms of projects. Projects are all you build. Those projects follow a

https://maven.apache.org/glossary.html

well defined “Project Object Model”. Projects can depend on other projects, in which case the
latter are called “dependencies”. A project may consistent of several subprojects. However,
these subprojects are still treated equally as projects.

• Artifact: An artifact is something that is either produced or used by a project. Examples of
artifacts produced by Maven for a project include JAR files and source and binary distributions.
Each artifact is uniquely identified by a group ID and an artifact ID that is unique within a
group.

• JAR: JAR stands for Java ARchive. Its format is based on the ZIP file format. Spring Cloud
Contract packages the contracts and generated stubs in a JAR file.

• GroupId: A group ID is a universally unique identifier for a project. While this is often just the
project name (for example, commons-collections), it is helpful to use a fully-qualified package
name to distinguish it from other projects with a similar name (for example, org.apache.maven).
Typically, when published to the Artifact Manager, the GroupId gets slash separated and forms
part of the URL. For example, for a group ID of com.example and an artifact ID of application, the
result would be /com/example/application/.

• Classifier: The Maven dependency notation looks as follows:
groupId:artifactId:version:classifier. The classifier is an additional suffix passed to the
dependency — for example, stubs or sources. The same dependency (for example,
com.example:application) can produce multiple artifacts that differ from each other with the
classifier.

• Artifact manager: When you generate binaries, sources, or packages, you would like them to be
available for others to download, reference, or reuse. In the case of the JVM world, those
artifacts are generally JARs. For Ruby, those artifacts are gems. For Docker, those artifacts are
Docker images. You can store those artifacts in a manager. Examples of such managers include
Artifactory or Nexus.

14.6.2. Generating Tests on the Producer Side

The image searches for contracts under the /contracts folder. The output from running the tests is
available in the /spring-cloud-contract/build folder (useful for debugging purposes).

You can mount your contracts and pass the environment variables. The image then:

• Generates the contract tests

• Runs the tests against the provided URL

• Generates the WireMock stubs

• Publishes the stubs to a Artifact Manager (optional - turned on by default)

Environment Variables

The Docker image requires some environment variables to point to your running application, to the
Artifact manager instance, and so on. The following list describes the environment variables:

• PROJECT_GROUP: Your project’s group ID. Defaults to com.example.

• PROJECT_VERSION: Your project’s version. Defaults to 0.0.1-SNAPSHOT.

https://jfrog.com/artifactory/
https://www.sonatype.org/nexus/
https://github.com/tomakehurst/wiremock

• PROJECT_NAME: Your project’s artifact id. Defaults to example.

• PRODUCER_STUBS_CLASSIFIER: Archive classifier used for generated producer stubs. Defaults to
stubs.

• REPO_WITH_BINARIES_URL: URL of your Artifact Manager. Defaults to localhost:8081/artifactory/
libs-release-local, which is the default URL of Artifactory running locally.

• REPO_WITH_BINARIES_USERNAME: (optional) Username when the Artifact Manager is secured.
Defaults to admin.

• REPO_WITH_BINARIES_PASSWORD: (optional) Password when the Artifact Manager is secured.
Defaults to password.

• PUBLISH_ARTIFACTS: If set to true, publishes the artifact to binary storage. Defaults to true.

• PUBLISH_ARTIFACTS_OFFLINE: If set to true, it will publish the artifacts to local .m2. Defaults to
false.

These environment variables are used when contracts lay in an external repository. To enable this
feature, you must set the EXTERNAL_CONTRACTS_ARTIFACT_ID environment variable.

• EXTERNAL_CONTRACTS_GROUP_ID: Group ID of the project with contracts. Defaults to com.example

• EXTERNAL_CONTRACTS_ARTIFACT_ID: Artifact ID of the project with contracts.

• EXTERNAL_CONTRACTS_CLASSIFIER: Classifier of the project with contracts. Empty by default.

• EXTERNAL_CONTRACTS_VERSION: Version of the project with contracts. Defaults to +, equivalent to
picking the latest.

• EXTERNAL_CONTRACTS_REPO_WITH_BINARIES_URL: URL of your Artifact Manager. It defaults to the
value of REPO_WITH_BINARIES_URL environment variable. If that is not set, it defaults to
localhost:8081/artifactory/libs-release-local, which is the default URL of Artifactory running
locally.

• EXTERNAL_CONTRACTS_REPO_WITH_BINARIES_USERNAME: (optional) Username if the
EXTERNAL_CONTRACTS_REPO_WITH_BINARIES_URL requires authentication. It defaults to
REPO_WITH_BINARIES_USERNAME. If that is not set, it defaults to admin.

• EXTERNAL_CONTRACTS_REPO_WITH_BINARIES_PASSWORD: (optional) Password if the
EXTERNAL_CONTRACTS_REPO_WITH_BINARIES_URL requires authentication. It defaults to
REPO_WITH_BINARIES_PASSWORD. If that is not set, it defaults to password.

• EXTERNAL_CONTRACTS_PATH: Path to contracts for the given project, inside the project with
contracts. Defaults to slash-separated EXTERNAL_CONTRACTS_GROUP_ID concatenated with / and
EXTERNAL_CONTRACTS_ARTIFACT_ID. For example, for group id cat-server-side.dog and artifact id
fish, would result in cat/dog/fish for the contracts path.

• EXTERNAL_CONTRACTS_WORK_OFFLINE; If set to true, retrieves the artifact with contracts from the
container’s .m2. Mount your local .m2 as a volume available at the container’s /root/.m2 path.

You must not set both EXTERNAL_CONTRACTS_WORK_OFFLINE and
EXTERNAL_CONTRACTS_REPO_WITH_BINARIES_URL.

The following environment variables are used when tests are executed:

http://localhost:8081/artifactory/libs-release-local
http://localhost:8081/artifactory/libs-release-local
http://localhost:8081/artifactory/libs-release-local
http://localhost:8081/artifactory/libs-release-local
http://localhost:8081/artifactory/libs-release-local
https://jfrog.com/artifactory/
http://localhost:8081/artifactory/libs-release-local
http://localhost:8081/artifactory/libs-release-local
http://localhost:8081/artifactory/libs-release-local
http://localhost:8081/artifactory/libs-release-local
http://localhost:8081/artifactory/libs-release-local
https://jfrog.com/artifactory/

• APPLICATION_BASE_URL: URL against which tests should be run. Remember that it has to be
accessible from the Docker container (for example, localhost does not work)

• APPLICATION_USERNAME: (optional) Username for basic authentication to your application.

• APPLICATION_PASSWORD: (optional) Password for basic authentication to your application.

Example of Usage

In this section, we explore a simple MVC application. To get started, clone the following git
repository and cd to the resulting directory, by running the following commands:

$ git clone https://github.com/spring-cloud-samples/spring-cloud-contract-nodejs
$ cd bookstore

The contracts are available in the /contracts folder.

Since we want to run tests, we can run the following command:

$ npm test

However, for learning purposes, we split it into pieces, as follows:

Stop docker infra (nodejs, artifactory)
$./stop_infra.sh
Start docker infra (nodejs, artifactory)
$./setup_infra.sh

Kill & Run app
$ pkill -f "node app"
$ nohup node app &

Prepare environment variables
$ SC_CONTRACT_DOCKER_VERSION="..."
$ APP_IP="192.168.0.100"
$ APP_PORT="3000"
$ ARTIFACTORY_PORT="8081"
$ APPLICATION_BASE_URL="http://${APP_IP}:${APP_PORT}"
$ ARTIFACTORY_URL="http://${APP_IP}:${ARTIFACTORY_PORT}/artifactory/libs-release-
local"
$ CURRENT_DIR="$(pwd)"
$ CURRENT_FOLDER_NAME=${PWD##*/}
$ PROJECT_VERSION="0.0.1.RELEASE"

Execute contract tests
$ docker run --rm -e "APPLICATION_BASE_URL=${APPLICATION_BASE_URL}" -e
"PUBLISH_ARTIFACTS=true" -e "PROJECT_NAME=${CURRENT_FOLDER_NAME}" -e
"REPO_WITH_BINARIES_URL=${ARTIFACTORY_URL}" -e
"PROJECT_VERSION=${PROJECT_VERSION}" -v "${CURRENT_DIR}/contracts/:/contracts:ro"
-v "${CURRENT_DIR}/node_modules/spring-cloud-contract/output:/spring-cloud-
contract-output/" springcloud/spring-cloud-
contract:"${SC_CONTRACT_DOCKER_VERSION}"

Kill app
$ pkill -f "node app"

Through bash scripts, the following happens:

• The infrastructure (MongoDb and Artifactory) is set up. In a real-life scenario, you would run
the NodeJS application with a mocked database. In this example, we want to show how we can
benefit from Spring Cloud Contract in very little time.

• Due to those constraints, the contracts also represent the stateful situation.

◦ The first request is a POST that causes data to get inserted to the database.

◦ The second request is a GET that returns a list of data with 1 previously inserted element.

• The NodeJS application is started (on port 3000).

• The contract tests are generated through Docker, and tests are run against the running
application.

◦ The contracts are taken from /contracts folder.

◦ The output of the test execution is available under node_modules/spring-cloud-

contract/output.

• The stubs are uploaded to Artifactory. You can find them in localhost:8081/artifactory/libs-
release-local/com/example/bookstore/0.0.1.RELEASE/ . The stubs are at localhost:8081/
artifactory/libs-release-local/com/example/bookstore/0.0.1.RELEASE/bookstore-0.0.1.RELEASE-
stubs.jar.

14.6.3. Running Stubs on the Consumer Side

This section describes how to use Docker on the consumer side to fetch and run stubs.

We publish a spring-cloud/spring-cloud-contract-stub-runner Docker image that starts the
standalone version of Stub Runner.

Environment Variables

You can run the docker image and pass any of the Common Properties for JUnit and Spring as
environment variables. The convention is that all the letters should be upper case. The dot (.)
should be replaced with underscore (_) characters. For example, the stubrunner.repositoryRoot
property should be represented as a STUBRUNNER_REPOSITORY_ROOT environment variable.

Example of Usage

We want to use the stubs created in this [docker-server-side] step. Assume that we want to run the
stubs on port 9876. You can see the NodeJS code by cloning the repository and changing to the
directory indicated in the following commands:

$ git clone https://github.com/spring-cloud-samples/spring-cloud-contract-nodejs
$ cd bookstore

Now we can run the Stub Runner Boot application with the stubs, by running the following
commands:

http://localhost:8081/artifactory/libs-release-local/com/example/bookstore/0.0.1.RELEASE/
http://localhost:8081/artifactory/libs-release-local/com/example/bookstore/0.0.1.RELEASE/
http://localhost:8081/artifactory/libs-release-local/com/example/bookstore/0.0.1.RELEASE/bookstore-0.0.1.RELEASE-stubs.jar
http://localhost:8081/artifactory/libs-release-local/com/example/bookstore/0.0.1.RELEASE/bookstore-0.0.1.RELEASE-stubs.jar
http://localhost:8081/artifactory/libs-release-local/com/example/bookstore/0.0.1.RELEASE/bookstore-0.0.1.RELEASE-stubs.jar
project-features.pdf#features-stub-runner-common-properties-junit-spring

Provide the Spring Cloud Contract Docker version
$ SC_CONTRACT_DOCKER_VERSION="..."
The IP at which the app is running and Docker container can reach it
$ APP_IP="192.168.0.100"
Spring Cloud Contract Stub Runner properties
$ STUBRUNNER_PORT="8083"
Stub coordinates 'groupId:artifactId:version:classifier:port'
$ STUBRUNNER_IDS="com.example:bookstore:0.0.1.RELEASE:stubs:9876"
$ STUBRUNNER_REPOSITORY_ROOT="http://${APP_IP}:8081/artifactory/libs-release-
local"
Run the docker with Stub Runner Boot
$ docker run --rm -e "STUBRUNNER_IDS=${STUBRUNNER_IDS}" -e
"STUBRUNNER_REPOSITORY_ROOT=${STUBRUNNER_REPOSITORY_ROOT}" -e
"STUBRUNNER_STUBS_MODE=REMOTE" -p "${STUBRUNNER_PORT}:${STUBRUNNER_PORT}" -p
"9876:9876" springcloud/spring-cloud-contract-stub-
runner:"${SC_CONTRACT_DOCKER_VERSION}"

When the preceding commands run,

• A standalone Stub Runner application gets started.

• It downloads the stub with coordinates com.example:bookstore:0.0.1.RELEASE:stubs on port 9876.

• It gets downloads from Artifactory running at 192.168.0.100:8081/artifactory/libs-release-
local.

• After a whil, Stub Runner is running on port 8083.

• The stubs are running at port 9876.

On the server side, we built a stateful stub. We can use curl to assert that the stubs are setup
properly. To do so, run the following commands:

let's execute the first request (no response is returned)
$ curl -H "Content-Type:application/json" -X POST --data '{ "title" : "Title",
"genre" : "Genre", "description" : "Description", "author" : "Author", "publisher"
: "Publisher", "pages" : 100, "image_url" :
"https://d213dhlpdb53mu.cloudfront.net/assets/pivotal-square-logo-
41418bd391196c3022f3cd9f3959b3f6d7764c47873d858583384e759c7db435.svg", "buy_url" :
"https://pivotal.io" }' http://localhost:9876/api/books
Now time for the second request
$ curl -X GET http://localhost:9876/api/books
You will receive contents of the JSON

If you want use the stubs that you have built locally, on your host, you should set
the -e STUBRUNNER_STUBS_MODE=LOCAL environment variable and mount the volume
of your local m2 (-v "${HOME}/.m2/:/root/.m2:ro").

http://192.168.0.100:8081/artifactory/libs-release-local
http://192.168.0.100:8081/artifactory/libs-release-local
http://192.168.0.100:8081/artifactory/libs-release-local
http://192.168.0.100:8081/artifactory/libs-release-local
http://192.168.0.100:8081/artifactory/libs-release-local
http://192.168.0.100:8081/artifactory/libs-release-local

14.7. Spring Cloud Contract customization
In this section, we describe how to customize various parts of Spring Cloud Contract.

14.7.1. DSL Customization

 This section is valid only for the Groovy DSL

You can customize the Spring Cloud Contract Verifier by extending the DSL, as shown in the
remainder of this section.

Extending the DSL

You can provide your own functions to the DSL. The key requirement for this feature is to maintain
the static compatibility. Later in this document, you can see examples of:

• Creating a JAR with reusable classes.

• Referencing of these classes in the DSLs.

You can find the full example here.

Common JAR

The following examples show three classes that can be reused in the DSLs.

PatternUtils contains functions used by both the consumer and the producer. The following listing
shows the PatternUtils class:

https://github.com/spring-cloud-samples/spring-cloud-contract-samples

package com.example;

import java.util.regex.Pattern;

/**
 * If you want to use {@link Pattern} directly in your tests
 * then you can create a class resembling this one. It can
 * contain all the {@link Pattern} you want to use in the DSL.
 *
 * <pre>
 * {@code
 * request {
 * body(
 * [age: $(c(PatternUtils.oldEnough()))]
 *)
 * }
 * </pre>
 *
 * Notice that we're using both {@code $()} for dynamic values
 * and {@code c()} for the consumer side.
 *
 * @author Marcin Grzejszczak
 */
//tag::impl[]
public class PatternUtils {

 public static String tooYoung() {
 //remove::start[]
 return "[0-1][0-9]";
 //remove::end[return]
 }

 public static Pattern oldEnough() {
 //remove::start[]
 return Pattern.compile("[2-9][0-9]");
 //remove::end[return]
 }

 /**
 * Makes little sense but it's just an example ;)
 */
 public static Pattern ok() {
 //remove::start[]
 return Pattern.compile("OK");
 //remove::end[return]
 }
}
//end::impl[]

ConsumerUtils contains functions used by the consumer. The following listing shows the
ConsumerUtils class:

package com.example;

import org.springframework.cloud.contract.spec.internal.ClientDslProperty;

/**
 * DSL Properties passed to the DSL from the consumer's perspective.
 * That means that on the input side {@code Request} for HTTP
 * or {@code Input} for messaging you can have a regular expression.
 * On the {@code Response} for HTTP or {@code Output} for messaging
 * you have to have a concrete value.
 *
 * @author Marcin Grzejszczak
 */
//tag::impl[]
public class ConsumerUtils {
 /**
 * Consumer side property. By using the {@link ClientDslProperty}
 * you can omit most of boilerplate code from the perspective
 * of dynamic values. Example
 *
 * <pre>
 * {@code
 * request {
 * body(
 * [age: $(ConsumerUtils.oldEnough())]
 *)
 * }
 * </pre>
 *
 * That way it's in the implementation that we decide what value we will pass
to the consumer
 * and which one to the producer.
 *
 * @author Marcin Grzejszczak
 */
 public static ClientDslProperty oldEnough() {
 //remove::start[]
 // this example is not the best one and
 // theoretically you could just pass the regex instead of
`ServerDslProperty` but
 // it's just to show some new tricks :)
 return new ClientDslProperty(PatternUtils.oldEnough(), 40);
 //remove::end[return]
 }

}
//end::impl[]

ProducerUtils contains functions used by the producer. The following listing shows the
ProducerUtils class:

package com.example;

import org.springframework.cloud.contract.spec.internal.ServerDslProperty;

/**
 * DSL Properties passed to the DSL from the producer's perspective.
 * That means that on the input side {@code Request} for HTTP
 * or {@code Input} for messaging you have to have a concrete value.
 * On the {@code Response} for HTTP or {@code Output} for messaging
 * you can have a regular expression.
 *
 * @author Marcin Grzejszczak
 */
//tag::impl[]
public class ProducerUtils {

 /**
 * Producer side property. By using the {@link ProducerUtils}
 * you can omit most of boilerplate code from the perspective
 * of dynamic values. Example
 *
 * <pre>
 * {@code
 * response {
 * body(
 * [status: $(ProducerUtils.ok())]
 *)
 * }
 * </pre>
 *
 * That way it's in the implementation that we decide what value we will pass
to the consumer
 * and which one to the producer.
 */
 public static ServerDslProperty ok() {
 // this example is not the best one and
 // theoretically you could just pass the regex instead of
`ServerDslProperty` but
 // it's just to show some new tricks :)
 return new ServerDslProperty(PatternUtils.ok(), "OK");
 }
}
//end::impl[]

Adding a Test Dependency in the Project’s Dependencies

To add a test dependency in the project’s dependencies, you must first add the common jar
dependency as a test dependency. Because your contracts files are available on the test resources
path, the common jar classes automatically become visible in your Groovy files. The following
examples show how to test the dependency:

Maven

<dependency>
 <groupId>com.example</groupId>
 <artifactId>beer-common</artifactId>
 <version>${project.version}</version>
 <scope>test</scope>
</dependency>

Gradle

testCompile("com.example:beer-common:0.0.1.BUILD-SNAPSHOT")

Adding a Test Dependency in the Plugin’s Dependencies

Now, you must add the dependency for the plugin to reuse at runtime, as the following example
shows:

Maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <packageWithBaseClasses>com.example</packageWithBaseClasses>
 <baseClassMappings>
 <baseClassMapping>
 <contractPackageRegex>.*intoxication.*</contractPackageRegex>

<baseClassFQN>com.example.intoxication.BeerIntoxicationBase</baseClassFQN>
 </baseClassMapping>
 </baseClassMappings>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>com.example</groupId>
 <artifactId>beer-common</artifactId>
 <version>${project.version}</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>
</plugin>

Gradle

classpath "com.example:beer-common:0.0.1.BUILD-SNAPSHOT"

Referencing Classes in DSLs

You can now reference your classes in your DSL, as the following example shows:

package contracts.beer.rest

import com.example.ConsumerUtils
import com.example.ProducerUtils
import org.springframework.cloud.contract.spec.Contract

Contract.make {
 description("""
Represents a successful scenario of getting a beer

```
given:
    client is old enough
when:
    he applies for a beer
then:
    we'll grant him the beer
```

""")
 request {
 method 'POST'
 url '/check'
 body(
 age: $(ConsumerUtils.oldEnough())
)
 headers {
 contentType(applicationJson())
 }
 }
 response {
 status 200
 body("""
 {
 "status": "${value(ProducerUtils.ok())}"
 }
 """)
 headers {
 contentType(applicationJson())
 }
 }
}

You can set the Spring Cloud Contract plugin up by setting convertToYaml to true.
That way, you do NOT have to add the dependency with the extended functionality
to the consumer side, since the consumer side uses YAML contracts instead of
Groovy contracts.

14.7.2. WireMock Customization

In this section, we show how to customize the way you work with WireMock.

Registering Your Own WireMock Extension

WireMock lets you register custom extensions. By default, Spring Cloud Contract registers the
transformer, which lets you reference a request from a response. If you want to provide your own
extensions, you can register an implementation of the
org.springframework.cloud.contract.verifier.dsl.wiremock.WireMockExtensions interface. Since we
use the spring.factories extension approach, you can create an entry in META-INF/spring.factories
file similar to the following:

org.springframework.cloud.contract.verifier.dsl.wiremock.WireMockExtensions=\
org.springframework.cloud.contract.stubrunner.provider.wiremock.TestWireMockExtens
ions
org.springframework.cloud.contract.spec.ContractConverter=\
org.springframework.cloud.contract.stubrunner.TestCustomYamlContractConverter

The following example shows a custom extension:

https://wiremock.org

Example 7. TestWireMockExtensions.groovy

/*
 * Copyright 2013-2020 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.springframework.cloud.contract.verifier.dsl.wiremock

import com.github.tomakehurst.wiremock.extension.Extension

/**
 * Extension that registers the default transformer and the custom one
 */
class TestWireMockExtensions implements WireMockExtensions {
 @Override
 List<Extension> extensions() {
 return [
 new DefaultResponseTransformer(),
 new CustomExtension()
]
 }
}

class CustomExtension implements Extension {

 @Override
 String getName() {
 return "foo-transformer"
 }
}

Remember to override the applyGlobally() method and set it to false if you want
the transformation to be applied only for a mapping that explicitly requires it.

Customization of WireMock Configuration

You can register a bean of type
org.springframework.cloud.contract.wiremock.WireMockConfigurationCustomizer to customize the
WireMock configuration (for example, to add custom transformers). The following example shows
how to do so:

 @Bean
 WireMockConfigurationCustomizer optionsCustomizer() {
 return new WireMockConfigurationCustomizer() {
 @Override
 public void customize(WireMockConfiguration options) {
// perform your customization here
 }
 };
 }

14.7.3. Using the Pluggable Architecture

You may encounter cases where your contracts have been defined in other formats, such as YAML,
RAML, or PACT. In those cases, you still want to benefit from the automatic generation of tests and
stubs. You can add your own implementation for generating both tests and stubs. Also, you can
customize the way tests are generated (for example, you can generate tests for other languages) and
the way stubs are generated (for example, you can generate stubs for other HTTP server
implementations).

Custom Contract Converter

The ContractConverter interface lets you register your own implementation of a contract structure
converter. The following code listing shows the ContractConverter interface:

package org.springframework.cloud.contract.spec;

import java.io.File;
import java.util.Collection;

/**
 * Converter to be used to convert FROM {@link File} TO {@link Contract} and from
 * {@link Contract} to {@code T}.
 *
 * @param <T> - type to which we want to convert the contract
 * @author Marcin Grzejszczak
 * @since 1.1.0
 */
public interface ContractConverter<T> extends ContractStorer<T> {

 /**
 * Should this file be accepted by the converter. Can use the file extension
to check
 * if the conversion is possible.
 * @param file - file to be considered for conversion
 * @return - {@code true} if the given implementation can convert the file
 */
 boolean isAccepted(File file);

 /**
 * Converts the given {@link File} to its {@link Contract} representation.
 * @param file - file to convert
 * @return - {@link Contract} representation of the file
 */
 Collection<Contract> convertFrom(File file);

 /**
 * Converts the given {@link Contract} to a {@link T} representation.
 * @param contract - the parsed contract
 * @return - {@link T} the type to which we do the conversion
 */
 T convertTo(Collection<Contract> contract);

}

Your implementation must define the condition on which it should start the conversion. Also, you
must define how to perform that conversion in both directions.

Once you create your implementation, you must create a /META-

INF/spring.factories file in which you provide the fully qualified name of your
implementation.

The following example shows a typical spring.factories file:

org.springframework.cloud.contract.spec.ContractConverter=\
org.springframework.cloud.contract.verifier.converter.YamlContractConverter

Using the Custom Test Generator

If you want to generate tests for languages other than Java or you are not happy with the way the
verifier builds Java tests, you can register your own implementation.

The SingleTestGenerator interface lets you register your own implementation. The following code
listing shows the SingleTestGenerator interface:

package org.springframework.cloud.contract.verifier.builder;

import java.nio.file.Path;
import java.util.Collection;

import
org.springframework.cloud.contract.verifier.config.ContractVerifierConfigPropertie
s;
import org.springframework.cloud.contract.verifier.file.ContractMetadata;

/**
 * Builds a single test.
 *
 * @since 1.1.0
 */
public interface SingleTestGenerator {

 /**
 * Creates contents of a single test class in which all test scenarios from
the
 * contract metadata should be placed.
 * @param properties - properties passed to the plugin
 * @param listOfFiles - list of parsed contracts with additional metadata
 * @param className - the name of the generated test class
 * @param classPackage - the name of the package in which the test class
should be
 * stored
 * @param includedDirectoryRelativePath - relative path to the included
directory
 * @return contents of a single test class
 * @deprecated use{@link
SingleTestGenerator#buildClass(ContractVerifierConfigProperties, Collection,
String, GeneratedClassData)}
 */

 @Deprecated
 String buildClass(ContractVerifierConfigProperties properties,
 Collection<ContractMetadata> listOfFiles, String className,
 String classPackage, String includedDirectoryRelativePath);

 /**
 * Creates contents of a single test class in which all test scenarios from
the
 * contract metadata should be placed.
 * @param properties - properties passed to the plugin
 * @param listOfFiles - list of parsed contracts with additional metadata
 * @param generatedClassData - information about the generated class
 * @param includedDirectoryRelativePath - relative path to the included
directory
 * @return contents of a single test class
 */
 default String buildClass(ContractVerifierConfigProperties properties,
 Collection<ContractMetadata> listOfFiles,
 String includedDirectoryRelativePath, GeneratedClassData
generatedClassData) {
 String className = generatedClassData.className;
 String classPackage = generatedClassData.classPackage;
 String path = includedDirectoryRelativePath;
 return buildClass(properties, listOfFiles, className, classPackage, path);
 }

 /**
 * Extension that should be appended to the generated test class. E.g. {@code
.java}
 * or {@code .php}
 * @param properties - properties passed to the plugin
 */
 @Deprecated
 String fileExtension(ContractVerifierConfigProperties properties);

 class GeneratedClassData {

 public final String className;

 public final String classPackage;

 public final Path testClassPath;

 public GeneratedClassData(String className, String classPackage,
 Path testClassPath) {
 this.className = className;
 this.classPackage = classPackage;
 this.testClassPath = testClassPath;
 }

 }

}

Again, you must provide a spring.factories file, such as the one shown in the following example:

org.springframework.cloud.contract.verifier.builder.SingleTestGenerator=/
com.example.MyGenerator

Using the Custom Stub Generator

If you want to generate stubs for stub servers other than WireMock, you can plug in your own
implementation of the StubGenerator interface. The following code listing shows the StubGenerator
interface:

package org.springframework.cloud.contract.verifier.converter;

import java.util.Map;

import org.springframework.cloud.contract.spec.Contract;
import org.springframework.cloud.contract.verifier.file.ContractMetadata;

/**
 * Converts contracts into their stub representation.
 *
 * @since 1.1.0
 */
public interface StubGenerator {

 /**
 * @param fileName - file name
 * @return {@code true} if the converter can handle the file to convert it
into a
 * stub.
 */
 default boolean canHandleFileName(String fileName) {
 return fileName.endsWith(fileExtension());
 }

 /**
 * @param rootName - root name of the contract
 * @param content - metadata of the contract
 * @return the collection of converted contracts into stubs. One contract can
result
 * in multiple stubs.
 */

 Map<Contract, String> convertContents(String rootName, ContractMetadata
content);

 /**
 * @param inputFileName - name of the input file
 * @return the name of the converted stub file. If you have multiple contracts
in a
 * single file then a prefix will be added to the generated file. If you
provide the
 * {@link Contract#name} field then that field will override the generated
file name.
 *
 * Example: name of file with 2 contracts is {@code foo.groovy}, it will be
converted
 * by the implementation to {@code foo.json}. The recursive file converter
will create
 * two files {@code 0_foo.json} and {@code 1_foo.json}
 */
 String generateOutputFileNameForInput(String inputFileName);

 /**
 * Describes the file extension that this stub generator can handle.
 * @return string describing the file extension
 */
 default String fileExtension() {
 return ".json";
 }

}

Again, you must provide a spring.factories file, such as the one shown in the following example:

Stub converters
org.springframework.cloud.contract.verifier.converter.StubGenerator=\
org.springframework.cloud.contract.verifier.wiremock.DslToWireMockClientConverter

The default implementation is the WireMock stub generation.

You can provide multiple stub generator implementations. For example, from a
single DSL, you can produce both WireMock stubs and Pact files.

Using the Custom Stub Runner

If you decide to use a custom stub generation, you also need a custom way of running stubs with
your different stub provider.

Assume that you use Moco to build your stubs and that you have written a stub generator and
placed your stubs in a JAR file.

In order for Stub Runner to know how to run your stubs, you have to define a custom HTTP Stub
server implementation, which might resemble the following example:

package org.springframework.cloud.contract.stubrunner.provider.moco

import com.github.dreamhead.moco.bootstrap.arg.HttpArgs
import com.github.dreamhead.moco.runner.JsonRunner
import com.github.dreamhead.moco.runner.RunnerSetting
import groovy.transform.CompileStatic
import groovy.util.logging.Commons

import org.springframework.cloud.contract.stubrunner.HttpServerStub
import org.springframework.util.SocketUtils

@Commons
@CompileStatic
class MocoHttpServerStub implements HttpServerStub {

 private boolean started
 private JsonRunner runner
 private int port

 @Override
 int port() {
 if (!isRunning()) {
 return -1
 }
 return port
 }

 @Override
 boolean isRunning() {
 return started
 }

 @Override
 HttpServerStub start() {
 return start(SocketUtils.findAvailableTcpPort())
 }

 @Override
 HttpServerStub start(int port) {
 this.port = port
 return this
 }

 @Override

https://github.com/dreamhead/moco

 HttpServerStub stop() {
 if (!isRunning()) {
 return this
 }
 this.runner.stop()
 return this
 }

 @Override
 HttpServerStub registerMappings(Collection<File> stubFiles) {
 List<RunnerSetting> settings = stubFiles.findAll {
it.name.endsWith("json") }
 .collect {
 log.info("Trying to parse [${it.name}]")
 try {
 return
RunnerSetting.aRunnerSetting().addStream(it.newInputStream()).
 build()
 }
 catch (Exception e) {
 log.warn("Exception occurred while trying to parse file
[${it.name}]", e)
 return null
 }
 }.findAll { it }
 this.runner = JsonRunner.newJsonRunnerWithSetting(settings,
 HttpArgs.httpArgs().withPort(this.port).build())
 this.runner.run()
 this.started = true
 return this
 }

 @Override
 String registeredMappings() {
 return ""
 }

 @Override
 boolean isAccepted(File file) {
 return file.name.endsWith(".json")
 }
}

Then you can register it in your spring.factories file, as the following example shows:

org.springframework.cloud.contract.stubrunner.HttpServerStub=\
org.springframework.cloud.contract.stubrunner.provider.moco.MocoHttpServerStub

Now you can run stubs with Moco.

If you do not provide any implementation, the default (WireMock) implementation
is used. If you provide more than one, the first one on the list is used.

Using the Custom Stub Downloader

You can customize the way your stubs are downloaded by creating an implementation of the
StubDownloaderBuilder interface, as the following example shows:

package com.example;

class CustomStubDownloaderBuilder implements StubDownloaderBuilder {

 @Override
 public StubDownloader build(final StubRunnerOptions stubRunnerOptions) {
 return new StubDownloader() {
 @Override
 public Map.Entry<StubConfiguration, File> downloadAndUnpackStubJar(
 StubConfiguration config) {
 File unpackedStubs = retrieveStubs();
 return new AbstractMap.SimpleEntry<>(
 new StubConfiguration(config.getGroupId(),
config.getArtifactId(), version,
 config.getClassifier()), unpackedStubs);
 }

 File retrieveStubs() {
 // here goes your custom logic to provide a folder where all the
stubs reside
 }
}

Then you can register it in your spring.factories file, as the following example shows:

Example of a custom Stub Downloader Provider
org.springframework.cloud.contract.stubrunner.StubDownloaderBuilder=\
com.example.CustomStubDownloaderBuilder

Now you can pick a folder with the source of your stubs.

If you do not provide any implementation, the default (scanning the classpath) is
used. If you provide the stubsMode = StubRunnerProperties.StubsMode.LOCAL or
stubsMode = StubRunnerProperties.StubsMode.REMOTE, the Aether implementation is
used If you provide more than one, the first one on the list is used.

Using the SCM Stub Downloader

Whenever the repositoryRoot starts with a SCM protocol (currently, we support only git://), the
stub downloader tries to clone the repository and use it as a source of contracts to generate tests or
stubs.

Through environment variables, system properties, or properties set inside the plugin or the
contracts repository configuration, you can tweak the downloader’s behavior. The following table
describes the available properties:

Table 5. SCM Stub Downloader properties

Type of a property Name of the property Description

* git.branch (plugin prop)

*
stubrunner.properties.git.bran

ch (system prop)

*
STUBRUNNER_PROPERTIES_GIT_BRAN

CH (env prop)

master Which branch to checkout

* git.username (plugin prop)

*
stubrunner.properties.git.user

name (system prop)

*
STUBRUNNER_PROPERTIES_GIT_USER

NAME (env prop)

Git clone username

* git.password (plugin prop)

*
stubrunner.properties.git.pass

word (system prop)

*
STUBRUNNER_PROPERTIES_GIT_PASS

WORD (env prop)

Git clone password

* git.no-of-attempts (plugin
prop)

* stubrunner.properties.git.no-
of-attempts (system prop)

*
STUBRUNNER_PROPERTIES_GIT_NO_O

F_ATTEMPTS (env prop)

10 Number of attempts to push the
commits to origin

* git.wait-between-attempts
(Plugin prop)

*
stubrunner.properties.git.wait

-between-attempts (system prop)

*
STUBRUNNER_PROPERTIES_GIT_WAIT

_BETWEEN_ATTEMPTS (env prop)

1000 Number of milliseconds to wait
between attempts to push the
commits to origin

14.8. “How-to” Guides
This section provides answers to some common “how do I do that…” questions that often arise
when using Spring Cloud Contract. Its coverage is not exhaustive, but it does cover quite a lot.

If you have a specific problem that we do not cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer. Stack Overflow is also a great
place to ask new questions (please use the spring-cloud tag).

We are also more than happy to extend this section. If you want to add a “how-to”, send us a pull
request.

14.8.1. Why use Spring Cloud Contract?

Spring Cloud Contract works great in a polyglot environment. This project has a lot of really
interesting features. Quite a few of these features definitely make Spring Cloud Contract Verifier
stand out on the market of Consumer Driven Contract (CDC) tooling. The most interesting features
include the following:

• Ability to do CDC with messaging.

• Clear and easy to use, statically typed DSL.

• Ability to copy-paste your current JSON file to the contract and only edit its elements.

• Automatic generation of tests from the defined Contract.

• Stub Runner functionality: The stubs are automatically downloaded at runtime from
Nexus/Artifactory.

• Spring Cloud integration: No discovery service is needed for integration tests.

https://stackoverflow.com/tags/spring-cloud
https://github.com/spring-cloud/tree/master
https://github.com/spring-cloud/tree/master

• Spring Cloud Contract integrates with Pact and provides easy hooks to extend its functionality.

• Ability to add support for any language & framework through Docker.

14.8.2. How Can I Write Contracts in a Language Other than Groovy?

You can write a contract in YAML. See this section for more information.

We are working on allowing more ways of describing the contracts. You can check the github-issues
for more information.

14.8.3. How Can I Provide Dynamic Values to a Contract?

One of the biggest challenges related to stubs is their reusability. Only if they can be widely used
can they serve their purpose. The hard-coded values (such as dates and IDs) of request and
response elements generally make that difficult. Consider the following JSON request:

{
 "time" : "2016-10-10 20:10:15",
 "id" : "9febab1c-6f36-4a0b-88d6-3b6a6d81cd4a",
 "body" : "foo"
}

Now consider the following JSON response:

{
 "time" : "2016-10-10 21:10:15",
 "id" : "c4231e1f-3ca9-48d3-b7e7-567d55f0d051",
 "body" : "bar"
}

Imagine the pain required to set the proper value of the time field (assume that this content is
generated by the database) by changing the clock in the system or by providing stub
implementations of data providers. The same is related to the field called id. You could create a
stubbed implementation of UUID generator, but doing so makes little sense.

So, as a consumer, you want to send a request that matches any form of a time or any UUID. That
way, your system works as usual, generating data without you having to stub out anything. Assume
that, in case of the aforementioned JSON, the most important part is the body field. You can focus on
that and provide matching for other fields. In other words, you would like the stub to work as
follows:

project-features.pdf#contract-dsl
https://github.com/spring-cloud/spring-cloud/issues/

{
 "time" : "SOMETHING THAT MATCHES TIME",
 "id" : "SOMETHING THAT MATCHES UUID",
 "body" : "foo"
}

As far as the response goes, as a consumer, you need a concrete value on which you can operate.
Consequently, the following JSON is valid:

{
 "time" : "2016-10-10 21:10:15",
 "id" : "c4231e1f-3ca9-48d3-b7e7-567d55f0d051",
 "body" : "bar"
}

In the previous sections, we generated tests from contracts. So, from the producer’s side, the
situation looks much different. We parse the provided contract, and, in the test, we want to send a
real request to your endpoints. So, for the case of a producer for the request, we cannot have any
sort of matching. We need concrete values on which the producer’s backend can work.
Consequently, the following JSON would be valid:

{
 "time" : "2016-10-10 20:10:15",
 "id" : "9febab1c-6f36-4a0b-88d6-3b6a6d81cd4a",
 "body" : "foo"
}

On the other hand, from the point of view of the validity of the contract, the response does not
necessarily have to contain concrete values for time or id. Suppose you generate those on the
producer side. Again, you have to do a lot of stubbing to ensure that you always return the same
values. That is why, from the producer’s side you might want the following response:

{
 "time" : "SOMETHING THAT MATCHES TIME",
 "id" : "SOMETHING THAT MATCHES UUID",
 "body" : "bar"
}

How can you then provide a matcher for the consumer and a concrete value for the producer (and

the opposite at some other time)? Spring Cloud Contract lets you provide a dynamic value. That
means that it can differ for both sides of the communication.

You can read more about this in the Contract DSL section.

Read the Groovy docs related to JSON to understand how to properly structure the
request and response bodies.

14.8.4. How to Do Stubs versioning?

This section covers version of the stubs, which you can handle in a number of different ways:

• API Versioning

• JAR versioning

• Development or Production Stubs

API Versioning

What does versioning really mean? If you refer to the API version, there are different approaches:

• Use hypermedia links and do not version your API by any means

• Pass the version through headers and URLs

We do not try to answer the question of which approach is better. You should pick whatever suits
your needs and lets you generate business value.

Assume that you do version your API. In that case, you should provide as many contracts with as
many versions as you support. You can create a subfolder for every version or append it to the
contract name — whatever suits you best.

JAR versioning

If, by versioning, you mean the version of the JAR that contains the stubs, then there are essentially
two main approaches.

Assume that you do continuous delivery and deployment, which means that you generate a new
version of the jar each time you go through the pipeline and that the jar can go to production at any
time. For example, your jar version looks like the following (because it got built on the 20.10.2016 at
20:15:21) :

1.0.0.20161020-201521-RELEASE

In that case your, generated stub jar should look like the following:

project-features.pdf#contract-dsl
https://groovy-lang.org/json.html

1.0.0.20161020-201521-RELEASE-stubs.jar

In this case, you should, inside your application.yml or @AutoConfigureStubRunner when referencing
stubs, provide the latest version of the stubs. You can do that by passing the + sign. the following
example shows how to do so:

@AutoConfigureStubRunner(ids = {"com.example:http-server-dsl:+:stubs:8080"})

If the versioning, however, is fixed (for example, 1.0.4.RELEASE or 2.1.1), you have to set the
concrete value of the jar version. The following example shows how to do so for version 2.1.1:

@AutoConfigureStubRunner(ids = {"com.example:http-server-dsl:2.1.1:stubs:8080"})

Development or Production Stubs

You can manipulate the classifier to run the tests against current the development version of the
stubs of other services or the ones that were deployed to production. If you alter your build to
deploy the stubs with the prod-stubs classifier once you reach production deployment, you can run
tests in one case with development stubs and one with production stubs.

The following example works for tests that use the development version of the stubs:

@AutoConfigureStubRunner(ids = {"com.example:http-server-dsl:+:stubs:8080"})

The following example works for tests that use the production version of stubs:

@AutoConfigureStubRunner(ids = {"com.example:http-server-dsl:+:prod-stubs:8080"})

You can also pass those values also in properties from your deployment pipeline.

14.8.5. How Can I use a Common Repository with Contracts Instead of
Storing Them with the Producer?

Another way of storing contracts, rather than having them with the producer, is to keep them in a
common place. This situation can be related to security issues (where the consumers cannot clone
the producer’s code). Also if you keep contracts in a single place, then you, as a producer, know

how many consumers you have and which consumer you may break with your local changes.

Repo Structure

Assume that we have a producer with coordinates of com.example:server and three consumers:
client1, client2, and client3. Then, in the repository with common contracts, you could have the
following setup (which you can check out here). The following listing shows such a structure:

├── com
│ └── example
│ └── server
│ ├── client1
│ │ └── expectation.groovy
│ ├── client2
│ │ └── expectation.groovy
│ ├── client3
│ │ └── expectation.groovy
│ └── pom.xml
├── mvnw
├── mvnw.cmd
├── pom.xml
└── src
 └── assembly
 └── contracts.xml

As you can see under the slash-delimited groupid/artifact id folder (com/example/server) you have
expectations of the three consumers (client1, client2, and client3). Expectations are the standard
Groovy DSL contract files, as described throughout this documentation. This repository has to
produce a JAR file that maps one-to-one to the contents of the repository.

The following example shows a pom.xml inside the server folder:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>
 <artifactId>server</artifactId>
 <version>0.0.1</version>

 <name>Server Stubs</name>
 <description>POM used to install locally stubs for consumer side</description>

 <parent>

https://github.com/spring-cloud/spring-cloud-contract/tree/master/samples/standalone/contracts

 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.2.5.RELEASE</version>
 <relativePath/>
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <java.version>1.8</java.version>
 <spring-cloud-contract.version>2.2.3.BUILD-SNAPSHOT</spring-cloud-
contract.version>
 <spring-cloud-release.version>Hoxton.BUILD-SNAPSHOT</spring-cloud-
release.version>
 <excludeBuildFolders>true</excludeBuildFolders>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud-release.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <!-- By default it would search under src/test/resources/ -->
 <contractsDirectory>${project.basedir}</contractsDirectory>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <repositories>
 <repository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>

 </repository>
 <repository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>spring-releases</id>
 <name>Spring Releases</name>
 <url>https://repo.spring.io/release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>spring-releases</id>
 <name>Spring Releases</name>
 <url>https://repo.spring.io/release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>

</project>

There are no dependencies other than the Spring Cloud Contract Maven Plugin. Those pom files are
necessary for the consumer side to run mvn clean install -DskipTests to locally install the stubs of
the producer project.

The pom.xml in the root folder can look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.standalone</groupId>
 <artifactId>contracts</artifactId>
 <version>0.0.1</version>

 <name>Contracts</name>
 <description>Contains all the Spring Cloud Contracts, well, contracts. JAR
used by the
 producers to generate tests and stubs
 </description>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <id>contracts</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <attach>true</attach>

<descriptor>${basedir}/src/assembly/contracts.xml</descriptor>
 <!-- If you want an explicit classifier remove the
following line -->
 <appendAssemblyId>false</appendAssemblyId>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

</project>

It uses the assembly plugin to build the JAR with all the contracts. The following example shows
such a setup:

<assembly xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.3"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.3 https://maven.apache.org/xsd/assembly-1.1.3.xsd">
 <id>project</id>
 <formats>
 <format>jar</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <fileSet>
 <directory>${project.basedir}</directory>
 <outputDirectory>/</outputDirectory>
 <useDefaultExcludes>true</useDefaultExcludes>
 <excludes>
 <exclude>**/${project.build.directory}/**</exclude>
 <exclude>mvnw</exclude>
 <exclude>mvnw.cmd</exclude>
 <exclude>.mvn/**</exclude>
 <exclude>src/**</exclude>
 </excludes>
 </fileSet>
 </fileSets>
</assembly>

Workflow

The workflow assumes that Spring Cloud Contract is set up both on the consumer and on the
producer side. There is also the proper plugin setup in the common repository with contracts. The
CI jobs are set for a common repository to build an artifact of all contracts and upload it to
Nexus/Artifactory. The following image shows the UML for this workflow:

[how to common repo] | how-to-common-repo.png

Consumer

When the consumer wants to work on the contracts offline, instead of cloning the producer code,
the consumer team clones the common repository, goes to the required producer’s folder (for
example, com/example/server) and runs mvn clean install -DskipTests to locally install the stubs
converted from the contracts.

 You need to have Maven installed locally

https://maven.apache.org/download.cgi

Producer

As a producer, you can to alter the Spring Cloud Contract Verifier to provide the URL and the
dependency of the JAR that contains the contracts, as follows:

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <configuration>
 <contractsMode>REMOTE</contractsMode>
 <contractsRepositoryUrl>
 https://link/to/your/nexus/or/artifactory/or/sth
 </contractsRepositoryUrl>
 <contractDependency>
 <groupId>com.example.standalone</groupId>
 <artifactId>contracts</artifactId>
 </contractDependency>
 </configuration>
</plugin>

With this setup, the JAR with a groupid of com.example.standalone and artifactid contracts is
downloaded from link/to/your/nexus/or/artifactory/or/sth. It is then unpacked in a local
temporary folder, and the contracts present in com/example/server are picked as the ones used to
generate the tests and the stubs. Due to this convention, the producer team can know which
consumer teams will be broken when some incompatible changes are made.

The rest of the flow looks the same.

How Can I Define Messaging Contracts per Topic Rather than per Producer?

To avoid messaging contracts duplication in the common repository, when a few producers write
messages to one topic, we could create a structure in which the REST contracts are placed in a
folder per producer and messaging contracts are placed in the folder per topic.

For Maven Projects

To make it possible to work on the producer side, we should specify an inclusion pattern for
filtering common repository jar files by messaging topics we are interested in. The includedFiles
property of the Maven Spring Cloud Contract plugin lets us do so. Also, contractsPath need to be
specified, since the default path would be the common repository groupid/artifactid. The following
example shows a Maven plugin for Spring Cloud Contract:

https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth
https://link/to/your/nexus/or/artifactory/or/sth

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <configuration>
 <contractsMode>REMOTE</contractsMode>

<contractsRepositoryUrl>https://link/to/your/nexus/or/artifactory/or/sth</contract
sRepositoryUrl>
 <contractDependency>
 <groupId>com.example</groupId>
 <artifactId>common-repo-with-contracts</artifactId>
 <version>+</version>
 </contractDependency>
 <contractsPath>/</contractsPath>
 <baseClassMappings>
 <baseClassMapping>
 <contractPackageRegex>.*messaging.*</contractPackageRegex>
 <baseClassFQN>com.example.services.MessagingBase</baseClassFQN>
 </baseClassMapping>
 <baseClassMapping>
 <contractPackageRegex>.*rest.*</contractPackageRegex>
 <baseClassFQN>com.example.services.TestBase</baseClassFQN>
 </baseClassMapping>
 </baseClassMappings>
 <includedFiles>
 <includedFile>**/${project.artifactId}/**</includedFile>
 <includedFile>**/${first-topic}/**</includedFile>
 <includedFile>**/${second-topic}/**</includedFile>
 </includedFiles>
 </configuration>
</plugin>

Many of the values in the preceding Maven plugin can be changed. We included it
for illustration purposes rather than trying to provide a “typical” example.

For Gradle Projects

To work with a Gradle project:

1. Add a custom configuration for the common repository dependency, as follows:

ext {
 contractsGroupId = "com.example"
 contractsArtifactId = "common-repo"
 contractsVersion = "1.2.3"
}

configurations {
 contracts {
 transitive = false
 }
}

2. Add the common repository dependency to your classpath, as follows:

dependencies {
 contracts "${contractsGroupId}:${contractsArtifactId}:${contractsVersion}"
 testCompile
"${contractsGroupId}:${contractsArtifactId}:${contractsVersion}"
}

3. Download the dependency to an appropriate folder, as follows:

task getContracts(type: Copy) {
 from configurations.contracts
 into new File(project.buildDir, "downloadedContracts")
}

4. Unzip the JAR, as follows:

task unzipContracts(type: Copy) {
 def zipFile = new File(project.buildDir,
"downloadedContracts/${contractsArtifactId}-${contractsVersion}.jar")
 def outputDir = file("${buildDir}/unpackedContracts")

 from zipTree(zipFile)
 into outputDir
}

5. Cleanup unused contracts, as follows:

task deleteUnwantedContracts(type: Delete) {
 delete fileTree(dir: "${buildDir}/unpackedContracts",
 include: "**/*",
 excludes: [
 "**/${project.name}/**"",
 "**/${first-topic}/**",
 "**/${second-topic}/**"])
}

6. Create task dependencies, as follows:

unzipContracts.dependsOn("getContracts")
deleteUnwantedContracts.dependsOn("unzipContracts")
build.dependsOn("deleteUnwantedContracts")

7. Configure the plugin by specifying the directory that contains the contracts, by setting the
contractsDslDir property, as follows:

contracts {
 contractsDslDir = new File("${buildDir}/unpackedContracts")
}

14.8.6. How Can I Use Git as the Storage for Contracts and Stubs?

In the polyglot world, there are languages that do not use binary storages, as Artifactory or Nexus
do. Starting from Spring Cloud Contract version 2.0.0, we provide mechanisms to store contracts
and stubs in a SCM (Source Control Management) repository. Currently, the only supported SCM is
Git.

The repository would have to have the following setup (which you can checkout from here):

https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x/contracts_git/

.
└── META-INF
 └── com.example
 └── beer-api-producer-git
 └── 0.0.1-SNAPSHOT
 ├── contracts
 │ └── beer-api-consumer
 │ ├── messaging
 │ │ ├── shouldSendAcceptedVerification.groovy
 │ │ └── shouldSendRejectedVerification.groovy
 │ └── rest
 │ ├── shouldGrantABeerIfOldEnough.groovy
 │ └── shouldRejectABeerIfTooYoung.groovy
 └── mappings
 └── beer-api-consumer
 └── rest
 ├── shouldGrantABeerIfOldEnough.json
 └── shouldRejectABeerIfTooYoung.json

Under the META-INF folder:

• We group applications by groupId (such as com.example).

• Each application is represented by its artifactId (for example, beer-api-producer-git).

• Next, each application is organized by its version (such as 0.0.1-SNAPSHOT). Starting from Spring
Cloud Contract version 2.1.0, you can specify the versions as follows (assuming that your
versions follow semantic versioning):

◦ + or latest: To find the latest version of your stubs (assuming that the snapshots are always
the latest artifact for a given revision number). That means:

▪ If you have 1.0.0.RELEASE, 2.0.0.BUILD-SNAPSHOT, and 2.0.0.RELEASE, we assume that the
latest is 2.0.0.BUILD-SNAPSHOT.

▪ If you have 1.0.0.RELEASE and 2.0.0.RELEASE, we assume that the latest is 2.0.0.RELEASE.

▪ If you have a version called latest or +, we will pick that folder.

◦ release: To find the latest release version of your stubs. That means:

▪ If you have 1.0.0.RELEASE, 2.0.0.BUILD-SNAPSHOT, and 2.0.0.RELEASE we assume that the
latest is 2.0.0.RELEASE.

▪ If you have a version called release, we pick that folder.

Finally, there are two folders:

• contracts: The good practice is to store the contracts required by each consumer in the folder
with the consumer name (such as beer-api-consumer). That way, you can use the stubs-per-
consumer feature. Further directory structure is arbitrary.

• mappings: The Maven or Gradle Spring Cloud Contract plugins push the stub server mappings in

this folder. On the consumer side, Stub Runner scans this folder to start stub servers with stub
definitions. The folder structure is a copy of the one created in the contracts subfolder.

Protocol Convention

To control the type and location of the source of contracts (whether binary storage or an SCM
repository), you can use the protocol in the URL of the repository. Spring Cloud Contract iterates
over registered protocol resolvers and tries to fetch the contracts (by using a plugin) or stubs (from
Stub Runner).

For the SCM functionality, currently, we support the Git repository. To use it, in the property where
the repository URL needs to be placed, you have to prefix the connection URL with git://. The
following listing shows some examples:

git://file:///foo/bar
git://https://github.com/spring-cloud-samples/spring-cloud-contract-nodejs-
contracts-git.git
git://git@github.com:spring-cloud-samples/spring-cloud-contract-nodejs-contracts-
git.git

Producer

For the producer, to use the SCM (Source Control Management) approach, we can reuse the same
mechanism we use for external contracts. We route Spring Cloud Contract to use the SCM
implementation from the URL that starts with the git:// protocol.

You have to manually add the pushStubsToScm goal in Maven or execute (bind) the
pushStubsToScm task in Gradle. We do not push stubs to the origin of your git
repository.

The following listing includes the relevant parts both Maven and Gradle build files:

maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <!-- Base class mappings etc. -->

 <!-- We want to pick contracts from a Git repository -->
 <contractsRepositoryUrl>git://https://github.com/spring-cloud-
samples/spring-cloud-contract-nodejs-contracts-git.git</contractsRepositoryUrl>

 <!-- We reuse the contract dependency section to set up the path
 to the folder that contains the contract definitions. In our case the
 path will be /groupId/artifactId/version/contracts -->
 <contractDependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>${project.artifactId}</artifactId>
 <version>${project.version}</version>
 </contractDependency>

 <!-- The contracts mode can't be classpath -->
 <contractsMode>REMOTE</contractsMode>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <!-- By default we will not push the stubs back to SCM,
 you have to explicitly add it as a goal -->
 <goal>pushStubsToScm</goal>
 </goals>
 </execution>
 </executions>
</plugin>

gradle

contracts {
 // We want to pick contracts from a Git repository
 contractDependency {
 stringNotation = "${project.group}:${project.name}:${project.version}"
 }
 /*
 We reuse the contract dependency section to set up the path
 to the folder that contains the contract definitions. In our case the
 path will be /groupId/artifactId/version/contracts
 */
 contractRepository {
 repositoryUrl = "git://https://github.com/spring-cloud-samples/spring-
cloud-contract-nodejs-contracts-git.git"
 }
 // The mode can't be classpath
 contractsMode = "REMOTE"
 // Base class mappings etc.
}

/*
In this scenario we want to publish stubs to SCM whenever
the `publish` task is executed
*/
publish.dependsOn("publishStubsToScm")

It is also possible to further customise the publishStubsToScm gradle task. In the following
example, the task is customised to pick contracts from a local git repository:

gradle

publishStubsToScm {
 // We want to modify the default set up of the plugin when publish stubs to
scm is called
 // We want to pick contracts from a Git repository
 contractDependency {
 stringNotation = "${project.group}:${project.name}:${project.version}"
 }
 /*
 We reuse the contract dependency section to set up the path
 to the folder that contains the contract definitions. In our case the
 path will be /groupId/artifactId/version/contracts
 */
 contractRepository {
 repositoryUrl = "git://file://${new File(project.rootDir,
"../target")}/contract_empty_git/"
 }
 // We set the contracts mode to `LOCAL`
 contractsMode = "LOCAL"
 }

IMPORTANT

Starting with 2.3.0.RELEASE the customize{} closure previously used for the
publishStubsToScm customization is no longer available. The settings should be applied
directly within the publishStubsToScm closure as in the example above.

With such a setup:

• A git project is cloned to a temporary directory

• The SCM stub downloader goes to META-INF/groupId/artifactId/version/contracts folder to find
contracts. For example, for com.example:foo:1.0.0, the path would be META-

INF/com.example/foo/1.0.0/contracts.

• Tests are generated from the contracts.

• Stubs are created from the contracts.

• Once the tests pass, the stubs are committed in the cloned repository.

• Finally, a push is sent to that repo’s origin.

Producer with Contracts Stored Locally

Another option to use the SCM as the destination for stubs and contracts is to store the contracts
locally, with the producer, and only push the contracts and the stubs to SCM. The following listing
shows the setup required to achieve this with Maven and Gradle:

maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <!-- In the default configuration, we want to use the contracts stored locally
-->
 <configuration>
 <baseClassMappings>
 <baseClassMapping>
 <contractPackageRegex>.*messaging.*</contractPackageRegex>
 <baseClassFQN>com.example.BeerMessagingBase</baseClassFQN>
 </baseClassMapping>
 <baseClassMapping>
 <contractPackageRegex>.*rest.*</contractPackageRegex>
 <baseClassFQN>com.example.BeerRestBase</baseClassFQN>
 </baseClassMapping>
 </baseClassMappings>
 <basePackageForTests>com.example</basePackageForTests>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <!-- By default we will not push the stubs back to SCM,
 you have to explicitly add it as a goal -->
 <goal>pushStubsToScm</goal>
 </goals>
 <configuration>
 <!-- We want to pick contracts from a Git repository -->

<contractsRepositoryUrl>git://file://${env.ROOT}/target/contract_empty_git/
 </contractsRepositoryUrl>
 <!-- Example of URL via git protocol -->
 <!--<contractsRepositoryUrl>git://git@github.com:spring-cloud-
samples/spring-cloud-contract-samples.git</contractsRepositoryUrl>-->
 <!-- Example of URL via http protocol -->
 <!--<contractsRepositoryUrl>git://https://github.com/spring-cloud-
samples/spring-cloud-contract-samples.git</contractsRepositoryUrl>-->
 <!-- We reuse the contract dependency section to set up the path
 to the folder that contains the contract definitions. In our case
the
 path will be /groupId/artifactId/version/contracts -->
 <contractDependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>${project.artifactId}</artifactId>
 <version>${project.version}</version>
 </contractDependency>
 <!-- The mode can't be classpath -->
 <contractsMode>LOCAL</contractsMode>
 </configuration>

 </execution>
 </executions>
</plugin>

gradle

contracts {
 // Base package for generated tests
 basePackageForTests = "com.example"
 baseClassMappings {
 baseClassMapping(".*messaging.*", "com.example.BeerMessagingBase")
 baseClassMapping(".*rest.*", "com.example.BeerRestBase")
 }
}

/*
In this scenario we want to publish stubs to SCM whenever
the `publish` task is executed
*/
publishStubsToScm {
 // We want to modify the default set up of the plugin when publish stubs to
scm is called
 customize {
 // We want to pick contracts from a Git repository
 contractDependency {
 stringNotation = "${project.group}:${project.name}:${project.version}"
 }
 /*
 We reuse the contract dependency section to set up the path
 to the folder that contains the contract definitions. In our case the
 path will be /groupId/artifactId/version/contracts
 */
 contractRepository {
 repositoryUrl = "git://file://${new File(project.rootDir,
"../target")}/contract_empty_git/"
 }
 // The mode can't be classpath
 contractsMode = "LOCAL"
 }
}

publish.dependsOn("publishStubsToScm")
publishToMavenLocal.dependsOn("publishStubsToScm")

With such a setup:

• Contracts from the default src/test/resources/contracts directory are picked.

• Tests are generated from the contracts.

• Stubs are created from the contracts.

• Once the tests pass:

◦ The git project is cloned to a temporary directory.

◦ The stubs and contracts are committed in the cloned repository.

• Finally, a push is done to that repository’s origin.

Keeping Contracts with the Producer and Stubs in an External Repository

You can also keep the contracts in the producer repository but keep the stubs in an external git
repository. This is most useful when you want to use the base consumer-producer collaboration
flow but cannot use an artifact repository to store the stubs.

To do so, use the usual producer setup and then add the pushStubsToScm goal and set
contractsRepositoryUrl to the repository where you want to keep the stubs.

Consumer

On the consumer side, when passing the repositoryRoot parameter, either from the
@AutoConfigureStubRunner annotation, the JUnit rule, JUnit 5 extension, or properties, you can pass
the URL of the SCM repository, prefixed with the git:// protocol. The following example shows how
to do so:

@AutoConfigureStubRunner(
 stubsMode="REMOTE",
 repositoryRoot="git://https://github.com/spring-cloud-samples/spring-cloud-
contract-nodejs-contracts-git.git",
 ids="com.example:bookstore:0.0.1.RELEASE"
)

With such a setup:

• The git project is cloned to a temporary directory.

• The SCM stub downloader goes to thje META-INF/groupId/artifactId/version/ folder to find stub
definitions and contracts. For example, for com.example:foo:1.0.0, the path would be META-
INF/com.example/foo/1.0.0/.

• Stub servers are started and fed with mappings.

• Messaging definitions are read and used in the messaging tests.

14.8.7. How Can I Use the Pact Broker?

When using Pact, you can use the Pact Broker to store and share Pact definitions. Starting from
Spring Cloud Contract 2.0.0, you can fetch Pact files from the Pact Broker to generate tests and
stubs.

https://pact.io/
https://github.com/pact-foundation/pact_broker

Pact follows the consumer contract convention. That means that the consumer
creates the Pact definitions first and then shares the files with the Producer. Those
expectations are generated from the Consumer’s code and can break the Producer
if the expectations are not met.

How to Work with Pact

Spring Cloud Contract includes support for the Pact representation of contracts up until version 4.
Instead of using the DSL, you can use Pact files. In this section, we show how to add Pact support for
your project. Note, however, that not all functionality is supported. Starting with version 3, you can
combine multiple matchers for the same element; you can use matchers for the body, headers,
request and path; and you can use value generators. Spring Cloud Contract currently only supports
multiple matchers that are combined by using the AND rule logic. Next to that, the request and path
matchers are skipped during the conversion. When using a date, time, or datetime value generator
with a given format, the given format is skipped and the ISO format is used.

Pact Converter

In order to properly support the Spring Cloud Contract way of doing messaging with Pact, you have
to provide some additional meta data entries.

To define the destination to which a message gets sent, you have to set a metaData entry in the Pact
file with the sentTo key equal to the destination to which a message is to be sent (for example,
"metaData": { "sentTo": "activemq:output" }).

Pact Contract

Spring Cloud Contract can read the Pact JSON definition. You can place the file in the
src/test/resources/contracts folder. Remember to put the spring-cloud-contract-pact dependency
to your classpath. The following example shows such a Pact contract:

{
 "provider": {
 "name": "Provider"
 },
 "consumer": {
 "name": "Consumer"
 },
 "interactions": [
 {
 "description": "",
 "request": {
 "method": "PUT",
 "path": "/pactfraudcheck",
 "headers": {
 "Content-Type": "application/json"
 },
 "body": {

https://docs.pact.io/

 "clientId": "1234567890",
 "loanAmount": 99999
 },
 "generators": {
 "body": {
 "$.clientId": {
 "type": "Regex",
 "regex": "[0-9]{10}"
 }
 }
 },
 "matchingRules": {
 "header": {
 "Content-Type": {
 "matchers": [
 {
 "match": "regex",
 "regex": "application/json.*"
 }
],
 "combine": "AND"
 }
 },
 "body": {
 "$.clientId": {
 "matchers": [
 {
 "match": "regex",
 "regex": "[0-9]{10}"
 }
],
 "combine": "AND"
 }
 }
 }
 },
 "response": {
 "status": 200,
 "headers": {
 "Content-Type": "application/json"
 },
 "body": {
 "fraudCheckStatus": "FRAUD",
 "rejection.reason": "Amount too high"
 },
 "matchingRules": {
 "header": {
 "Content-Type": {
 "matchers": [
 {
 "match": "regex",

 "regex": "application/json.*"
 }
],
 "combine": "AND"
 }
 },
 "body": {
 "$.fraudCheckStatus": {
 "matchers": [
 {
 "match": "regex",
 "regex": "FRAUD"
 }
],
 "combine": "AND"
 }
 }
 }
 }
 }
],
 "metadata": {
 "pact-specification": {
 "version": "3.0.0"
 },
 "pact-jvm": {
 "version": "3.5.13"
 }
 }
}

Pact for Producers

On the producer side, you must add two additional dependencies to your plugin configuration. One
is the Spring Cloud Contract Pact support, and the other represents the current Pact version that
you use. The following listing shows how to do so for both Maven and Gradle:

Maven

Gradle

// if additional dependencies are needed e.g. for Pact
classpath "org.springframework.cloud:spring-cloud-contract-
pact:${findProperty('verifierVersion') ?: verifierVersion}"

When you execute the build of your application, a test and stub is generated. The following

example shows a test and stub that came from this process:

test

@Test
 public void validate_shouldMarkClientAsFraud() throws Exception {
 // given:
 MockMvcRequestSpecification request = given()
 .header("Content-Type", "application/vnd.fraud.v1+json")
 .body("{\"clientId\":\"1234567890\",\"loanAmount\":99999}");

 // when:
 ResponseOptions response = given().spec(request)
 .put("/fraudcheck");

 // then:
 assertThat(response.statusCode()).isEqualTo(200);
 assertThat(response.header("Content-
Type")).matches("application/vnd\\.fraud\\.v1\\+json.*");
 // and:
 DocumentContext parsedJson =
JsonPath.parse(response.getBody().asString());

assertThatJson(parsedJson).field("['rejectionReason']").isEqualTo("Amount too
high");
 // and:
 assertThat(parsedJson.read("$.fraudCheckStatus",
String.class)).matches("FRAUD");
 }

stub

{
 "id" : "996ae5ae-6834-4db6-8fac-358ca187ab62",
 "uuid" : "996ae5ae-6834-4db6-8fac-358ca187ab62",
 "request" : {
 "url" : "/fraudcheck",
 "method" : "PUT",
 "headers" : {
 "Content-Type" : {
 "matches" : "application/vnd\\.fraud\\.v1\\+json.*"
 }
 },
 "bodyPatterns" : [{
 "matchesJsonPath" : "$[?(@.['loanAmount'] = 99999)]"
 }, {
 "matchesJsonPath" : "$[?(@.clientId =~ /([0-9]{10})/)]"
 }]
 },
 "response" : {
 "status" : 200,
 "body" : "{\"fraudCheckStatus\":\"FRAUD\",\"rejectionReason\":\"Amount too
high\"}",
 "headers" : {
 "Content-Type" : "application/vnd.fraud.v1+json;charset=UTF-8"
 },
 "transformers" : ["response-template"]
 },
}

Pact for Consumers

On the consumer side, you must add two additional dependencies to your project dependencies.
One is the Spring Cloud Contract Pact support, and the other represents the current Pact version
that you use. The following listing shows how to do so for both Maven and Gradle:

Maven

Gradle

Communicating with the Pact Broker

Whenever the repositoryRoot property starts with a Pact protocol (starts with pact://), the stub
downloader tries to fetch the Pact contract definitions from the Pact Broker. Whatever is set after

pact:// is parsed as the Pact Broker URL.

By setting environment variables, system properties, or properties set inside the plugin or contracts
repository configuration, you can tweak the downloader’s behavior. The following table describes
the properties:

Table 6. Pact Stub Downloader properties

Name of a property Default Description

* pactbroker.host (plugin prop)

*
stubrunner.properties.pactbrok

er.host (system prop)

*
STUBRUNNER_PROPERTIES_PACTBROK

ER_HOST (env prop)

Host from URL passed to
repositoryRoot

The URL of the Pact Broker.

* pactbroker.port (plugin prop)

*
stubrunner.properties.pactbrok

er.port (system prop)

*
STUBRUNNER_PROPERTIES_PACTBROK

ER_PORT (env prop)

Port from URL passed to
repositoryRoot

The port of Pact Broker.

* pactbroker.protocol (plugin
prop)

*
stubrunner.properties.pactbrok

er.protocol (system prop)

*
STUBRUNNER_PROPERTIES_PACTBROK

ER_PROTOCOL (env prop)

Protocol from URL passed to
repositoryRoot

The protocol of Pact Broker.

* pactbroker.tags (plugin prop)

*
stubrunner.properties.pactbrok

er.tags (system prop)

*
STUBRUNNER_PROPERTIES_PACTBROK

ER_TAGS (env prop)

Version of the stub, or latest if
version is +

The tags that should be used to
fetch the stub.

* pactbroker.auth.scheme
(plugin prop)

*
stubrunner.properties.pactbrok

er.auth.scheme (system prop)

*
STUBRUNNER_PROPERTIES_PACTBROK

ER_AUTH_SCHEME (env prop)

Basic The kind of authentication that
should be used to connect to the
Pact Broker.

* pactbroker.auth.username
(plugin prop)

*
stubrunner.properties.pactbrok

er.auth.username (system prop)

*
STUBRUNNER_PROPERTIES_PACTBROK

ER_AUTH_USERNAME (env prop)

The username passed to
contractsRepositoryUsername

(maven) or
contractRepository.username

(gradle)

The username to use when
connecting to the Pact Broker.

* pactbroker.auth.password
(plugin prop)

*
stubrunner.properties.pactbrok

er.auth.password (system prop)

*
STUBRUNNER_PROPERTIES_PACTBROK

ER_AUTH_PASSWORD (env prop)

The password passed to
contractsRepositoryPassword

(maven) or
contractRepository.password

(gradle)

The password to use when
connecting to the Pact Broker.

* pactbroker.provider-name-
with-group-id (plugin prop)

*
stubrunner.properties.pactbrok

er.provider-name-with-group-id

(system prop)

*
STUBRUNNER_PROPERTIES_PACTBROK

ER_PROVIDER_NAME_WITH_GROUP_ID

(env prop)

false When true, the provider name
is a combination of
groupId:artifactId. If false,
only artifactId is used.

Flow: Consumer Contract approach with Pact Broker | Consumer Side

The consumer uses the Pact framework to generate Pact files. The Pact files are sent to the Pact
Broker. You can find an example of such a setup here.

https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x/consumer_pact

Flow: Consumer Contract Approach with Pact Broker on the Producer Side

For the producer to use the Pact files from the Pact Broker, we can reuse the same mechanism we
use for external contracts. We route Spring Cloud Contract to use the Pact implementation with the
URL that contains the pact:// protocol. You can pass the URL to the Pact Broker. You can find an
example of such a setup here. The following listing shows the configuration details for both Maven
and Gradle:

maven

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>${spring-cloud-contract.version}</version>
 <extensions>true</extensions>
 <configuration>
 <!-- Base class mappings etc. -->

 <!-- We want to pick contracts from a Git repository -->

<contractsRepositoryUrl>pact://http://localhost:8085</contractsRepositoryUrl>

 <!-- We reuse the contract dependency section to set up the path
 to the folder that contains the contract definitions. In our case the
 path will be /groupId/artifactId/version/contracts -->
 <contractDependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>${project.artifactId}</artifactId>
 <!-- When + is passed, a latest tag will be applied when fetching
pacts -->
 <version>+</version>
 </contractDependency>

 <!-- The contracts mode can't be classpath -->
 <contractsMode>REMOTE</contractsMode>
 </configuration>
 <!-- Don't forget to add spring-cloud-contract-pact to the classpath! -->
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-pact</artifactId>
 <version>${spring-cloud-contract.version}</version>
 </dependency>
 </dependencies>
</plugin>

https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x/producer_pact

gradle

buildscript {
 repositories {
 //...
 }

 dependencies {
 // ...
 // Don't forget to add spring-cloud-contract-pact to the classpath!
 classpath "org.springframework.cloud:spring-cloud-contract-
pact:${contractVersion}"
 }
}

contracts {
 // When + is passed, a latest tag will be applied when fetching pacts
 contractDependency {
 stringNotation = "${project.group}:${project.name}:+"
 }
 contractRepository {
 repositoryUrl = "pact://http://localhost:8085"
 }
 // The mode can't be classpath
 contractsMode = "REMOTE"
 // Base class mappings etc.
}

With such a setup:

• Pact files are downloaded from the Pact Broker.

• Spring Cloud Contract converts the Pact files into tests and stubs.

• The JAR with the stubs gets automatically created, as usual.

Flow: Producer Contract approach with Pact on the Consumer Side

In the scenario where you do not want to do the consumer contract approach (for every single
consumer, define the expectations) but you prefer to do producer contracts (the producer provides
the contracts and publishes stubs), you can use Spring Cloud Contract with the Stub Runner option.
You can find an example of such a setup here.

Remember to add the Stub Runner and Spring Cloud Contract Pact modules as test dependencies.

The following listing shows the configuration details for both Maven and Gradle:

https://github.com/spring-cloud-samples/spring-cloud-contract-samples/tree/2.2.x/consumer_pact_stubrunner

maven

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<!-- Don't forget to add spring-cloud-contract-pact to the classpath! -->
<dependencies>
 <!-- ... -->
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-stub-runner</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-pact</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

gradle

dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
 }
}

dependencies {
 //...
 testCompile("org.springframework.cloud:spring-cloud-starter-contract-stub-
runner")
 // Don't forget to add spring-cloud-contract-pact to the classpath!
 testCompile("org.springframework.cloud:spring-cloud-contract-pact")
}

Next, you can pass the URL of the Pact Broker to repositoryRoot, prefixed with pact:// protocol (for
example, pact://http://localhost:8085), as the following example shows:

@RunWith(SpringRunner.class)
@SpringBootTest
@AutoConfigureStubRunner(stubsMode = StubRunnerProperties.StubsMode.REMOTE,
 ids = "com.example:beer-api-producer-pact",
 repositoryRoot = "pact://http://localhost:8085")
public class BeerControllerTest {
 //Inject the port of the running stub
 @StubRunnerPort("beer-api-producer-pact") int producerPort;
 //...
}

With such a setup:

• Pact files are downloaded from the Pact Broker.

• Spring Cloud Contract converts the Pact files into stub definitions.

• The stub servers are started and fed with stubs.

14.8.8. How Can I Debug the Request/Response Being Sent by the Generated
Tests Client?

The generated tests all boil down to RestAssured in some form or fashion. RestAssured relies on the
Apache HttpClient. HttpClient has a facility called wire logging, which logs the entire request and
response to HttpClient. Spring Boot has a logging common application property for doing this sort
of thing. To use it, add this to your application properties, as follows:

logging.level.org.apache.http.wire=DEBUG

14.8.9. How Can I Debug the Mapping, Request, or Response Being Sent by
WireMock?

Starting from version 1.2.0, we turn on WireMock logging to info and set the WireMock notifier to
being verbose. Now you can exactly know what request was received by the WireMock server and
which matching response definition was picked.

To turn off this feature, set WireMock logging to ERROR, as follows:

logging.level.com.github.tomakehurst.wiremock=ERROR

https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/logging.html#Wire_Logging
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

14.8.10. How Can I See What Got Registered in the HTTP Server Stub?

You can use the mappingsOutputFolder property on @AutoConfigureStubRunner, StubRunnerRule, or
`StubRunnerExtension`to dump all mappings per artifact ID. Also the port at which the given stub
server was started is attached.

14.8.11. How Can I Reference Text from File?

In version 1.2.0, we added this ability. You can call a file(…) method in the DSL and provide a path
relative to where the contract lies. If you use YAML, you can use the bodyFromFile property.

14.8.12. How Can I Generate Pact, YAML, or X files from Spring Cloud
Contract Contracts?

Spring Cloud Contract comes with a ToFileContractsTransformer class that lets you dump contracts
as files for the given ContractConverter. It contains a static void main method that lets you execute
the transformer as an executable. It takes the following arguments:

• argument 1 : FQN: Fully qualified name of the ContractConverter (for example,
PactContractConverter). REQUIRED.

• argument 2 : path: Path where the dumped files should be stored. OPTIONAL — defaults to
target/converted-contracts.

• argument 3 : path: Path were the contracts should be searched for. OPTIONAL — defaults to
src/test/resources/contracts.

After executing the transformer, the Spring Cloud Contract files are processed and, depending on
the provided FQN of the ContractTransformer, the contracts are transformed to the required format
and dumped to the provided folder.

The following example shows how to configure Pact integration for both Maven and Gradle:

maven

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.6.0</version>
 <executions>
 <execution>
 <id>convert-dsl-to-pact</id>
 <phase>process-test-classes</phase>
 <configuration>
 <classpathScope>test</classpathScope>
 <mainClass>

org.springframework.cloud.contract.verifier.util.ToFileContractsTransformer
 </mainClass>
 <arguments>
 <argument>

org.springframework.cloud.contract.verifier.spec.pact.PactContractConverter
 </argument>
 <argument>${project.basedir}/target/pacts</argument>
 <argument>
 ${project.basedir}/src/test/resources/contracts
 </argument>
 </arguments>
 </configuration>
 <goals>
 <goal>java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

gradle

task convertContracts(type: JavaExec) {
 main =
"org.springframework.cloud.contract.verifier.util.ToFileContractsTransformer"
 classpath = sourceSets.test.compileClasspath

args("org.springframework.cloud.contract.verifier.spec.pact.PactContractConverter"
,
 "${project.rootDir}/build/pacts",
"${project.rootDir}/src/test/resources/contracts")
}

test.dependsOn("convertContracts")

14.8.13. How Can I Work with Transitive Dependencies?

The Spring Cloud Contract plugins add the tasks that create the stubs jar for you. One problem that
arises is that, when reusing the stubs, you can mistakenly import all of that stub’s dependencies.
When building a Maven artifact, even though you have a couple of different jars, all of them share
one pom, as the following listing shows:

├── producer-0.0.1.BUILD-20160903.075506-1-stubs.jar
├── producer-0.0.1.BUILD-20160903.075506-1-stubs.jar.sha1
├── producer-0.0.1.BUILD-20160903.075655-2-stubs.jar
├── producer-0.0.1.BUILD-20160903.075655-2-stubs.jar.sha1
├── producer-0.0.1.BUILD-SNAPSHOT.jar
├── producer-0.0.1.BUILD-SNAPSHOT.pom
├── producer-0.0.1.BUILD-SNAPSHOT-stubs.jar
├── ...
└── ...

There are three possibilities of working with those dependencies so as not to have any issues with
transitive dependencies:

• Mark all application dependencies as optional

• Create a separate artifactid for the stubs

• Exclude dependencies on the consumer side

How Can I Mark All Application Dependencies as Optional?

If, in the producer application, you mark all of your dependencies as optional, when you include the
producer stubs in another application (or when that dependency gets downloaded by Stub Runner)
then, since all of the dependencies are optional, they do not get downloaded.

How can I Create a Separate artifactid for the Stubs?

If you create a separate artifactid, you can set it up in whatever way you wish. For example, you
might decide to have no dependencies at all.

How can I Exclude Dependencies on the Consumer Side?

As a consumer, if you add the stub dependency to your classpath, you can explicitly exclude the
unwanted dependencies.

14.8.14. How can I Generate Spring REST Docs Snippets from the Contracts?

When you want to include the requests and responses of your API by using Spring REST Docs, you
only need to make some minor changes to your setup if you are using MockMvc and
RestAssuredMockMvc. To do so, include the following dependencies (if you have not already done
so):

maven

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-verifier</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.springframework.restdocs</groupId>
 <artifactId>spring-restdocs-mockmvc</artifactId>
 <optional>true</optional>
</dependency>

gradle

testImplementation 'org.springframework.cloud:spring-cloud-starter-contract-
verifier'
testImplementation 'org.springframework.restdocs:spring-restdocs-mockmvc'

Next, you need to make some changes to your base class. The following examples use WebAppContext
and the standalone option with RestAssured:

WebAppContext

package com.example.fraud;

import io.restassured.module.mockmvc.RestAssuredMockMvc;
import org.junit.Before;
import org.junit.Rule;
import org.junit.rules.TestName;
import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.restdocs.JUnitRestDocumentation;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;
import org.springframework.web.context.WebApplicationContext;

import static
org.springframework.restdocs.mockmvc.MockMvcRestDocumentation.document;
import static
org.springframework.restdocs.mockmvc.MockMvcRestDocumentation.documentationConfigu
ration;

@RunWith(SpringRunner.class)
@SpringBootTest(classes = Application.class)

public abstract class FraudBaseWithWebAppSetup {

 private static final String OUTPUT = "target/generated-snippets";

 @Rule
 public JUnitRestDocumentation restDocumentation = new
JUnitRestDocumentation(OUTPUT);

 @Rule
 public TestName testName = new TestName();

 @Autowired
 private WebApplicationContext context;

 @Before
 public void setup() {

RestAssuredMockMvc.mockMvc(MockMvcBuilders.webAppContextSetup(this.context)
 .apply(documentationConfiguration(this.restDocumentation))
 .alwaysDo(document(
 getClass().getSimpleName() + "_" +
testName.getMethodName()))
 .build());
 }

 protected void assertThatRejectionReasonIsNull(Object rejectionReason) {
 assert rejectionReason == null;
 }

}

Standalone

package com.example.fraud;

import io.restassured.module.mockmvc.RestAssuredMockMvc;
import org.junit.Before;
import org.junit.Rule;
import org.junit.rules.TestName;

import org.springframework.restdocs.JUnitRestDocumentation;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;

import static
org.springframework.restdocs.mockmvc.MockMvcRestDocumentation.document;
import static
org.springframework.restdocs.mockmvc.MockMvcRestDocumentation.documentationConfigu
ration;

public abstract class FraudBaseWithStandaloneSetup {

 private static final String OUTPUT = "target/generated-snippets";

 @Rule
 public JUnitRestDocumentation restDocumentation = new
JUnitRestDocumentation(OUTPUT);

 @Rule
 public TestName testName = new TestName();

 @Before
 public void setup() {
 RestAssuredMockMvc.standaloneSetup(MockMvcBuilders
 .standaloneSetup(new FraudDetectionController())
 .apply(documentationConfiguration(this.restDocumentation))
 .alwaysDo(document(
 getClass().getSimpleName() + "_" +
testName.getMethodName())));
 }

}

You need not specify the output directory for the generated snippets (since version
1.2.0.RELEASE of Spring REST Docs).

14.8.15. How can I Use Stubs from a Location

If you want to fetch contracts or stubs from a given location without cloning a repo or fetching a
JAR, just use the stubs:// protocol when providing the repository root argument for Stub Runner or
the Spring Cloud Contract plugin. You can read more about this in this section of the

project-features.pdf#features-stub-runner-stubs-protocol

documentation.

14.8.16. How can I Generate Stubs at Runtime

If you want to generate stubs at runtime for contracts, it’s enough to switch the generateStubs
property in the @AutoConfigureStubRunner annotation, or call the withGenerateStubs(true) method on
the JUnit Rule or Extension. You can read more about this in this section of the documentation.

14.8.17. How can I Make The Build Pass if There Are No Contracts or Stubs

If you want Stub Runner not to fail if no stubs were found, it’s enough to switch the generateStubs
property in the @AutoConfigureStubRunner annotation, or call the withFailOnNoStubs(false) method
on the JUnit Rule or Extension. You can read more about this in this section of the documentation.

If you want the plugins not to fail the build when no contracts were found, you can set the
failOnNoStubs flag in Maven or call the contractRepository { failOnNoStubs(false) } Closure in
Gradle.

14.8.18. How can I Mark that a Contract Is in Progress

If a contract is in progress, it means that the on the producer side tests will not be generated, but
the stub will be. You can read more about this in this section of the documentation.

In a CI build, before going to production, you would like to ensure that no in progress contracts are
there on the classpath. That’s because you may lead to false positives. That’s why, by default, in the
Spring Cloud Contract plugin, we set the value of failOnInProgress to true. If you want to allow such
contracts when tests are to be generated, just set the flag to false.

Appendix A: Common application properties

Various properties can be specified inside your application.properties file, inside your
application.yml file, or as command line switches. This appendix provides a list of common Spring
Cloud Contract properties and references to the underlying classes that consume them.

Property contributions can come from additional jar files on your classpath, so you
should not consider this an exhaustive list. Also, you can define your own
properties.

Default application properties

Name Default Description

stubrunner.amqp.enabled false Whether to enable support for
Stub Runner and AMQP.

stubrunner.amqp.mockCOnnect
ion

true Whether to enable support for
Stub Runner and AMQP mocked
connection factory.

project-features.pdf#features-stub-runner-generate-stubs-at-runtime
project-features.pdf#features-stub-runner-fail-on-no-stubs
project-features.pdf#contract-dsl-in-progress

Name Default Description

stubrunner.classifier stubs The classifier to use by default
in ivy co-ordinates for a stub.

stubrunner.cloud.consul.enable
d

true Whether to enable stubs
registration in Consul.

stubrunner.cloud.delegate.enab
led

true Whether to enable
DiscoveryClient’s Stub Runner
implementation.

stubrunner.cloud.enabled true Whether to enable Spring Cloud
support for Stub Runner.

stubrunner.cloud.eureka.enable
d

true Whether to enable stubs
registration in Eureka.

stubrunner.cloud.loadbalancer.
enabled

true Whether to enable Stub
Runner’s Spring Cloud Load
Balancer integration.

stubrunner.cloud.stubbed.disco
very.enabled

true Whether Service Discovery
should be stubbed for Stub
Runner. If set to false, stubs will
get registered in real service
discovery.

stubrunner.cloud.zookeeper.en
abled

true Whether to enable stubs
registration in Zookeeper.

stubrunner.consumer-name You can override the default
{@code
spring.application.name} of this
field by setting a value to this
parameter.

stubrunner.delete-stubs-after-
test

true If set to {@code false} will NOT
delete stubs from a temporary
folder after running tests.

stubrunner.fail-on-no-stubs true When enabled, this flag will tell
stub runner to throw an
exception when no stubs /
contracts were found.

stubrunner.generate-stubs false When enabled, this flag will tell
stub runner to not load the
generated stubs, but convert the
found contracts at runtime to a
stub format and run those
stubs.

stubrunner.http-server-stub-
configurer

Configuration for an HTTP
server stub.

Name Default Description

stubrunner.ids [] The ids of the stubs to run in
"ivy" notation
([groupId]:artifactId:[version]:[c
lassifier][:port]). {@code
groupId}, {@code classifier},
{@code version} and {@code
port} can be optional.

stubrunner.ids-to-service-ids Mapping of Ivy notation based
ids to serviceIds inside your
application. Example "a:b" →
"myService" "artifactId" →
"myOtherService"

stubrunner.integration.enabled true Whether to enable Stub Runner
integration with Spring
Integration.

stubrunner.jms.enabled true Whether to enable Stub Runner
integration with Spring JMS.

stubrunner.kafka.enabled true Whether to enable Stub Runner
integration with Spring Kafka.

stubrunner.kafka.initializer.ena
bled

true Whether to allow Stub Runner
to take care of polling for
messages instead of the
KafkaStubMessages component.
The latter should be used only
on the producer side.

stubrunner.mappings-output-
folder

Dumps the mappings of each
HTTP server to the selected
folder.

stubrunner.max-port 15000 Max value of a port for the
automatically started WireMock
server.

stubrunner.min-port 10000 Min value of a port for the
automatically started WireMock
server.

stubrunner.password Repository password.

stubrunner.properties Map of properties that can be
passed to custom {@link
org.springframework.cloud.con
tract.stubrunner.StubDownload
erBuilder}.

stubrunner.proxy-host Repository proxy host.

Name Default Description

stubrunner.proxy-port Repository proxy port.

stubrunner.stream.enabled true Whether to enable Stub Runner
integration with Spring Cloud
Stream.

stubrunner.stubs-mode Pick where the stubs should
come from.

stubrunner.stubs-per-consumer false Should only stubs for this
particular consumer get
registered in HTTP server stub.

stubrunner.username Repository username.

wiremock.placeholders.enabled true Flag to indicate that http URLs
in generated wiremock stubs
should be filtered to add or
resolve a placeholder for a
dynamic port.

wiremock.reset-mappings-after-
each-test

false

wiremock.rest-template-ssl-
enabled

false

wiremock.server.files []

wiremock.server.https-port -1

wiremock.server.https-port-
dynamic

false

wiremock.server.port 8080

wiremock.server.port-dynamic false

wiremock.server.stubs []

Additional application properties

The following properties can be passed as a system property (e.g.
stubrunner.properties.git.branch) or via an environment variable (e.g.
STUBRUNNER_PROPERTIES_GIT_BRANCH) or as a property inside stub runner’s
annotation or a JUnit Rule / Extension. In the latter case you can pass git.branch
property name instead of the stubrunner.properties.git.branch one.

Table 7. Stubrunner Properties Options

Name Default Description

stubrunner.properties.pactbrok
er.provider-name-with-group-id

false When using the Pact Broker
based approach, you can
automatically group id to the
provider name.

stubrunner.properties.git.branc
h

When using the SCM based
approach, you can customize
the branch name to check out.

stubrunner.properties.git.comm
it-message

Updating project [$project] with
stubs

When using the SCM based
approach, you can customize
the commit message for created
stubs. The $project text will be
replaced with the project name.

stubrunner.properties.git.no-of-
attempts

10 When using the SCM based
approach, you can customize
number of retries to push the
stubs to Git.

stubrunner.properties.git.usern
ame

When using the SCM based
approach, you can pass the
username to connect to the Git
repository.

stubrunner.properties.git.passw
ord

When using the SCM based
approach, you can pass the
password to connect to the Git
repository.

stubrunner.properties.git.wait-
between-attempts

1000 When using the SCM based
approach, you can customize
waiting time in ms between
trying to push the stubs to Git.

stubrunner.properties.stubs.fin
d-producer

false When using the Stubs protocol,
you can toggle this flag to
search for contracts via the
group id / artifact id instead
of taking the stubs directly from
the provided folder.

Chapter 15. Spring Cloud Vault
© 2016-2020 The original authors.

Copies of this document may be made for your own use and for distribution to
others, provided that you do not charge any fee for such copies and further provided
that each copy contains this Copyright Notice, whether distributed in print or
electronically.

Spring Cloud Vault Config provides client-side support for externalized configuration in a
distributed system. With HashiCorp’s Vault you have a central place to manage external secret
properties for applications across all environments. Vault can manage static and dynamic secrets
such as username/password for remote applications/resources and provide credentials for external
services such as MySQL, PostgreSQL, Apache Cassandra, MongoDB, Consul, AWS and more.

15.1. Quick Start
Prerequisites

To get started with Vault and this guide you need a *NIX-like operating systems that provides:

• wget, openssl and unzip

• at least Java 8 and a properly configured JAVA_HOME environment variable

This guide explains Vault setup from a Spring Cloud Vault perspective for
integration testing. You can find a getting started guide directly on the Vault
project site: learn.hashicorp.com/vault

Install Vault

$ wget
https://releases.hashicorp.com/vault/${vault_version}/vault_${vault_version}_${platfor
m}.zip
$ unzip vault_${vault_version}_${platform}.zip

 These steps can be achieved by downloading and running install_vault.sh.

Create SSL certificates for Vault

Next, you’r required to generate a set of certificates:

• Root CA

• Vault Certificate (decrypted key work/ca/private/localhost.decrypted.key.pem and certificate
work/ca/certs/localhost.cert.pem)

Make sure to import the Root Certificate into a Java-compliant truststore.

https://www.vaultproject.io
https://learn.hashicorp.com/vault
https://github.com/spring-cloud/spring-cloud-vault/blob/master/src/test/bash/install_vault.sh

The easiest way to achieve this is by using OpenSSL.

create_certificates.sh creates certificates in work/ca and a JKS truststore
work/keystore.jks. If you want to run Spring Cloud Vault using this quickstart
guide you need to configure the truststore the spring.cloud.vault.ssl.trust-store
property to file:work/keystore.jks.

Start Vault server

Next create a config file along the lines of:

backend "inmem" {
}

listener "tcp" {
 address = "0.0.0.0:8200"
 tls_cert_file = "work/ca/certs/localhost.cert.pem"
 tls_key_file = "work/ca/private/localhost.decrypted.key.pem"
}

disable_mlock = true

 You can find an example config file at vault.conf.

$ vault server -config=vault.conf

Vault is started listening on 0.0.0.0:8200 using the inmem storage and https. Vault is sealed and not
initialized when starting up.

If you want to run tests, leave Vault uninitialized. The tests will initialize Vault and
create a root token 00000000-0000-0000-0000-000000000000.

If you want to use Vault for your application or give it a try then you need to initialize it first.

$ export VAULT_ADDR="https://localhost:8200"
$ export VAULT_SKIP_VERIFY=true # Don't do this for production
$ vault init

You should see something like:

https://github.com/spring-cloud/spring-cloud-vault/blob/master/src/test/bash/
https://github.com/spring-clod/spring-cloud-vault/blob/master/src/test/bash/vault.conf

Key 1: 7149c6a2e16b8833f6eb1e76df03e47f6113a3288b3093faf5033d44f0e70fe701
Key 2: 901c534c7988c18c20435a85213c683bdcf0efcd82e38e2893779f152978c18c02
Key 3: 03ff3948575b1165a20c20ee7c3e6edf04f4cdbe0e82dbff5be49c63f98bc03a03
Key 4: 216ae5cc3ddaf93ceb8e1d15bb9fc3176653f5b738f5f3d1ee00cd7dccbe926e04
Key 5: b2898fc8130929d569c1677ee69dc5f3be57d7c4b494a6062693ce0b1c4d93d805
Initial Root Token: 19aefa97-cccc-bbbb-aaaa-225940e63d76

Vault initialized with 5 keys and a key threshold of 3. Please
securely distribute the above keys. When the Vault is re-sealed,
restarted, or stopped, you must provide at least 3 of these keys
to unseal it again.

Vault does not store the master key. Without at least 3 keys,
your Vault will remain permanently sealed.

Vault will initialize and return a set of unsealing keys and the root token. Pick 3 keys and unseal
Vault. Store the Vault token in the VAULT_TOKEN environment variable.

$ vault unseal (Key 1)
$ vault unseal (Key 2)
$ vault unseal (Key 3)
$ export VAULT_TOKEN=(Root token)
Required to run Spring Cloud Vault tests after manual initialization
$ vault token-create -id="00000000-0000-0000-0000-000000000000" -policy="root"

Spring Cloud Vault accesses different resources. By default, the secret backend is enabled which
accesses secret config settings via JSON endpoints.

The HTTP service has resources in the form:

/secret/{application}/{profile}
/secret/{application}
/secret/{defaultContext}/{profile}
/secret/{defaultContext}

where the "application" is injected as the spring.application.name in the SpringApplication (i.e. what
is normally "application" in a regular Spring Boot app), "profile" is an active profile (or comma-
separated list of properties). Properties retrieved from Vault will be used "as-is" without further
prefixing of the property names.

15.2. Client Side Usage
To use these features in an application, just build it as a Spring Boot application that depends on
spring-cloud-vault-config (e.g. see the test cases). Example Maven configuration:

Example 8. pom.xml

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.0.RELEASE</version>
 <relativePath /> <!-- lookup parent from repository -->
</parent>

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-vault-config</artifactId>
 <version>2.2.0.RC2</version>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

<!-- repositories also needed for snapshots and milestones -->

Then you can create a standard Spring Boot application, like this simple HTTP server:

@SpringBootApplication
@RestController
public class Application {

 @RequestMapping("/")
 public String home() {
 return "Hello World!";
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

When it runs it will pick up the external configuration from the default local Vault server on port
8200 if it is running. To modify the startup behavior you can change the location of the Vault server
using bootstrap.properties (like application.properties but for the bootstrap phase of an
application context), e.g.

Example 9. bootstrap.yml

spring.cloud.vault:
 host: localhost
 port: 8200
 scheme: https
 uri: https://localhost:8200
 connection-timeout: 5000
 read-timeout: 15000
 config:
 order: -10

• host sets the hostname of the Vault host. The host name will be used for SSL certificate
validation

• port sets the Vault port

• scheme setting the scheme to http will use plain HTTP. Supported schemes are http and https.

• uri configure the Vault endpoint with an URI. Takes precedence over host/port/scheme
configuration

• connection-timeout sets the connection timeout in milliseconds

• read-timeout sets the read timeout in milliseconds

• config.order sets the order for the property source

Enabling further integrations requires additional dependencies and configuration. Depending on
how you have set up Vault you might need additional configuration like SSL and authentication.

https://cloud.spring.io/spring-cloud-vault/spring-cloud-vault.html#vault.config.ssl
https://cloud.spring.io/spring-cloud-vault/spring-cloud-vault.html#vault.config.authentication

If the application imports the spring-boot-starter-actuator project, the status of the vault server
will be available via the /health endpoint.

The vault health indicator can be enabled or disabled through the property
management.health.vault.enabled (default to true).

15.2.1. Authentication

Vault requires an authentication mechanism to authorize client requests.

Spring Cloud Vault supports multiple authentication mechanisms to authenticate applications with
Vault.

For a quickstart, use the root token printed by the Vault initialization.

Example 10. bootstrap.yml

spring.cloud.vault:
 token: 19aefa97-cccc-bbbb-aaaa-225940e63d76

Consider carefully your security requirements. Static token authentication is fine if
you want quickly get started with Vault, but a static token is not protected any
further. Any disclosure to unintended parties allows Vault use with the associated
token roles.

15.3. Authentication methods
Different organizations have different requirements for security and authentication. Vault reflects
that need by shipping multiple authentication methods. Spring Cloud Vault supports token and
AppId authentication.

15.3.1. Token authentication

Tokens are the core method for authentication within Vault. Token authentication requires a static
token to be provided using the Bootstrap Application Context.

Token authentication is the default authentication method. If a token is disclosed
an unintended party gains access to Vault and can access secrets for the intended
client.

https://www.vaultproject.io/docs/concepts/auth.html
https://www.vaultproject.io/docs/concepts/tokens.html
https://cloud.spring.io/spring-cloud-vault/spring-cloud-vault.html#vault.config.authentication
https://github.com/spring-cloud/spring-cloud-commons/blob/master/docs/src/main/asciidoc/spring-cloud-commons.adoc#the-bootstrap-application-context

Example 11. bootstrap.yml

spring.cloud.vault:
 authentication: TOKEN
 token: 00000000-0000-0000-0000-000000000000

• authentication setting this value to TOKEN selects the Token authentication method

• token sets the static token to use

See also: Vault Documentation: Tokens

15.3.2. Vault Agent authentication

Vault ships a sidecar utility with Vault Agent since version 0.11.0. Vault Agent implements the
functionality of Spring Vault’s SessionManager with its Auto-Auth feature. Applications can reuse
cached session credentials by relying on Vault Agent running on localhost. Spring Vault can send
requests without the X-Vault-Token header. Disable Spring Vault’s authentication infrastructure to
disable client authentication and session management.

Example 12. bootstrap.yml

spring.cloud.vault:
 authentication: NONE

• authentication setting this value to NONE disables ClientAuthentication and SessionManager.

See also: Vault Documentation: Agent

15.3.3. AppId authentication

Vault supports AppId authentication that consists of two hard to guess tokens. The AppId defaults to
spring.application.name that is statically configured. The second token is the UserId which is a part
determined by the application, usually related to the runtime environment. IP address, Mac
address or a Docker container name are good examples. Spring Cloud Vault Config supports IP
address, Mac address and static UserId’s (e.g. supplied via System properties). The IP and Mac
address are represented as Hex-encoded SHA256 hash.

IP address-based UserId’s use the local host’s IP address.

https://www.vaultproject.io/docs/concepts/tokens.html
https://www.vaultproject.io/docs/agent/index.html
https://www.vaultproject.io/docs/auth/app-id.html

Example 13. bootstrap.yml using SHA256 IP-Address UserId’s

spring.cloud.vault:
 authentication: APPID
 app-id:
 user-id: IP_ADDRESS

• authentication setting this value to APPID selects the AppId authentication method

• app-id-path sets the path of the AppId mount to use

• user-id sets the UserId method. Possible values are IP_ADDRESS, MAC_ADDRESS or a class name
implementing a custom AppIdUserIdMechanism

The corresponding command to generate the IP address UserId from a command line is:

$ echo -n 192.168.99.1 | sha256sum

Including the line break of echo leads to a different hash value so make sure to
include the -n flag.

Mac address-based UserId’s obtain their network device from the localhost-bound device. The
configuration also allows specifying a network-interface hint to pick the right device. The value of
network-interface is optional and can be either an interface name or interface index (0-based).

Example 14. bootstrap.yml using SHA256 Mac-Address UserId’s

spring.cloud.vault:
 authentication: APPID
 app-id:
 user-id: MAC_ADDRESS
 network-interface: eth0

• network-interface sets network interface to obtain the physical address

The corresponding command to generate the IP address UserId from a command line is:

$ echo -n 0AFEDE1234AC | sha256sum

The Mac address is specified uppercase and without colons. Including the line
break of echo leads to a different hash value so make sure to include the -n flag.

Custom UserId

The UserId generation is an open mechanism. You can set spring.cloud.vault.app-id.user-id to any
string and the configured value will be used as static UserId.

A more advanced approach lets you set spring.cloud.vault.app-id.user-id to a classname. This
class must be on your classpath and must implement the
org.springframework.cloud.vault.AppIdUserIdMechanism interface and the createUserId method.
Spring Cloud Vault will obtain the UserId by calling createUserId each time it authenticates using
AppId to obtain a token.

Example 15. bootstrap.yml

spring.cloud.vault:
 authentication: APPID
 app-id:
 user-id: com.examlple.MyUserIdMechanism

Example 16. MyUserIdMechanism.java

public class MyUserIdMechanism implements AppIdUserIdMechanism {

 @Override
 public String createUserId() {
 String userId = ...
 return userId;
 }
}

See also: Vault Documentation: Using the App ID auth backend

15.3.4. AppRole authentication

AppRole is intended for machine authentication, like the deprecated (since Vault 0.6.1) AppId
authentication. AppRole authentication consists of two hard to guess (secret) tokens: RoleId and
SecretId.

Spring Vault supports various AppRole scenarios (push/pull mode and wrapped).

RoleId and optionally SecretId must be provided by configuration, Spring Vault will not look up
these or create a custom SecretId.

https://www.vaultproject.io/docs/auth/app-id.html
https://www.vaultproject.io/docs/auth/app-id.html

Example 17. bootstrap.yml with AppRole authentication properties

spring.cloud.vault:
 authentication: APPROLE
 app-role:
 role-id: bde2076b-cccb-3cf0-d57e-bca7b1e83a52

The following scenarios are supported along the required configuration details:

Table 8. Configuration

Method RoleId SecretId RoleName Token

Provided
RoleId/SecretId

Provided Provided

Provided RoleId
without SecretId

Provided

Provided RoleId,
Pull SecretId

Provided Provided Provided Provided

Pull RoleId,
provided SecretId

Provided Provided Provided

Full Pull Mode Provided Provided

Wrapped Provided

Wrapped RoleId,
provided SecretId

Provided Provided

Provided RoleId,
wrapped SecretId

Provided Provided

Table 9. Pull/Push/Wrapped Matrix

RoleId SecretId Supported

Provided Provided ✅

Provided Pull ✅

Provided Wrapped ✅

Provided Absent ✅

Pull Provided ✅

Pull Pull ✅

Pull Wrapped ❌

Pull Absent ❌

Wrapped Provided ✅

Wrapped Pull ❌

Wrapped Wrapped ✅

Wrapped Absent ❌

You can use still all combinations of push/pull/wrapped modes by providing a
configured AppRoleAuthentication bean within the bootstrap context. Spring Cloud
Vault cannot derive all possible AppRole combinations from the configuration
properties.

AppRole authentication is limited to simple pull mode using reactive
infrastructure. Full pull mode is not yet supported. Using Spring Cloud Vault with
the Spring WebFlux stack enables Vault’s reactive auto-configuration which can be
disabled by setting spring.cloud.vault.reactive.enabled=false.

Example 18. bootstrap.yml with all AppRole authentication properties

spring.cloud.vault:
 authentication: APPROLE
 app-role:
 role-id: bde2076b-cccb-3cf0-d57e-bca7b1e83a52
 secret-id: 1696536f-1976-73b1-b241-0b4213908d39
 role: my-role
 app-role-path: approle

• role-id sets the RoleId.

• secret-id sets the SecretId. SecretId can be omitted if AppRole is configured without requiring
SecretId (See bind_secret_id).

• role: sets the AppRole name for pull mode.

• app-role-path sets the path of the approle authentication mount to use.

See also: Vault Documentation: Using the AppRole auth backend

15.3.5. AWS-EC2 authentication

The aws-ec2 auth backend provides a secure introduction mechanism for AWS EC2 instances,
allowing automated retrieval of a Vault token. Unlike most Vault authentication backends, this
backend does not require first-deploying, or provisioning security-sensitive credentials (tokens,
username/password, client certificates, etc.). Instead, it treats AWS as a Trusted Third Party and
uses the cryptographically signed dynamic metadata information that uniquely represents each
EC2 instance.

https://www.vaultproject.io/docs/auth/approle.html
https://www.vaultproject.io/docs/auth/aws-ec2.html

Example 19. bootstrap.yml using AWS-EC2 Authentication

spring.cloud.vault:
 authentication: AWS_EC2

AWS-EC2 authentication enables nonce by default to follow the Trust On First Use (TOFU) principle.
Any unintended party that gains access to the PKCS#7 identity metadata can authenticate against
Vault.

During the first login, Spring Cloud Vault generates a nonce that is stored in the auth backend aside
the instance Id. Re-authentication requires the same nonce to be sent. Any other party does not
have the nonce and can raise an alert in Vault for further investigation.

The nonce is kept in memory and is lost during application restart. You can configure a static nonce
with spring.cloud.vault.aws-ec2.nonce.

AWS-EC2 authentication roles are optional and default to the AMI. You can configure the
authentication role by setting the spring.cloud.vault.aws-ec2.role property.

Example 20. bootstrap.yml with configured role

spring.cloud.vault:
 authentication: AWS_EC2
 aws-ec2:
 role: application-server

Example 21. bootstrap.yml with all AWS EC2 authentication properties

spring.cloud.vault:
 authentication: AWS_EC2
 aws-ec2:
 role: application-server
 aws-ec2-path: aws-ec2
 identity-document: http://...
 nonce: my-static-nonce

• authentication setting this value to AWS_EC2 selects the AWS EC2 authentication method

• role sets the name of the role against which the login is being attempted.

• aws-ec2-path sets the path of the AWS EC2 mount to use

• identity-document sets URL of the PKCS#7 AWS EC2 identity document

• nonce used for AWS-EC2 authentication. An empty nonce defaults to nonce generation

See also: Vault Documentation: Using the aws auth backend

15.3.6. AWS-IAM authentication

The aws backend provides a secure authentication mechanism for AWS IAM roles, allowing the
automatic authentication with vault based on the current IAM role of the running application.
Unlike most Vault authentication backends, this backend does not require first-deploying, or
provisioning security-sensitive credentials (tokens, username/password, client certificates, etc.).
Instead, it treats AWS as a Trusted Third Party and uses the 4 pieces of information signed by the
caller with their IAM credentials to verify that the caller is indeed using that IAM role.

The current IAM role the application is running in is automatically calculated. If you are running
your application on AWS ECS then the application will use the IAM role assigned to the ECS task of
the running container. If you are running your application naked on top of an EC2 instance then
the IAM role used will be the one assigned to the EC2 instance.

When using the AWS-IAM authentication you must create a role in Vault and assign it to your IAM
role. An empty role defaults to the friendly name the current IAM role.

Example 22. bootstrap.yml with required AWS-IAM Authentication properties

spring.cloud.vault:
 authentication: AWS_IAM

Example 23. bootstrap.yml with all AWS-IAM Authentication properties

spring.cloud.vault:
 authentication: AWS_IAM
 aws-iam:
 role: my-dev-role
 aws-path: aws
 server-id: some.server.name
 endpoint-uri: https://sts.eu-central-1.amazonaws.com

• role sets the name of the role against which the login is being attempted. This should be bound
to your IAM role. If one is not supplied then the friendly name of the current IAM user will be
used as the vault role.

• aws-path sets the path of the AWS mount to use

• server-id sets the value to use for the X-Vault-AWS-IAM-Server-ID header preventing certain
types of replay attacks.

• endpoint-uri sets the value to use for the AWS STS API used for the iam_request_url parameter.

AWS-IAM requires the AWS Java SDK dependency (com.amazonaws:aws-java-sdk-core) as the
authentication implementation uses AWS SDK types for credentials and request signing.

https://www.vaultproject.io/docs/auth/aws.html
https://www.vaultproject.io/docs/auth/aws-ec2.html

See also: Vault Documentation: Using the aws auth backend

15.3.7. Azure MSI authentication

The azure auth backend provides a secure introduction mechanism for Azure VM instances,
allowing automated retrieval of a Vault token. Unlike most Vault authentication backends, this
backend does not require first-deploying, or provisioning security-sensitive credentials (tokens,
username/password, client certificates, etc.). Instead, it treats Azure as a Trusted Third Party and
uses the managed service identity and instance metadata information that can be bound to a VM
instance.

Example 24. bootstrap.yml with required Azure Authentication properties

spring.cloud.vault:
 authentication: AZURE_MSI
 azure-msi:
 role: my-dev-role

Example 25. bootstrap.yml with all Azure Authentication properties

spring.cloud.vault:
 authentication: AZURE_MSI
 azure-msi:
 role: my-dev-role
 azure-path: azure

• role sets the name of the role against which the login is being attempted.

• azure-path sets the path of the Azure mount to use

Azure MSI authentication fetches environmental details about the virtual machine (subscription Id,
resource group, VM name) from the instance metadata service.

See also: Vault Documentation: Using the azure auth backend

15.3.8. TLS certificate authentication

The cert auth backend allows authentication using SSL/TLS client certificates that are either signed
by a CA or self-signed.

To enable cert authentication you need to:

1. Use SSL, see Vault Client SSL configuration

2. Configure a Java Keystore that contains the client certificate and the private key

3. Set the spring.cloud.vault.authentication to CERT

https://www.vaultproject.io/docs/auth/aws.html
https://www.vaultproject.io/docs/auth/azure.html
https://www.vaultproject.io/docs/auth/azure.html

Example 26. bootstrap.yml

spring.cloud.vault:
 authentication: CERT
 ssl:
 key-store: classpath:keystore.jks
 key-store-password: changeit
 cert-auth-path: cert

See also: Vault Documentation: Using the Cert auth backend

15.3.9. Cubbyhole authentication

Cubbyhole authentication uses Vault primitives to provide a secured authentication workflow.
Cubbyhole authentication uses tokens as primary login method. An ephemeral token is used to
obtain a second, login VaultToken from Vault’s Cubbyhole secret backend. The login token is usually
longer-lived and used to interact with Vault. The login token will be retrieved from a wrapped
response stored at /cubbyhole/response.

Creating a wrapped token

 Response Wrapping for token creation requires Vault 0.6.0 or higher.

Example 27. Creating and storing tokens

$ vault token-create -wrap-ttl="10m"
Key Value
--- -----
wrapping_token: 397ccb93-ff6c-b17b-9389-380b01ca2645
wrapping_token_ttl: 0h10m0s
wrapping_token_creation_time: 2016-09-18 20:29:48.652957077 +0200 CEST
wrapped_accessor: 46b6aebb-187f-932a-26d7-4f3d86a68319

Example 28. bootstrap.yml

spring.cloud.vault:
 authentication: CUBBYHOLE
 token: 397ccb93-ff6c-b17b-9389-380b01ca2645

See also:

• Vault Documentation: Tokens

• Vault Documentation: Cubbyhole Secret Backend

https://www.vaultproject.io/docs/auth/cert.html
https://www.vaultproject.io/docs/concepts/tokens.html
https://www.vaultproject.io/docs/secrets/cubbyhole/index.html

• Vault Documentation: Response Wrapping

15.3.10. GCP-GCE authentication

The gcp auth backend allows Vault login by using existing GCP (Google Cloud Platform) IAM and
GCE credentials.

GCP GCE (Google Compute Engine) authentication creates a signature in the form of a JSON Web
Token (JWT) for a service account. A JWT for a Compute Engine instance is obtained from the GCE
metadata service using Instance identification. This API creates a JSON Web Token that can be used
to confirm the instance identity.

Unlike most Vault authentication backends, this backend does not require first-deploying, or
provisioning security-sensitive credentials (tokens, username/password, client certificates, etc.).
Instead, it treats GCP as a Trusted Third Party and uses the cryptographically signed dynamic
metadata information that uniquely represents each GCP service account.

Example 29. bootstrap.yml with required GCP-GCE Authentication properties

spring.cloud.vault:
 authentication: GCP_GCE
 gcp-gce:
 role: my-dev-role

Example 30. bootstrap.yml with all GCP-GCE Authentication properties

spring.cloud.vault:
 authentication: GCP_GCE
 gcp-gce:
 gcp-path: gcp
 role: my-dev-role
 service-account: my-service@projectid.iam.gserviceaccount.com

• role sets the name of the role against which the login is being attempted.

• gcp-path sets the path of the GCP mount to use

• service-account allows overriding the service account Id to a specific value. Defaults to the
default service account.

See also:

• Vault Documentation: Using the GCP auth backend

• GCP Documentation: Verifying the Identity of Instances

https://www.vaultproject.io/docs/concepts/response-wrapping.html
https://www.vaultproject.io/docs/auth/gcp.html
https://cloud.google.com/compute/docs/instances/verifying-instance-identity
https://www.vaultproject.io/docs/auth/gcp.html
https://cloud.google.com/compute/docs/instances/verifying-instance-identity

15.3.11. GCP-IAM authentication

The gcp auth backend allows Vault login by using existing GCP (Google Cloud Platform) IAM and
GCE credentials.

GCP IAM authentication creates a signature in the form of a JSON Web Token (JWT) for a service
account. A JWT for a service account is obtained by calling GCP IAM’s
projects.serviceAccounts.signJwt API. The caller authenticates against GCP IAM and proves thereby
its identity. This Vault backend treats GCP as a Trusted Third Party.

IAM credentials can be obtained from either the runtime environment , specifically the
GOOGLE_APPLICATION_CREDENTIALS environment variable, the Google Compute metadata service, or
supplied externally as e.g. JSON or base64 encoded. JSON is the preferred form as it carries the
project id and service account identifier required for calling projects.serviceAccounts.signJwt.

Example 31. bootstrap.yml with required GCP-IAM Authentication properties

spring.cloud.vault:
 authentication: GCP_IAM
 gcp-iam:
 role: my-dev-role

Example 32. bootstrap.yml with all GCP-IAM Authentication properties

spring.cloud.vault:
 authentication: GCP_IAM
 gcp-iam:
 credentials:
 location: classpath:credentials.json
 encoded-key: e+KApn0=
 gcp-path: gcp
 jwt-validity: 15m
 project-id: my-project-id
 role: my-dev-role
 service-account-id: my-service@projectid.iam.gserviceaccount.com

• role sets the name of the role against which the login is being attempted.

• credentials.location path to the credentials resource that contains Google credentials in JSON
format.

• credentials.encoded-key the base64 encoded contents of an OAuth2 account private key in the
JSON format.

• gcp-path sets the path of the GCP mount to use

• jwt-validity configures the JWT token validity. Defaults to 15 minutes.

• project-id allows overriding the project Id to a specific value. Defaults to the project Id from the

https://www.vaultproject.io/docs/auth/gcp.html
https://cloud.google.com/iam/reference/rest/v1/projects.serviceAccounts/signJwt
https://cloud.google.com/docs/authentication/production

obtained credential.

• service-account allows overriding the service account Id to a specific value. Defaults to the
service account from the obtained credential.

GCP IAM authentication requires the Google Cloud Java SDK dependency (com.google.apis:google-
api-services-iam and com.google.auth:google-auth-library-oauth2-http) as the authentication
implementation uses Google APIs for credentials and JWT signing.

Google credentials require an OAuth 2 token maintaining the token lifecycle. All
API is synchronous therefore, GcpIamAuthentication does not support
AuthenticationSteps which is required for reactive usage.

See also:

• Vault Documentation: Using the GCP auth backend

• GCP Documentation: projects.serviceAccounts.signJwt

15.3.12. Kubernetes authentication

Kubernetes authentication mechanism (since Vault 0.8.3) allows to authenticate with Vault using a
Kubernetes Service Account Token. The authentication is role based and the role is bound to a
service account name and a namespace.

A file containing a JWT token for a pod’s service account is automatically mounted at
/var/run/secrets/kubernetes.io/serviceaccount/token.

Example 33. bootstrap.yml with all Kubernetes authentication properties

spring.cloud.vault:
 authentication: KUBERNETES
 kubernetes:
 role: my-dev-role
 kubernetes-path: kubernetes
 service-account-token-file:
/var/run/secrets/kubernetes.io/serviceaccount/token

• role sets the Role.

• kubernetes-path sets the path of the Kubernetes mount to use.

• service-account-token-file sets the location of the file containing the Kubernetes Service
Account Token. Defaults to /var/run/secrets/kubernetes.io/serviceaccount/token.

See also:

• Vault Documentation: Kubernetes

• Kubernetes Documentation: Configure Service Accounts for Pods

https://www.vaultproject.io/docs/auth/gcp.html
https://cloud.google.com/iam/reference/rest/v1/projects.serviceAccounts/signJwt
https://www.vaultproject.io/docs/auth/kubernetes.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

15.3.13. Pivotal CloudFoundry authentication

The pcf auth backend provides a secure introduction mechanism for applications running within
Pivotal’s CloudFoundry instances allowing automated retrieval of a Vault token. Unlike most Vault
authentication backends, this backend does not require first-deploying, or provisioning security-
sensitive credentials (tokens, username/password, client certificates, etc.) as identity provisioning is
handled by PCF itself. Instead, it treats PCF as a Trusted Third Party and uses the managed instance
identity.

Example 34. bootstrap.yml with required PCF Authentication properties

spring.cloud.vault:
 authentication: PCF
 pcf:
 role: my-dev-role

Example 35. bootstrap.yml with all PCF Authentication properties

spring.cloud.vault:
 authentication: PCF
 pcf:
 role: my-dev-role
 pcf-path: path
 instance-certificate: /etc/cf-instance-credentials/instance.crt
 instance-key: /etc/cf-instance-credentials/instance.key

• role sets the name of the role against which the login is being attempted.

• pcf-path sets the path of the PCF mount to use.

• instance-certificate sets the path to the PCF instance identity certificate. Defaults to
${CF_INSTANCE_CERT} env variable.

• instance-key sets the path to the PCF instance identity key. Defaults to ${CF_INSTANCE_KEY} env
variable.

PCF authentication requires BouncyCastle (bcpkix-jdk15on) to be on the classpath
for RSA PSS signing.

See also: Vault Documentation: Using the pcf auth backend

15.4. Secret Backends

15.4.1. Generic Backend

https://www.vaultproject.io/docs/auth/pcf.html
https://www.vaultproject.io/docs/auth/pcf.html

This backend is deprecated in favor of the Key-Value backend and will be removed
with the next major version.

Spring Cloud Vault supports at the basic level the key-value secret backend. The key-value secret
backend allows storage of arbitrary values as key-value store. A single context can store one or
many key-value tuples. Contexts can be organized hierarchically. Spring Cloud Vault allows using
the Application name and a default context name (application) in combination with active profiles.

/secret/{application}/{profile}
/secret/{application}
/secret/{default-context}/{profile}
/secret/{default-context}

The application name is determined by the properties:

• spring.cloud.vault.generic.application-name

• spring.cloud.vault.application-name

• spring.application.name

Secrets can be obtained from other contexts within the key-value backend by adding their paths to
the application name, separated by commas. For example, given the application name
usefulapp,mysql1,projectx/aws, each of these folders will be used:

• /secret/usefulapp

• /secret/mysql1

• /secret/projectx/aws

Spring Cloud Vault adds all active profiles to the list of possible context paths. No active profiles will
skip accessing contexts with a profile name.

Properties are exposed like they are stored (i.e. without additional prefixes).

spring.cloud.vault:
 generic:
 enabled: true
 backend: secret
 profile-separator: '/'
 default-context: application
 application-name: my-app

• enabled setting this value to false disables the secret backend config usage

• backend sets the path of the secret mount to use

• default-context sets the context name used by all applications

• application-name overrides the application name for use in the key-value backend

• profile-separator separates the profile name from the context in property sources with profiles

See also: Vault Documentation: Using the KV Secrets Engine - Version 1 (generic secret backend)

15.4.2. Key-Value Backend

Spring Cloud Vault supports the Key-Value secret backend. The key-value backend allows storage of
arbitrary values as key-value store. A single context can store one or many key-value tuples.
Contexts can be organized hierarchically. Spring Cloud Vault determines itself whether a secret is
using versioning. Spring Cloud Vault allows using the Application name and a default context name
(application) in combination with active profiles.

/secret/{application}/{profile}
/secret/{application}
/secret/{default-context}/{profile}
/secret/{default-context}

The application name is determined by the properties:

• spring.cloud.vault.kv.application-name

• spring.cloud.vault.application-name

• spring.application.name

Secrets can be obtained from other contexts within the key-value backend by adding their paths to
the application name, separated by commas. For example, given the application name
usefulapp,mysql1,projectx/aws, each of these folders will be used:

• /secret/usefulapp

• /secret/mysql1

• /secret/projectx/aws

Spring Cloud Vault adds all active profiles to the list of possible context paths. No active profiles will
skip accessing contexts with a profile name.

Properties are exposed like they are stored (i.e. without additional prefixes).

Spring Cloud Vault adds the data/ context between the mount path and the actual
context path.

spring.cloud.vault:
 kv:
 enabled: true
 backend: secret
 profile-separator: '/'
 default-context: application
 application-name: my-app

https://www.vaultproject.io/docs/secrets/kv/kv-v1.html

• enabled setting this value to false disables the secret backend config usage

• backend sets the path of the secret mount to use

• default-context sets the context name used by all applications

• application-name overrides the application name for use in the key-value backend

• profile-separator separates the profile name from the context in property sources with profiles

The key-value secret backend can be operated in versioned (v2) and non-versioned
(v1) modes.

See also:

• Vault Documentation: Using the KV Secrets Engine - Version 1 (generic secret backend)

• Vault Documentation: Using the KV Secrets Engine - Version 2 (versioned key-value backend)

15.4.3. Consul

Spring Cloud Vault can obtain credentials for HashiCorp Consul. The Consul integration requires
the spring-cloud-vault-config-consul dependency.

Example 36. pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-vault-config-consul</artifactId>
 <version>2.2.0.RC2</version>
 </dependency>
</dependencies>

The integration can be enabled by setting spring.cloud.vault.consul.enabled=true (default false)
and providing the role name with spring.cloud.vault.consul.role=….

The obtained token is stored in spring.cloud.consul.token so using Spring Cloud Consul can pick up
the generated credentials without further configuration. You can configure the property name by
setting spring.cloud.vault.consul.token-property.

spring.cloud.vault:
 consul:
 enabled: true
 role: readonly
 backend: consul
 token-property: spring.cloud.consul.token

https://www.vaultproject.io/docs/secrets/kv/kv-v1.html
https://www.vaultproject.io/docs/secrets/kv/kv-v2.html

• enabled setting this value to true enables the Consul backend config usage

• role sets the role name of the Consul role definition

• backend sets the path of the Consul mount to use

• token-property sets the property name in which the Consul ACL token is stored

See also: Vault Documentation: Setting up Consul with Vault

15.4.4. RabbitMQ

Spring Cloud Vault can obtain credentials for RabbitMQ.

The RabbitMQ integration requires the spring-cloud-vault-config-rabbitmq dependency.

Example 37. pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-vault-config-rabbitmq</artifactId>
 <version>2.2.0.RC2</version>
 </dependency>
</dependencies>

The integration can be enabled by setting spring.cloud.vault.rabbitmq.enabled=true (default false)
and providing the role name with spring.cloud.vault.rabbitmq.role=….

Username and password are stored in spring.rabbitmq.username and spring.rabbitmq.password so
using Spring Boot will pick up the generated credentials without further configuration. You can
configure the property names by setting spring.cloud.vault.rabbitmq.username-property and
spring.cloud.vault.rabbitmq.password-property.

spring.cloud.vault:
 rabbitmq:
 enabled: true
 role: readonly
 backend: rabbitmq
 username-property: spring.rabbitmq.username
 password-property: spring.rabbitmq.password

• enabled setting this value to true enables the RabbitMQ backend config usage

• role sets the role name of the RabbitMQ role definition

• backend sets the path of the RabbitMQ mount to use

• username-property sets the property name in which the RabbitMQ username is stored

https://www.vaultproject.io/docs/secrets/consul/index.html

• password-property sets the property name in which the RabbitMQ password is stored

See also: Vault Documentation: Setting up RabbitMQ with Vault

15.4.5. AWS

Spring Cloud Vault can obtain credentials for AWS.

The AWS integration requires the spring-cloud-vault-config-aws dependency.

Example 38. pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-vault-config-aws</artifactId>
 <version>2.2.0.RC2</version>
 </dependency>
</dependencies>

The integration can be enabled by setting spring.cloud.vault.aws=true (default false) and providing
the role name with spring.cloud.vault.aws.role=….

The access key and secret key are stored in cloud.aws.credentials.accessKey and
cloud.aws.credentials.secretKey so using Spring Cloud AWS will pick up the generated credentials
without further configuration. You can configure the property names by setting
spring.cloud.vault.aws.access-key-property and spring.cloud.vault.aws.secret-key-property.

spring.cloud.vault:
 aws:
 enabled: true
 role: readonly
 backend: aws
 access-key-property: cloud.aws.credentials.accessKey
 secret-key-property: cloud.aws.credentials.secretKey

• enabled setting this value to true enables the AWS backend config usage

• role sets the role name of the AWS role definition

• backend sets the path of the AWS mount to use

• access-key-property sets the property name in which the AWS access key is stored

• secret-key-property sets the property name in which the AWS secret key is stored

See also: Vault Documentation: Setting up AWS with Vault

https://www.vaultproject.io/docs/secrets/rabbitmq/index.html
https://www.vaultproject.io/docs/secrets/aws/index.html

15.5. Database backends
Vault supports several database secret backends to generate database credentials dynamically
based on configured roles. This means services that need to access a database no longer need to
configure credentials: they can request them from Vault, and use Vault’s leasing mechanism to
more easily roll keys.

Spring Cloud Vault integrates with these backends:

• Database

• Apache Cassandra

• MongoDB

• MySQL

• PostgreSQL

Using a database secret backend requires to enable the backend in the configuration and the
spring-cloud-vault-config-databases dependency.

Vault ships since 0.7.1 with a dedicated database secret backend that allows database integration via
plugins. You can use that specific backend by using the generic database backend. Make sure to
specify the appropriate backend path, e.g. spring.cloud.vault.mysql.role.backend=database.

Example 39. pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-vault-config-databases</artifactId>
 <version>2.2.0.RC2</version>
 </dependency>
</dependencies>

Enabling multiple JDBC-compliant databases will generate credentials and store
them by default in the same property keys hence property names for JDBC secrets
need to be configured separately.

15.5.1. Database

Spring Cloud Vault can obtain credentials for any database listed at www.vaultproject.io/api/secret/
databases/index.html. The integration can be enabled by setting
spring.cloud.vault.database.enabled=true (default false) and providing the role name with
spring.cloud.vault.database.role=….

While the database backend is a generic one, spring.cloud.vault.database specifically targets JDBC
databases. Username and password are stored in spring.datasource.username and

https://www.vaultproject.io/api/secret/databases/index.html
https://www.vaultproject.io/api/secret/databases/index.html

spring.datasource.password so using Spring Boot will pick up the generated credentials for your
DataSource without further configuration. You can configure the property names by setting
spring.cloud.vault.database.username-property and spring.cloud.vault.database.password-

property.

spring.cloud.vault:
 database:
 enabled: true
 role: readonly
 backend: database
 username-property: spring.datasource.username
 password-property: spring.datasource.password

• enabled setting this value to true enables the Database backend config usage

• role sets the role name of the Database role definition

• backend sets the path of the Database mount to use

• username-property sets the property name in which the Database username is stored

• password-property sets the property name in which the Database password is stored

See also: Vault Documentation: Database Secrets backend

Spring Cloud Vault does not support getting new credentials and configuring your
DataSource with them when the maximum lease time has been reached. That is, if
max_ttl of the Database role in Vault is set to 24h that means that 24 hours after
your application has started it can no longer authenticate with the database.

15.5.2. Apache Cassandra

The cassandra backend has been deprecated in Vault 0.7.1 and it is recommended
to use the database backend and mount it as cassandra.

Spring Cloud Vault can obtain credentials for Apache Cassandra. The integration can be enabled by
setting spring.cloud.vault.cassandra.enabled=true (default false) and providing the role name with
spring.cloud.vault.cassandra.role=….

Username and password are stored in spring.data.cassandra.username and
spring.data.cassandra.password so using Spring Boot will pick up the generated credentials without
further configuration. You can configure the property names by setting
spring.cloud.vault.cassandra.username-property and spring.cloud.vault.cassandra.password-

property.

https://www.vaultproject.io/docs/secrets/databases/index.html

spring.cloud.vault:
 cassandra:
 enabled: true
 role: readonly
 backend: cassandra
 username-property: spring.data.cassandra.username
 password-property: spring.data.cassandra.password

• enabled setting this value to true enables the Cassandra backend config usage

• role sets the role name of the Cassandra role definition

• backend sets the path of the Cassandra mount to use

• username-property sets the property name in which the Cassandra username is stored

• password-property sets the property name in which the Cassandra password is stored

See also: Vault Documentation: Setting up Apache Cassandra with Vault

15.5.3. MongoDB

The mongodb backend has been deprecated in Vault 0.7.1 and it is recommended to
use the database backend and mount it as mongodb.

Spring Cloud Vault can obtain credentials for MongoDB. The integration can be enabled by setting
spring.cloud.vault.mongodb.enabled=true (default false) and providing the role name with
spring.cloud.vault.mongodb.role=….

Username and password are stored in spring.data.mongodb.username and
spring.data.mongodb.password so using Spring Boot will pick up the generated credentials without
further configuration. You can configure the property names by setting
spring.cloud.vault.mongodb.username-property and spring.cloud.vault.mongodb.password-property.

spring.cloud.vault:
 mongodb:
 enabled: true
 role: readonly
 backend: mongodb
 username-property: spring.data.mongodb.username
 password-property: spring.data.mongodb.password

• enabled setting this value to true enables the MongodB backend config usage

• role sets the role name of the MongoDB role definition

• backend sets the path of the MongoDB mount to use

https://www.vaultproject.io/docs/secrets/cassandra/index.html

• username-property sets the property name in which the MongoDB username is stored

• password-property sets the property name in which the MongoDB password is stored

See also: Vault Documentation: Setting up MongoDB with Vault

15.5.4. MySQL

The mysql backend has been deprecated in Vault 0.7.1 and it is recommended to
use the database backend and mount it as mysql. Configuration for
spring.cloud.vault.mysql will be removed in a future version.

Spring Cloud Vault can obtain credentials for MySQL. The integration can be enabled by setting
spring.cloud.vault.mysql.enabled=true (default false) and providing the role name with
spring.cloud.vault.mysql.role=….

Username and password are stored in spring.datasource.username and spring.datasource.password
so using Spring Boot will pick up the generated credentials without further configuration. You can
configure the property names by setting spring.cloud.vault.mysql.username-property and
spring.cloud.vault.mysql.password-property.

spring.cloud.vault:
 mysql:
 enabled: true
 role: readonly
 backend: mysql
 username-property: spring.datasource.username
 password-property: spring.datasource.password

• enabled setting this value to true enables the MySQL backend config usage

• role sets the role name of the MySQL role definition

• backend sets the path of the MySQL mount to use

• username-property sets the property name in which the MySQL username is stored

• password-property sets the property name in which the MySQL password is stored

See also: Vault Documentation: Setting up MySQL with Vault

15.5.5. PostgreSQL

The postgresql backend has been deprecated in Vault 0.7.1 and it is recommended
to use the database backend and mount it as postgresql. Configuration for
spring.cloud.vault.postgresql will be removed in a future version.

Spring Cloud Vault can obtain credentials for PostgreSQL. The integration can be enabled by setting
spring.cloud.vault.postgresql.enabled=true (default false) and providing the role name with

https://www.vaultproject.io/docs/secrets/mongodb/index.html
https://www.vaultproject.io/docs/secrets/mysql/index.html

spring.cloud.vault.postgresql.role=….

Username and password are stored in spring.datasource.username and spring.datasource.password
so using Spring Boot will pick up the generated credentials without further configuration. You can
configure the property names by setting spring.cloud.vault.postgresql.username-property and
spring.cloud.vault.postgresql.password-property.

spring.cloud.vault:
 postgresql:
 enabled: true
 role: readonly
 backend: postgresql
 username-property: spring.datasource.username
 password-property: spring.datasource.password

• enabled setting this value to true enables the PostgreSQL backend config usage

• role sets the role name of the PostgreSQL role definition

• backend sets the path of the PostgreSQL mount to use

• username-property sets the property name in which the PostgreSQL username is stored

• password-property sets the property name in which the PostgreSQL password is stored

See also: Vault Documentation: Setting up PostgreSQL with Vault

15.6. Configure PropertySourceLocator behavior
Spring Cloud Vault uses property-based configuration to create PropertySources for key-value and
discovered secret backends.

Discovered backends provide VaultSecretBackendDescriptor beans to describe the configuration
state to use secret backend as PropertySource. A SecretBackendMetadataFactory is required to create a
SecretBackendMetadata object which contains path, name and property transformation
configuration.

SecretBackendMetadata is used to back a particular PropertySource.

You can register an arbitrary number of beans implementing VaultConfigurer for customization.
Default key-value and discovered backend registration is disabled if Spring Cloud Vault discovers at
least one VaultConfigurer bean. You can however enable default registration with
SecretBackendConfigurer.registerDefaultKeyValueSecretBackends() and
SecretBackendConfigurer.registerDefaultDiscoveredSecretBackends().

https://www.vaultproject.io/docs/secrets/postgresql/index.html

public class CustomizationBean implements VaultConfigurer {

 @Override
 public void addSecretBackends(SecretBackendConfigurer configurer) {

 configurer.add("secret/my-application");

 configurer.registerDefaultKeyValueSecretBackends(false);
 configurer.registerDefaultDiscoveredSecretBackends(true);
 }
}

All customization is required to happen in the bootstrap context. Add your
configuration classes to META-INF/spring.factories at
org.springframework.cloud.bootstrap.BootstrapConfiguration in your application.

15.7. Service Registry Configuration
You can use a DiscoveryClient (such as from Spring Cloud Consul) to locate a Vault server by setting
spring.cloud.vault.discovery.enabled=true (default false). The net result of that is that your apps
need a bootstrap.yml (or an environment variable) with the appropriate discovery configuration.
The benefit is that the Vault can change its co-ordinates, as long as the discovery service is a fixed
point. The default service id is vault but you can change that on the client with
spring.cloud.vault.discovery.serviceId.

The discovery client implementations all support some kind of metadata map (e.g. for Eureka we
have eureka.instance.metadataMap). Some additional properties of the service may need to be
configured in its service registration metadata so that clients can connect correctly. Service
registries that do not provide details about transport layer security need to provide a scheme
metadata entry to be set either to https or http. If no scheme is configured and the service is not
exposed as secure service, then configuration defaults to spring.cloud.vault.scheme which is https
when it’s not set.

spring.cloud.vault.discovery:
 enabled: true
 service-id: my-vault-service

15.8. Vault Client Fail Fast
In some cases, it may be desirable to fail startup of a service if it cannot connect to the Vault Server.
If this is the desired behavior, set the bootstrap configuration property spring.cloud.vault.fail-
fast=true and the client will halt with an Exception.

spring.cloud.vault:
 fail-fast: true

15.9. Vault Enterprise Namespace Support
Vault Enterprise allows using namespaces to isolate multiple Vaults on a single Vault server.
Configuring a namespace by setting spring.cloud.vault.namespace=… enables the namespace
header X-Vault-Namespace on every outgoing HTTP request when using the Vault RestTemplate or
WebClient.

Please note that this feature is not supported by Vault Community edition and has no effect on Vault
operations.

spring.cloud.vault:
 namespace: my-namespace

See also: Vault Enterprise: Namespaces

15.10. Vault Client SSL configuration
SSL can be configured declaratively by setting various properties. You can set either
javax.net.ssl.trustStore to configure JVM-wide SSL settings or spring.cloud.vault.ssl.trust-store
to set SSL settings only for Spring Cloud Vault Config.

spring.cloud.vault:
 ssl:
 trust-store: classpath:keystore.jks
 trust-store-password: changeit

• trust-store sets the resource for the trust-store. SSL-secured Vault communication will validate
the Vault SSL certificate with the specified trust-store.

• trust-store-password sets the trust-store password

Please note that configuring spring.cloud.vault.ssl.* can be only applied when either Apache Http
Components or the OkHttp client is on your class-path.

https://www.vaultproject.io/docs/enterprise/namespaces/index.html

15.11. Lease lifecycle management (renewal and
revocation)
With every secret, Vault creates a lease: metadata containing information such as a time duration,
renewability, and more.

Vault promises that the data will be valid for the given duration, or Time To Live (TTL). Once the
lease is expired, Vault can revoke the data, and the consumer of the secret can no longer be certain
that it is valid.

Spring Cloud Vault maintains a lease lifecycle beyond the creation of login tokens and secrets. That
said, login tokens and secrets associated with a lease are scheduled for renewal just before the lease
expires until terminal expiry. Application shutdown revokes obtained login tokens and renewable
leases.

Secret service and database backends (such as MongoDB or MySQL) usually generate a renewable
lease so generated credentials will be disabled on application shutdown.

 Static tokens are not renewed or revoked.

Lease renewal and revocation is enabled by default and can be disabled by setting
spring.cloud.vault.config.lifecycle.enabled to false. This is not recommended as leases can
expire and Spring Cloud Vault cannot longer access Vault or services using generated credentials
and valid credentials remain active after application shutdown.

spring.cloud.vault:
 config.lifecycle:
 enabled: true
 min-renewal: 10s
 expiry-threshold: 1m
 lease-endpoints: Legacy

• enabled controls whether leases associated with secrets are considered to be renewed and
expired secrets are rotated. Enabled by default.

• min-renewal sets the duration that is at least required before renewing a lease. This setting
prevents renewals from happening too often.

• expiry-threshold sets the expiry threshold. A lease is renewed the configured period of time
before it expires.

• lease-endpoints sets the endpoints for renew and revoke. Legacy for vault versions before 0.8
and SysLeases for later.

See also: Vault Documentation: Lease, Renew, and Revoke

https://www.vaultproject.io/docs/concepts/lease.html

Chapter 16. Spring Cloud Gateway
Hoxton.SR5

This project provides an API Gateway built on top of the Spring Ecosystem, including: Spring 5,
Spring Boot 2 and Project Reactor. Spring Cloud Gateway aims to provide a simple, yet effective way
to route to APIs and provide cross cutting concerns to them such as: security, monitoring/metrics,
and resiliency.

16.1. How to Include Spring Cloud Gateway
To include Spring Cloud Gateway in your project, use the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-gateway. See the Spring Cloud
Project page for details on setting up your build system with the current Spring Cloud Release
Train.

If you include the starter, but you do not want the gateway to be enabled, set
spring.cloud.gateway.enabled=false.

Spring Cloud Gateway is built on Spring Boot 2.x, Spring WebFlux, and Project
Reactor. As a consequence, many of the familiar synchronous libraries (Spring
Data and Spring Security, for example) and patterns you know may not apply
when you use Spring Cloud Gateway. If you are unfamiliar with these projects, we
suggest you begin by reading their documentation to familiarize yourself with
some of the new concepts before working with Spring Cloud Gateway.

Spring Cloud Gateway requires the Netty runtime provided by Spring Boot and
Spring Webflux. It does not work in a traditional Servlet Container or when built
as a WAR.

16.2. Glossary
• Route: The basic building block of the gateway. It is defined by an ID, a destination URI, a

collection of predicates, and a collection of filters. A route is matched if the aggregate predicate
is true.

• Predicate: This is a Java 8 Function Predicate. The input type is a Spring Framework
ServerWebExchange. This lets you match on anything from the HTTP request, such as headers or
parameters.

• Filter: These are instances of Spring Framework GatewayFilter that have been constructed with
a specific factory. Here, you can modify requests and responses before or after sending the
downstream request.

16.3. How It Works
The following diagram provides a high-level overview of how Spring Cloud Gateway works:

https://projects.spring.io/spring-cloud/
https://projects.spring.io/spring-cloud/
https://spring.io/projects/spring-boot#learn
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html
https://projectreactor.io/docs
https://projectreactor.io/docs
https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/server/ServerWebExchange.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/server/ServerWebExchange.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/server/GatewayFilter.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/server/GatewayFilter.html

[Spring Cloud Gateway Diagram] | spring_cloud_gateway_diagram.png

Clients make requests to Spring Cloud Gateway. If the Gateway Handler Mapping determines that a
request matches a route, it is sent to the Gateway Web Handler. This handler runs the request
through a filter chain that is specific to the request. The reason the filters are divided by the dotted
line is that filters can run logic both before and after the proxy request is sent. All “pre” filter logic
is executed. Then the proxy request is made. After the proxy request is made, the “post” filter logic
is run.

URIs defined in routes without a port get default port values of 80 and 443 for the
HTTP and HTTPS URIs, respectively.

16.4. Configuring Route Predicate Factories and
Gateway Filter Factories
There are two ways to configure predicates and filters: shortcuts and fully expanded arguments.
Most examples below use the shortcut way.

The name and argument names will be listed as code in the first sentance or two of the each section.
The arguments are typically listed in the order that would be needed for the shortcut configuration.

16.4.1. Shortcut Configuration

Shortcut configuration is recognized by the filter name, followed by an equals sign (=), followed by
argument values separated by commas (,).

application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: after_route
 uri: https://example.org
 predicates:
 - Cookie=mycookie,mycookievalue

The previous sample defines the Cookie Route Predicate Factory with two arguments, the cookie
name, mycookie and the value to match mycookievalue.

16.4.2. Fully Expanded Arguments

Fully expanded arguments appear more like standard yaml configuration with name/value pairs.
Typically, there will be a name key and an args key. The args key is a map of key value pairs to
configure the predicate or filter.

application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: after_route
 uri: https://example.org
 predicates:
 - name: Cookie
 args:
 name: mycookie
 regexp: mycookievalue

This is the full configuration of the shortcut configuration of the Cookie predicate shown above.

16.5. Route Predicate Factories
Spring Cloud Gateway matches routes as part of the Spring WebFlux HandlerMapping infrastructure.
Spring Cloud Gateway includes many built-in route predicate factories. All of these predicates
match on different attributes of the HTTP request. You can combine multiple route predicate
factories with logical and statements.

16.5.1. The After Route Predicate Factory

The After route predicate factory takes one parameter, a datetime (which is a java ZonedDateTime).
This predicate matches requests that happen after the specified datetime. The following example
configures an after route predicate:

Example 40. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: after_route
 uri: https://example.org
 predicates:
 - After=2017-01-20T17:42:47.789-07:00[America/Denver]

This route matches any request made after Jan 20, 2017 17:42 Mountain Time (Denver).

16.5.2. The Before Route Predicate Factory

The Before route predicate factory takes one parameter, a datetime (which is a java ZonedDateTime).
This predicate matches requests that happen before the specified datetime. The following example
configures a before route predicate:

Example 41. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: before_route
 uri: https://example.org
 predicates:
 - Before=2017-01-20T17:42:47.789-07:00[America/Denver]

This route matches any request made before Jan 20, 2017 17:42 Mountain Time (Denver).

16.5.3. The Between Route Predicate Factory

The Between route predicate factory takes two parameters, datetime1 and datetime2 which are java
ZonedDateTime objects. This predicate matches requests that happen after datetime1 and before
datetime2. The datetime2 parameter must be after datetime1. The following example configures a
between route predicate:

Example 42. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: between_route
 uri: https://example.org
 predicates:
 - Between=2017-01-20T17:42:47.789-07:00[America/Denver], 2017-01-
21T17:42:47.789-07:00[America/Denver]

This route matches any request made after Jan 20, 2017 17:42 Mountain Time (Denver) and before
Jan 21, 2017 17:42 Mountain Time (Denver). This could be useful for maintenance windows.

16.5.4. The Cookie Route Predicate Factory

The Cookie route predicate factory takes two parameters, the cookie name and a regexp (which is a
Java regular expression). This predicate matches cookies that have the given name and whose
values match the regular expression. The following example configures a cookie route predicate
factory:

Example 43. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: cookie_route
 uri: https://example.org
 predicates:
 - Cookie=chocolate, ch.p

This route matches requests that have a cookie named chocolate whose value matches the ch.p
regular expression.

16.5.5. The Header Route Predicate Factory

The Header route predicate factory takes two parameters, the header name and a regexp (which is a
Java regular expression). This predicate matches with a header that has the given name whose
value matches the regular expression. The following example configures a header route predicate:

Example 44. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: header_route
 uri: https://example.org
 predicates:
 - Header=X-Request-Id, \d+

This route matches if the request has a header named X-Request-Id whose value matches the \d+
regular expression (that is, it has a value of one or more digits).

16.5.6. The Host Route Predicate Factory

The Host route predicate factory takes one parameter: a list of host name patterns. The pattern is an
Ant-style pattern with . as the separator. This predicates matches the Host header that matches the
pattern. The following example configures a host route predicate:

Example 45. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: host_route
 uri: https://example.org
 predicates:
 - Host=**.somehost.org,**.anotherhost.org

URI template variables (such as {sub}.myhost.org) are supported as well.

This route matches if the request has a Host header with a value of www.somehost.org or
beta.somehost.org or www.anotherhost.org.

This predicate extracts the URI template variables (such as sub, defined in the preceding example)
as a map of names and values and places it in the ServerWebExchange.getAttributes() with a key
defined in ServerWebExchangeUtils.URI_TEMPLATE_VARIABLES_ATTRIBUTE. Those values are then
available for use by GatewayFilter factories

16.5.7. The Method Route Predicate Factory

The Method Route Predicate Factory takes a methods argument which is one or more parameters: the
HTTP methods to match. The following example configures a method route predicate:

Example 46. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: method_route
 uri: https://example.org
 predicates:
 - Method=GET,POST

This route matches if the request method was a GET or a POST.

16.5.8. The Path Route Predicate Factory

The Path Route Predicate Factory takes two parameters: a list of Spring PathMatcher patterns and an
optional flag called matchOptionalTrailingSeparator. The following example configures a path route
predicate:

Example 47. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: path_route
 uri: https://example.org
 predicates:
 - Path=/red/{segment},/blue/{segment}

This route matches if the request path was, for example: /red/1 or /red/blue or /blue/green.

This predicate extracts the URI template variables (such as segment, defined in the preceding
example) as a map of names and values and places it in the ServerWebExchange.getAttributes() with
a key defined in ServerWebExchangeUtils.URI_TEMPLATE_VARIABLES_ATTRIBUTE. Those values are then
available for use by GatewayFilter factories

A utility method (called get) is available to make access to these variables easier. The following
example shows how to use the get method:

Map<String, String> uriVariables =
ServerWebExchangeUtils.getPathPredicateVariables(exchange);

String segment = uriVariables.get("segment");

16.5.9. The Query Route Predicate Factory

The Query route predicate factory takes two parameters: a required param and an optional regexp
(which is a Java regular expression). The following example configures a query route predicate:

Example 48. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: query_route
 uri: https://example.org
 predicates:
 - Query=green

The preceding route matches if the request contained a green query parameter.

application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: query_route
 uri: https://example.org
 predicates:
 - Query=red, gree.

The preceding route matches if the request contained a red query parameter whose value matched
the gree. regexp, so green and greet would match.

16.5.10. The RemoteAddr Route Predicate Factory

The RemoteAddr route predicate factory takes a list (min size 1) of sources, which are CIDR-notation
(IPv4 or IPv6) strings, such as 192.168.0.1/16 (where 192.168.0.1 is an IP address and 16 is a subnet
mask). The following example configures a RemoteAddr route predicate:

Example 49. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: remoteaddr_route
 uri: https://example.org
 predicates:
 - RemoteAddr=192.168.1.1/24

This route matches if the remote address of the request was, for example, 192.168.1.10.

16.5.11. The Weight Route Predicate Factory

The Weight route predicate factory takes two arguments: group and weight (an int). The weights are
calculated per group. The following example configures a weight route predicate:

Example 50. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: weight_high
 uri: https://weighthigh.org
 predicates:
 - Weight=group1, 8
 - id: weight_low
 uri: https://weightlow.org
 predicates:
 - Weight=group1, 2

This route would forward ~80% of traffic to weighthigh.org and ~20% of traffic to weighlow.org

Modifying the Way Remote Addresses Are Resolved

By default, the RemoteAddr route predicate factory uses the remote address from the incoming
request. This may not match the actual client IP address if Spring Cloud Gateway sits behind a
proxy layer.

You can customize the way that the remote address is resolved by setting a custom
RemoteAddressResolver. Spring Cloud Gateway comes with one non-default remote address resolver
that is based off of the X-Forwarded-For header, XForwardedRemoteAddressResolver.

XForwardedRemoteAddressResolver has two static constructor methods, which take different
approaches to security:

• XForwardedRemoteAddressResolver::trustAll returns a RemoteAddressResolver that always takes
the first IP address found in the X-Forwarded-For header. This approach is vulnerable to
spoofing, as a malicious client could set an initial value for the X-Forwarded-For, which would be
accepted by the resolver.

• XForwardedRemoteAddressResolver::maxTrustedIndex takes an index that correlates to the number
of trusted infrastructure running in front of Spring Cloud Gateway. If Spring Cloud Gateway is,
for example only accessible through HAProxy, then a value of 1 should be used. If two hops of
trusted infrastructure are required before Spring Cloud Gateway is accessible, then a value of 2
should be used.

Consider the following header value:

X-Forwarded-For: 0.0.0.1, 0.0.0.2, 0.0.0.3

The following maxTrustedIndex values yield the following remote addresses:

https://weighthigh.org
https://weighlow.org
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For

maxTrustedIndex result

[Integer.MIN_VALUE,0] (invalid, IllegalArgumentException during
initialization)

1 0.0.0.3

2 0.0.0.2

3 0.0.0.1

[4, Integer.MAX_VALUE] 0.0.0.1

The following example shows how to achieve the same configuration with Java:

Example 51. GatewayConfig.java

RemoteAddressResolver resolver = XForwardedRemoteAddressResolver
 .maxTrustedIndex(1);

...

.route("direct-route",
 r -> r.remoteAddr("10.1.1.1", "10.10.1.1/24")
 .uri("https://downstream1")
.route("proxied-route",
 r -> r.remoteAddr(resolver, "10.10.1.1", "10.10.1.1/24")
 .uri("https://downstream2")
)

16.6. GatewayFilter Factories
Route filters allow the modification of the incoming HTTP request or outgoing HTTP response in
some manner. Route filters are scoped to a particular route. Spring Cloud Gateway includes many
built-in GatewayFilter Factories.

For more detailed examples of how to use any of the following filters, take a look
at the unit tests.

16.6.1. The AddRequestHeader GatewayFilter Factory

The AddRequestHeader GatewayFilter factory takes a name and value parameter. The following
example configures an AddRequestHeader GatewayFilter:

https://github.com/spring-cloud/spring-cloud-gateway/tree/master/spring-cloud-gateway-core/src/test/java/org/springframework/cloud/gateway/filter/factory

Example 52. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_request_header_route
 uri: https://example.org
 filters:
 - AddRequestHeader=X-Request-red, blue

This listing adds X-Request-red:blue header to the downstream request’s headers for all matching
requests.

AddRequestHeader is aware of the URI variables used to match a path or host. URI variables may be
used in the value and are expanded at runtime. The following example configures an
AddRequestHeader GatewayFilter that uses a variable:

Example 53. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_request_header_route
 uri: https://example.org
 predicates:
 - Path=/red/{segment}
 filters:
 - AddRequestHeader=X-Request-Red, Blue-{segment}

16.6.2. The AddRequestParameter GatewayFilter Factory

The AddRequestParameter GatewayFilter Factory takes a name and value parameter. The following
example configures an AddRequestParameter GatewayFilter:

Example 54. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_request_parameter_route
 uri: https://example.org
 filters:
 - AddRequestParameter=red, blue

This will add red=blue to the downstream request’s query string for all matching requests.

AddRequestParameter is aware of the URI variables used to match a path or host. URI variables may
be used in the value and are expanded at runtime. The following example configures an
AddRequestParameter GatewayFilter that uses a variable:

Example 55. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_request_parameter_route
 uri: https://example.org
 predicates:
 - Host: {segment}.myhost.org
 filters:
 - AddRequestParameter=foo, bar-{segment}

16.6.3. The AddResponseHeader GatewayFilter Factory

The AddResponseHeader GatewayFilter Factory takes a name and value parameter. The following
example configures an AddResponseHeader GatewayFilter:

Example 56. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_response_header_route
 uri: https://example.org
 filters:
 - AddResponseHeader=X-Response-Red, Blue

This adds X-Response-Foo:Bar header to the downstream response’s headers for all matching
requests.

AddResponseHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and are expanded at runtime. The following example configures an AddResponseHeader
GatewayFilter that uses a variable:

Example 57. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_response_header_route
 uri: https://example.org
 predicates:
 - Host: {segment}.myhost.org
 filters:
 - AddResponseHeader=foo, bar-{segment}

16.6.4. The DedupeResponseHeader GatewayFilter Factory

The DedupeResponseHeader GatewayFilter factory takes a name parameter and an optional strategy
parameter. name can contain a space-separated list of header names. The following example
configures a DedupeResponseHeader GatewayFilter:

Example 58. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: dedupe_response_header_route
 uri: https://example.org
 filters:
 - DedupeResponseHeader=Access-Control-Allow-Credentials Access-Control-
Allow-Origin

This removes duplicate values of Access-Control-Allow-Credentials and Access-Control-Allow-
Origin response headers in cases when both the gateway CORS logic and the downstream logic add
them.

The DedupeResponseHeader filter also accepts an optional strategy parameter. The accepted values
are RETAIN_FIRST (default), RETAIN_LAST, and RETAIN_UNIQUE.

16.6.5. The Hystrix GatewayFilter Factory

Netflix has put Hystrix in maintenance mode. We suggest you use the Spring Cloud
CircuitBreaker Gateway Filter with Resilience4J, as support for Hystrix will be
removed in a future release.

Hystrix is a library from Netflix that implements the circuit breaker pattern. The Hystrix
GatewayFilter lets you introduce circuit breakers to your gateway routes, protecting your services
from cascading failures and letting you provide fallback responses in the event of downstream
failures.

To enable Hystrix GatewayFilter instances in your project, add a dependency on spring-cloud-
starter-netflix-hystrix from Spring Cloud Netflix.

The Hystrix GatewayFilter factory requires a single name parameter, which is the name of the
HystrixCommand. The following example configures a Hystrix GatewayFilter:

https://cloud.spring.io/spring-cloud-netflix/multi/multi__modules_in_maintenance_mode.html
https://github.com/Netflix/Hystrix
https://martinfowler.com/bliki/CircuitBreaker.html
https://cloud.spring.io/spring-cloud-netflix/

Example 59. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: hystrix_route
 uri: https://example.org
 filters:
 - Hystrix=myCommandName

This wraps the remaining filters in a HystrixCommand with a command name of myCommandName.

The Hystrix filter can also accept an optional fallbackUri parameter. Currently, only forward:
schemed URIs are supported. If the fallback is called, the request is forwarded to the controller
matched by the URI. The following example configures such a fallback:

Example 60. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: hystrix_route
 uri: lb://backing-service:8088
 predicates:
 - Path=/consumingserviceendpoint
 filters:
 - name: Hystrix
 args:
 name: fallbackcmd
 fallbackUri: forward:/incaseoffailureusethis
 - RewritePath=/consumingserviceendpoint, /backingserviceendpoint

This will forward to the /incaseoffailureusethis URI when the Hystrix fallback is called. Note that
this example also demonstrates (optional) Spring Cloud Netflix Ribbon load-balancing (defined the
lb prefix on the destination URI).

The primary scenario is to use the fallbackUri to an internal controller or handler within the
gateway app. However, you can also reroute the request to a controller or handler in an external
application, as follows:

Example 61. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: ingredients
 uri: lb://ingredients
 predicates:
 - Path=//ingredients/**
 filters:
 - name: Hystrix
 args:
 name: fetchIngredients
 fallbackUri: forward:/fallback
 - id: ingredients-fallback
 uri: http://localhost:9994
 predicates:
 - Path=/fallback

In this example, there is no fallback endpoint or handler in the gateway application. However,
there is one in another application, registered under localhost:9994.

In case of the request being forwarded to the fallback, the Hystrix Gateway filter also provides the
Throwable that has caused it. It is added to the ServerWebExchange as the
ServerWebExchangeUtils.HYSTRIX_EXECUTION_EXCEPTION_ATTR attribute, which you can use when
handling the fallback within the gateway application.

For the external controller/handler scenario, you can add headers with exception details. You can
find more information on doing so in the FallbackHeaders GatewayFilter Factory section.

You can configured Hystrix settings (such as timeouts) with global defaults or on a route-by-route
basis by using application properties, as explained on the Hystrix wiki.

To set a five-second timeout for the example route shown earlier, you could use the following
configuration:

Example 62. application.yml

hystrix.command.fallbackcmd.execution.isolation.thread.timeoutInMilliseconds: 5000

16.6.6. Spring Cloud CircuitBreaker GatewayFilter Factory

The Spring Cloud CircuitBreaker GatewayFilter factory uses the Spring Cloud CircuitBreaker APIs to
wrap Gateway routes in a circuit breaker. Spring Cloud CircuitBreaker supports two libraries that
can be used with Spring Cloud Gateway, Hystrix and Resilience4J. Since Netflix has placed Hystrix

http://localhost:9994
https://github.com/Netflix/Hystrix/wiki/Configuration

in maintenance-only mode, we suggest that you use Resilience4J.

To enable the Spring Cloud CircuitBreaker filter, you need to place either spring-cloud-starter-
circuitbreaker-reactor-resilience4j or spring-cloud-starter-netflix-hystrix on the classpath. The
following example configures a Spring Cloud CircuitBreaker GatewayFilter:

Example 63. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: circuitbreaker_route
 uri: https://example.org
 filters:
 - CircuitBreaker=myCircuitBreaker

To configure the circuit breaker, see the configuration for the underlying circuit breaker
implementation you are using.

• Resilience4J Documentation

• Hystrix Documentation

The Spring Cloud CircuitBreaker filter can also accept an optional fallbackUri parameter. Currently,
only forward: schemed URIs are supported. If the fallback is called, the request is forwarded to the
controller matched by the URI. The following example configures such a fallback:

Example 64. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: circuitbreaker_route
 uri: lb://backing-service:8088
 predicates:
 - Path=/consumingServiceEndpoint
 filters:
 - name: CircuitBreaker
 args:
 name: myCircuitBreaker
 fallbackUri: forward:/inCaseOfFailureUseThis
 - RewritePath=/consumingServiceEndpoint, /backingServiceEndpoint

The following listing does the same thing in Java:

https://cloud.spring.io/spring-cloud-circuitbreaker/reference/html/spring-cloud-circuitbreaker.html
https://cloud.spring.io/spring-cloud-netflix/reference/html/

Example 65. Application.java

@Bean
public RouteLocator routes(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("circuitbreaker_route", r -> r.path("/consumingServiceEndpoint")
 .filters(f -> f.circuitBreaker(c ->
c.name("myCircuitBreaker").fallbackUri("forward:/inCaseOfFailureUseThis"))
 .rewritePath("/consumingServiceEndpoint",
"/backingServiceEndpoint")).uri("lb://backing-service:8088")
 .build();
}

This example forwards to the /inCaseofFailureUseThis URI when the circuit breaker fallback is
called. Note that this example also demonstrates the (optional) Spring Cloud Netflix Ribbon load-
balancing (defined by the lb prefix on the destination URI).

The primary scenario is to use the fallbackUri to define an internal controller or handler within the
gateway application. However, you can also reroute the request to a controller or handler in an
external application, as follows:

Example 66. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: ingredients
 uri: lb://ingredients
 predicates:
 - Path=//ingredients/**
 filters:
 - name: CircuitBreaker
 args:
 name: fetchIngredients
 fallbackUri: forward:/fallback
 - id: ingredients-fallback
 uri: http://localhost:9994
 predicates:
 - Path=/fallback

In this example, there is no fallback endpoint or handler in the gateway application. However,
there is one in another application, registered under localhost:9994.

In case of the request being forwarded to fallback, the Spring Cloud CircuitBreaker Gateway filter
also provides the Throwable that has caused it. It is added to the ServerWebExchange as the

http://localhost:9994

ServerWebExchangeUtils.CIRCUITBREAKER_EXECUTION_EXCEPTION_ATTR attribute that can be used when
handling the fallback within the gateway application.

For the external controller/handler scenario, headers can be added with exception details. You can
find more information on doing so in the FallbackHeaders GatewayFilter Factory section.

16.6.7. The FallbackHeaders GatewayFilter Factory

The FallbackHeaders factory lets you add Hystrix or Spring Cloud CircuitBreaker execution
exception details in the headers of a request forwarded to a fallbackUri in an external application,
as in the following scenario:

Example 67. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: ingredients
 uri: lb://ingredients
 predicates:
 - Path=//ingredients/**
 filters:
 - name: CircuitBreaker
 args:
 name: fetchIngredients
 fallbackUri: forward:/fallback
 - id: ingredients-fallback
 uri: http://localhost:9994
 predicates:
 - Path=/fallback
 filters:
 - name: FallbackHeaders
 args:
 executionExceptionTypeHeaderName: Test-Header

In this example, after an execution exception occurs while running the circuit breaker, the request
is forwarded to the fallback endpoint or handler in an application running on localhost:9994. The
headers with the exception type, message and (if available) root cause exception type and message
are added to that request by the FallbackHeaders filter.

You can overwrite the names of the headers in the configuration by setting the values of the
following arguments (shown with their default values):

• executionExceptionTypeHeaderName ("Execution-Exception-Type")

• executionExceptionMessageHeaderName ("Execution-Exception-Message")

• rootCauseExceptionTypeHeaderName ("Root-Cause-Exception-Type")

• rootCauseExceptionMessageHeaderName ("Root-Cause-Exception-Message")

For more information on circuit breakers and the gateway see the Hystrix GatewayFilter Factory
section or Spring Cloud CircuitBreaker Factory section.

16.6.8. The MapRequestHeader GatewayFilter Factory

The MapRequestHeader GatewayFilter factory takes fromHeader and toHeader parameters. It creates a
new named header (toHeader), and the value is extracted out of an existing named header
(fromHeader) from the incoming http request. If the input header does not exist, the filter has no
impact. If the new named header already exists, its values are augmented with the new values. The
following example configures a MapRequestHeader:

Example 68. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: map_request_header_route
 uri: https://example.org
 filters:
 - MapRequestHeader=Blue, X-Request-Red

This adds X-Request-Red:<values> header to the downstream request with updated values from the
incoming HTTP request’s Blue header.

16.6.9. The PrefixPath GatewayFilter Factory

The PrefixPath GatewayFilter factory takes a single prefix parameter. The following example
configures a PrefixPath GatewayFilter:

Example 69. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: prefixpath_route
 uri: https://example.org
 filters:
 - PrefixPath=/mypath

This will prefix /mypath to the path of all matching requests. So a request to /hello would be sent to
/mypath/hello.

16.6.10. The PreserveHostHeader GatewayFilter Factory

The PreserveHostHeader GatewayFilter factory has no parameters. This filter sets a request attribute
that the routing filter inspects to determine if the original host header should be sent, rather than
the host header determined by the HTTP client. The following example configures a
PreserveHostHeader GatewayFilter:

Example 70. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: preserve_host_route
 uri: https://example.org
 filters:
 - PreserveHostHeader

16.6.11. The RequestRateLimiter GatewayFilter Factory

The RequestRateLimiter GatewayFilter factory uses a RateLimiter implementation to determine if the
current request is allowed to proceed. If it is not, a status of HTTP 429 - Too Many Requests (by
default) is returned.

This filter takes an optional keyResolver parameter and parameters specific to the rate limiter
(described later in this section).

keyResolver is a bean that implements the KeyResolver interface. In configuration, reference the
bean by name using SpEL. #{@myKeyResolver} is a SpEL expression that references a bean named
myKeyResolver. The following listing shows the KeyResolver interface:

Example 71. KeyResolver.java

public interface KeyResolver {
 Mono<String> resolve(ServerWebExchange exchange);
}

The KeyResolver interface lets pluggable strategies derive the key for limiting requests. In future
milestone releases, there will be some KeyResolver implementations.

The default implementation of KeyResolver is the PrincipalNameKeyResolver, which retrieves the
Principal from the ServerWebExchange and calls Principal.getName().

By default, if the KeyResolver does not find a key, requests are denied. You can adjust this behavior
by setting the spring.cloud.gateway.filter.request-rate-limiter.deny-empty-key (true or false) and
spring.cloud.gateway.filter.request-rate-limiter.empty-key-status-code properties.

The RequestRateLimiter is not configurable with the "shortcut" notation. The
following example below is invalid:

Example 72. application.properties

INVALID SHORTCUT CONFIGURATION
spring.cloud.gateway.routes[0].filters[0]=RequestRateLimiter=2, 2,
#{@userkeyresolver}

The Redis RateLimiter

The Redis implementation is based off of work done at Stripe. It requires the use of the spring-boot-
starter-data-redis-reactive Spring Boot starter.

The algorithm used is the Token Bucket Algorithm.

The redis-rate-limiter.replenishRate property is how many requests per second you want a user
to be allowed to do, without any dropped requests. This is the rate at which the token bucket is
filled.

The redis-rate-limiter.burstCapacity property is the maximum number of requests a user is
allowed to do in a single second. This is the number of tokens the token bucket can hold. Setting this
value to zero blocks all requests.

The redis-rate-limiter.requestedTokens property is how many tokens a request costs. This is the
number of tokens taken from the bucket for each request and defaults to 1.

A steady rate is accomplished by setting the same value in replenishRate and burstCapacity.
Temporary bursts can be allowed by setting burstCapacity higher than replenishRate. In this case,
the rate limiter needs to be allowed some time between bursts (according to replenishRate), as two
consecutive bursts will result in dropped requests (HTTP 429 - Too Many Requests). The following
listing configures a redis-rate-limiter:

Rate limits bellow 1 request/s are accomplished by setting replenishRate to the wanted number of
requests, requestedTokens to the timespan in seconds and burstCapacity to the product of
replenishRate and requestedTokens, e.g. setting replenishRate=1, requestedTokens=60 and
burstCapacity=60 will result in a limit of 1 request/min.

https://stripe.com/blog/rate-limiters
https://en.wikipedia.org/wiki/Token_bucket

Example 73. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: requestratelimiter_route
 uri: https://example.org
 filters:
 - name: RequestRateLimiter
 args:
 redis-rate-limiter.replenishRate: 10
 redis-rate-limiter.burstCapacity: 20
 redis-rate-limiter.requestedTokens: 1

The following example configures a KeyResolver in Java:

Example 74. Config.java

@Bean
KeyResolver userKeyResolver() {
 return exchange ->
Mono.just(exchange.getRequest().getQueryParams().getFirst("user"));
}

This defines a request rate limit of 10 per user. A burst of 20 is allowed, but, in the next second, only
10 requests are available. The KeyResolver is a simple one that gets the user request parameter (note
that this is not recommended for production).

You can also define a rate limiter as a bean that implements the RateLimiter interface. In
configuration, you can reference the bean by name using SpEL. #{@myRateLimiter} is a SpEL
expression that references a bean with named myRateLimiter. The following listing defines a rate
limiter that uses the KeyResolver defined in the previous listing:

Example 75. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: requestratelimiter_route
 uri: https://example.org
 filters:
 - name: RequestRateLimiter
 args:
 rate-limiter: "#{@myRateLimiter}"
 key-resolver: "#{@userKeyResolver}"

16.6.12. The RedirectTo GatewayFilter Factory

The RedirectTo GatewayFilter factory takes two parameters, status and url. The status parameter
should be a 300 series redirect HTTP code, such as 301. The url parameter should be a valid URL.
This is the value of the Location header. For relative redirects, you should use uri: no://op as the
uri of your route definition. The following listing configures a RedirectTo GatewayFilter:

Example 76. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: prefixpath_route
 uri: https://example.org
 filters:
 - RedirectTo=302, https://acme.org

This will send a status 302 with a Location:https://acme.org header to perform a redirect.

16.6.13. The RemoveRequestHeader GatewayFilter Factory

The RemoveRequestHeader GatewayFilter factory takes a name parameter. It is the name of the header
to be removed. The following listing configures a RemoveRequestHeader GatewayFilter:

Example 77. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: removerequestheader_route
 uri: https://example.org
 filters:
 - RemoveRequestHeader=X-Request-Foo

This removes the X-Request-Foo header before it is sent downstream.

16.6.14. RemoveResponseHeader GatewayFilter Factory

The RemoveResponseHeader GatewayFilter factory takes a name parameter. It is the name of the header
to be removed. The following listing configures a RemoveResponseHeader GatewayFilter:

Example 78. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: removeresponseheader_route
 uri: https://example.org
 filters:
 - RemoveResponseHeader=X-Response-Foo

This will remove the X-Response-Foo header from the response before it is returned to the gateway
client.

To remove any kind of sensitive header, you should configure this filter for any routes for which
you may want to do so. In addition, you can configure this filter once by using
spring.cloud.gateway.default-filters and have it applied to all routes.

16.6.15. The RemoveRequestParameter GatewayFilter Factory

The RemoveRequestParameter GatewayFilter factory takes a name parameter. It is the name of the
query parameter to be removed. The following example configures a RemoveRequestParameter
GatewayFilter:

Example 79. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: removerequestparameter_route
 uri: https://example.org
 filters:
 - RemoveRequestParameter=red

This will remove the red parameter before it is sent downstream.

16.6.16. The RewritePath GatewayFilter Factory

The RewritePath GatewayFilter factory takes a path regexp parameter and a replacement parameter.
This uses Java regular expressions for a flexible way to rewrite the request path. The following
listing configures a RewritePath GatewayFilter:

Example 80. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: rewritepath_route
 uri: https://example.org
 predicates:
 - Path=/red/**
 filters:
 - RewritePath=/red(?<segment>/?.*), $\{segment}

For a request path of /red/blue, this sets the path to /blue before making the downstream request.
Note that the $ should be replaced with $\ because of the YAML specification.

16.6.17. RewriteLocationResponseHeader GatewayFilter Factory

The RewriteLocationResponseHeader GatewayFilter factory modifies the value of the Location

response header, usually to get rid of backend-specific details. It takes stripVersionMode,
locationHeaderName, hostValue, and protocolsRegex parameters. The following listing configures a
RewriteLocationResponseHeader GatewayFilter:

Example 81. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: rewritelocationresponseheader_route
 uri: http://example.org
 filters:
 - RewriteLocationResponseHeader=AS_IN_REQUEST, Location, ,

For example, for a request of POST api.example.com/some/object/name, the Location response header
value of object-service.prod.example.net/v2/some/object/id is rewritten as api.example.com/some/
object/id.

The stripVersionMode parameter has the following possible values: NEVER_STRIP, AS_IN_REQUEST
(default), and ALWAYS_STRIP.

• NEVER_STRIP: The version is not stripped, even if the original request path contains no version.

• AS_IN_REQUEST The version is stripped only if the original request path contains no version.

• ALWAYS_STRIP The version is always stripped, even if the original request path contains version.

The hostValue parameter, if provided, is used to replace the host:port portion of the response
Location header. If it is not provided, the value of the Host request header is used.

The protocolsRegex parameter must be a valid regex String, against which the protocol name is
matched. If it is not matched, the filter does nothing. The default is http|https|ftp|ftps.

16.6.18. The RewriteResponseHeader GatewayFilter Factory

The RewriteResponseHeader GatewayFilter factory takes name, regexp, and replacement parameters. It
uses Java regular expressions for a flexible way to rewrite the response header value. The following
example configures a RewriteResponseHeader GatewayFilter:

Example 82. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: rewriteresponseheader_route
 uri: https://example.org
 filters:
 - RewriteResponseHeader=X-Response-Red, , password=[^&]+, password=***

https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id

For a header value of /42?user=ford&password=omg!what&flag=true, it is set to
/42?user=ford&password=***&flag=true after making the downstream request. You must use $\ to
mean $ because of the YAML specification.

16.6.19. The SaveSession GatewayFilter Factory

The SaveSession GatewayFilter factory forces a WebSession::save operation before forwarding the
call downstream. This is of particular use when using something like Spring Session with a lazy
data store and you need to ensure the session state has been saved before making the forwarded
call. The following example configures a SaveSession GatewayFilter:

Example 83. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: save_session
 uri: https://example.org
 predicates:
 - Path=/foo/**
 filters:
 - SaveSession

If you integrate Spring Security with Spring Session and want to ensure security details have been
forwarded to the remote process, this is critical.

16.6.20. The SecureHeaders GatewayFilter Factory

The SecureHeaders GatewayFilter factory adds a number of headers to the response, per the
recommendation made in this blog post.

The following headers (shown with their default values) are added:

• X-Xss-Protection:1 (mode=block)

• Strict-Transport-Security (max-age=631138519)

• X-Frame-Options (DENY)

• X-Content-Type-Options (nosniff)

• Referrer-Policy (no-referrer)

• Content-Security-Policy (default-src 'self' https:; font-src 'self' https: data:; img-src
'self' https: data:; object-src 'none'; script-src https:; style-src 'self' https: 'unsafe-
inline)'

• X-Download-Options (noopen)

• X-Permitted-Cross-Domain-Policies (none)

To change the default values, set the appropriate property in the
spring.cloud.gateway.filter.secure-headers namespace. The following properties are available:

https://projects.spring.io/spring-session/
https://projects.spring.io/spring-security/
https://blog.appcanary.com/2017/http-security-headers.html

• xss-protection-header

• strict-transport-security

• x-frame-options

• x-content-type-options

• referrer-policy

• content-security-policy

• x-download-options

• x-permitted-cross-domain-policies

To disable the default values set the spring.cloud.gateway.filter.secure-headers.disable property
with comma-separated values. The following example shows how to do so:

spring.cloud.gateway.filter.secure-headers.disable=x-frame-options,strict-
transport-security

 The lowercase full name of the secure header needs to be used to disable it..

16.6.21. The SetPath GatewayFilter Factory

The SetPath GatewayFilter factory takes a path template parameter. It offers a simple way to
manipulate the request path by allowing templated segments of the path. This uses the URI
templates from Spring Framework. Multiple matching segments are allowed. The following
example configures a SetPath GatewayFilter:

Example 84. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setpath_route
 uri: https://example.org
 predicates:
 - Path=/red/{segment}
 filters:
 - SetPath=/{segment}

For a request path of /red/blue, this sets the path to /blue before making the downstream request.

16.6.22. The SetRequestHeader GatewayFilter Factory

The SetRequestHeader GatewayFilter factory takes name and value parameters. The following listing
configures a SetRequestHeader GatewayFilter:

Example 85. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setrequestheader_route
 uri: https://example.org
 filters:
 - SetRequestHeader=X-Request-Red, Blue

This GatewayFilter replaces (rather than adding) all headers with the given name. So, if the
downstream server responded with a X-Request-Red:1234, this would be replaced with X-Request-
Red:Blue, which is what the downstream service would receive.

SetRequestHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and are expanded at runtime. The following example configures an SetRequestHeader
GatewayFilter that uses a variable:

Example 86. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setrequestheader_route
 uri: https://example.org
 predicates:
 - Host: {segment}.myhost.org
 filters:
 - SetRequestHeader=foo, bar-{segment}

16.6.23. The SetResponseHeader GatewayFilter Factory

The SetResponseHeader GatewayFilter factory takes name and value parameters. The following listing
configures a SetResponseHeader GatewayFilter:

Example 87. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setresponseheader_route
 uri: https://example.org
 filters:
 - SetResponseHeader=X-Response-Red, Blue

This GatewayFilter replaces (rather than adding) all headers with the given name. So, if the
downstream server responded with a X-Response-Red:1234, this is replaced with X-Response-
Red:Blue, which is what the gateway client would receive.

SetResponseHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and will be expanded at runtime. The following example configures an
SetResponseHeader GatewayFilter that uses a variable:

Example 88. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setresponseheader_route
 uri: https://example.org
 predicates:
 - Host: {segment}.myhost.org
 filters:
 - SetResponseHeader=foo, bar-{segment}

16.6.24. The SetStatus GatewayFilter Factory

The SetStatus GatewayFilter factory takes a single parameter, status. It must be a valid Spring
HttpStatus. It may be the integer value 404 or the string representation of the enumeration:
NOT_FOUND. The following listing configures a SetStatus GatewayFilter:

Example 89. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setstatusstring_route
 uri: https://example.org
 filters:
 - SetStatus=BAD_REQUEST
 - id: setstatusint_route
 uri: https://example.org
 filters:
 - SetStatus=401

In either case, the HTTP status of the response is set to 401.

You can configure the SetStatus GatewayFilter to return the original HTTP status code from the
proxied request in a header in the response. The header is added to the response if configured with
the following property:

Example 90. application.yml

spring:
 cloud:
 gateway:
 set-status:
 original-status-header-name: original-http-status

16.6.25. The StripPrefix GatewayFilter Factory

The StripPrefix GatewayFilter factory takes one parameter, parts. The parts parameter indicates
the number of parts in the path to strip from the request before sending it downstream. The
following listing configures a StripPrefix GatewayFilter:

Example 91. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: nameRoot
 uri: https://nameservice
 predicates:
 - Path=/name/**
 filters:
 - StripPrefix=2

When a request is made through the gateway to /name/blue/red, the request made to nameservice
looks like nameservice/red.

16.6.26. The Retry GatewayFilter Factory

The Retry GatewayFilter factory supports the following parameters:

• retries: The number of retries that should be attempted.

• statuses: The HTTP status codes that should be retried, represented by using
org.springframework.http.HttpStatus.

• methods: The HTTP methods that should be retried, represented by using
org.springframework.http.HttpMethod.

• series: The series of status codes to be retried, represented by using
org.springframework.http.HttpStatus.Series.

• exceptions: A list of thrown exceptions that should be retried.

• backoff: The configured exponential backoff for the retries. Retries are performed after a
backoff interval of firstBackoff * (factor ^ n), where n is the iteration. If maxBackoff is
configured, the maximum backoff applied is limited to maxBackoff. If basedOnPreviousValue is
true, the backoff is calculated byusing prevBackoff * factor.

The following defaults are configured for Retry filter, if enabled:

• retries: Three times

• series: 5XX series

• methods: GET method

• exceptions: IOException and TimeoutException

• backoff: disabled

The following listing configures a Retry GatewayFilter:

https://nameservice/red
https://nameservice/red
https://nameservice/red

Example 92. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: retry_test
 uri: http://localhost:8080/flakey
 predicates:
 - Host=*.retry.com
 filters:
 - name: Retry
 args:
 retries: 3
 statuses: BAD_GATEWAY
 methods: GET,POST
 backoff:
 firstBackoff: 10ms
 maxBackoff: 50ms
 factor: 2
 basedOnPreviousValue: false

When using the retry filter with a forward: prefixed URL, the target endpoint
should be written carefully so that, in case of an error, it does not do anything that
could result in a response being sent to the client and committed. For example, if
the target endpoint is an annotated controller, the target controller method should
not return ResponseEntity with an error status code. Instead, it should throw an
Exception or signal an error (for example, through a Mono.error(ex) return value),
which the retry filter can be configured to handle by retrying.

When using the retry filter with any HTTP method with a body, the body will be
cached and the gateway will become memory constrained. The body is cached in a
request attribute defined by ServerWebExchangeUtils.CACHED_REQUEST_BODY_ATTR. The
type of the object is a org.springframework.core.io.buffer.DataBuffer.

16.6.27. The RequestSize GatewayFilter Factory

When the request size is greater than the permissible limit, the RequestSize GatewayFilter factory
can restrict a request from reaching the downstream service. The filter takes a maxSize parameter.
The maxSize is a `DataSize type, so values can be defined as a number followed by an optional
DataUnit suffix such as 'KB' or 'MB'. The default is 'B' for bytes. It is the permissible size limit of the
request defined in bytes. The following listing configures a RequestSize GatewayFilter:

Example 93. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: request_size_route
 uri: http://localhost:8080/upload
 predicates:
 - Path=/upload
 filters:
 - name: RequestSize
 args:
 maxSize: 5000000

The RequestSize GatewayFilter factory sets the response status as 413 Payload Too Large with an
additional header errorMessage when the request is rejected due to size. The following example
shows such an errorMessage:

errorMessage` : `Request size is larger than permissible limit. Request size is
6.0 MB where permissible limit is 5.0 MB

The default request size is set to five MB if not provided as a filter argument in the
route definition.

16.6.28. The SetRequestHost GatewayFilter Factory

There are certain situation when the host header may need to be overridden. In this situation, the
SetRequestHost GatewayFilter factory can replace the existing host header with a specified vaue. The
filter takes a host parameter. The following listing configures a SetRequestHost GatewayFilter:

Example 94. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: set_request_host_header_route
 uri: http://localhost:8080/headers
 predicates:
 - Path=/headers
 filters:
 - name: SetRequestHost
 args:
 host: example.org

The SetRequestHost GatewayFilter factory replaces the value of the host header with example.org.

16.6.29. Modify a Request Body GatewayFilter Factory

You can use the ModifyRequestBody filter filter to modify the request body before it is sent
downstream by the gateway.

 This filter can be configured only by using the Java DSL.

The following listing shows how to modify a request body GatewayFilter:

@Bean
public RouteLocator routes(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("rewrite_request_obj", r -> r.host("*.rewriterequestobj.org")
 .filters(f -> f.prefixPath("/httpbin")
 .modifyRequestBody(String.class, Hello.class,
MediaType.APPLICATION_JSON_VALUE,
 (exchange, s) -> return Mono.just(new
Hello(s.toUpperCase())))).uri(uri))
 .build();
}

static class Hello {
 String message;

 public Hello() { }

 public Hello(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

16.6.30. Modify a Response Body GatewayFilter Factory

You can use the ModifyResponseBody filter to modify the response body before it is sent back to the
client.

 This filter can be configured only by using the Java DSL.

The following listing shows how to modify a response body GatewayFilter:

@Bean
public RouteLocator routes(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("rewrite_response_upper", r -> r.host("*.rewriteresponseupper.org")
 .filters(f -> f.prefixPath("/httpbin")
 .modifyResponseBody(String.class, String.class,
 (exchange, s) -> Mono.just(s.toUpperCase()))).uri(uri)
 .build();
}

16.6.31. Default Filters

To add a filter and apply it to all routes, you can use spring.cloud.gateway.default-filters. This
property takes a list of filters. The following listing defines a set of default filters:

Example 95. application.yml

spring:
 cloud:
 gateway:
 default-filters:
 - AddResponseHeader=X-Response-Default-Red, Default-Blue
 - PrefixPath=/httpbin

16.7. Global Filters
The GlobalFilter interface has the same signature as GatewayFilter. These are special filters that
are conditionally applied to all routes.

 This interface and its usage are subject to change in future milestone releases.

16.7.1. Combined Global Filter and GatewayFilter Ordering

When a request matches a route, the filtering web handler adds all instances of GlobalFilter and all
route-specific instances of GatewayFilter to a filter chain. This combined filter chain is sorted by the
org.springframework.core.Ordered interface, which you can set by implementing the getOrder()
method.

As Spring Cloud Gateway distinguishes between “pre” and “post” phases for filter logic execution
(see How it Works), the filter with the highest precedence is the first in the “pre”-phase and the last
in the “post”-phase.

The following listing configures a filter chain:

Example 96. ExampleConfiguration.java

@Bean
public GlobalFilter customFilter() {
 return new CustomGlobalFilter();
}

public class CustomGlobalFilter implements GlobalFilter, Ordered {

 @Override
 public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain)
{
 log.info("custom global filter");
 return chain.filter(exchange);
 }

 @Override
 public int getOrder() {
 return -1;
 }
}

16.7.2. Forward Routing Filter

The ForwardRoutingFilter looks for a URI in the exchange attribute
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR. If the URL has a forward scheme (such as
forward:///localendpoint), it uses the Spring DispatcherHandler to handle the request. The path part
of the request URL is overridden with the path in the forward URL. The unmodified original URL is
appended to the list in the ServerWebExchangeUtils.GATEWAY_ORIGINAL_REQUEST_URL_ATTR attribute.

16.7.3. The LoadBalancerClient Filter

The LoadBalancerClientFilter looks for a URI in the exchange attribute named
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR. If the URL has a scheme of lb (such as
lb://myservice), it uses the Spring Cloud LoadBalancerClient to resolve the name (myservice in this
case) to an actual host and port and replaces the URI in the same attribute. The unmodified original
URL is appended to the list in the ServerWebExchangeUtils.GATEWAY_ORIGINAL_REQUEST_URL_ATTR

attribute. The filter also looks in the ServerWebExchangeUtils.GATEWAY_SCHEME_PREFIX_ATTR attribute to
see if it equals lb. If so, the same rules apply. The following listing configures a
LoadBalancerClientFilter:

Example 97. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: myRoute
 uri: lb://service
 predicates:
 - Path=/service/**

By default, when a service instance cannot be found in the LoadBalancer, a 503 is
returned. You can configure the Gateway to return a 404 by setting
spring.cloud.gateway.loadbalancer.use404=true.

The isSecure value of the ServiceInstance returned from the LoadBalancer

overrides the scheme specified in the request made to the Gateway. For example, if
the request comes into the Gateway over HTTPS but the ServiceInstance indicates it
is not secure, the downstream request is made over HTTP. The opposite situation
can also apply. However, if GATEWAY_SCHEME_PREFIX_ATTR is specified for the route in
the Gateway configuration, the prefix is stripped and the resulting scheme from
the route URL overrides the ServiceInstance configuration.

LoadBalancerClientFilter uses a blocking ribbon LoadBalancerClient under the
hood. We suggest you use ReactiveLoadBalancerClientFilter instead. You can
switch to it by setting the value of the spring.cloud.loadbalancer.ribbon.enabled to
false.

16.7.4. The ReactiveLoadBalancerClientFilter

The ReactiveLoadBalancerClientFilter looks for a URI in the exchange attribute named
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR. If the URL has a lb scheme (such as
lb://myservice), it uses the Spring Cloud ReactorLoadBalancer to resolve the name (myservice in this
example) to an actual host and port and replaces the URI in the same attribute. The unmodified
original URL is appended to the list in the
ServerWebExchangeUtils.GATEWAY_ORIGINAL_REQUEST_URL_ATTR attribute. The filter also looks in the
ServerWebExchangeUtils.GATEWAY_SCHEME_PREFIX_ATTR attribute to see if it equals lb. If so, the same
rules apply. The following listing configures a ReactiveLoadBalancerClientFilter:

Example 98. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: myRoute
 uri: lb://service
 predicates:
 - Path=/service/**

By default, when a service instance cannot be found by the ReactorLoadBalancer, a
503 is returned. You can configure the gateway to return a 404 by setting
spring.cloud.gateway.loadbalancer.use404=true.

The isSecure value of the ServiceInstance returned from the
ReactiveLoadBalancerClientFilter overrides the scheme specified in the request
made to the Gateway. For example, if the request comes into the Gateway over
HTTPS but the ServiceInstance indicates it is not secure, the downstream request is
made over HTTP. The opposite situation can also apply. However, if
GATEWAY_SCHEME_PREFIX_ATTR is specified for the route in the Gateway configuration,
the prefix is stripped and the resulting scheme from the route URL overrides the
ServiceInstance configuration.

16.7.5. The Netty Routing Filter

The Netty routing filter runs if the URL located in the
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute has a http or https scheme. It
uses the Netty HttpClient to make the downstream proxy request. The response is put in the
ServerWebExchangeUtils.CLIENT_RESPONSE_ATTR exchange attribute for use in a later filter. (There is
also an experimental WebClientHttpRoutingFilter that performs the same function but does not
require Netty.)

16.7.6. The Netty Write Response Filter

The NettyWriteResponseFilter runs if there is a Netty HttpClientResponse in the
ServerWebExchangeUtils.CLIENT_RESPONSE_ATTR exchange attribute. It runs after all other filters have
completed and writes the proxy response back to the gateway client response. (There is also an
experimental WebClientWriteResponseFilter that performs the same function but does not require
Netty.)

16.7.7. The RouteToRequestUrl Filter

If there is a Route object in the ServerWebExchangeUtils.GATEWAY_ROUTE_ATTR exchange attribute, the
RouteToRequestUrlFilter runs. It creates a new URI, based off of the request URI but updated with
the URI attribute of the Route object. The new URI is placed in the

ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute`.

If the URI has a scheme prefix, such as lb:ws://serviceid, the lb scheme is stripped from the URI
and placed in the ServerWebExchangeUtils.GATEWAY_SCHEME_PREFIX_ATTR for use later in the filter
chain.

16.7.8. The Websocket Routing Filter

If the URL located in the ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute has a
ws or wss scheme, the websocket routing filter runs. It uses the Spring WebSocket infrastructure to
forward the websocket request downstream.

You can load-balance websockets by prefixing the URI with lb, such as lb:ws://serviceid.

If you use SockJS as a fallback over normal HTTP, you should configure a normal
HTTP route as well as the websocket Route.

The following listing configures a websocket routing filter:

Example 99. application.yml

spring:
 cloud:
 gateway:
 routes:
 # SockJS route
 - id: websocket_sockjs_route
 uri: http://localhost:3001
 predicates:
 - Path=/websocket/info/**
 # Normal Websocket route
 - id: websocket_route
 uri: ws://localhost:3001
 predicates:
 - Path=/websocket/**

16.7.9. The Gateway Metrics Filter

To enable gateway metrics, add spring-boot-starter-actuator as a project dependency. Then, by
default, the gateway metrics filter runs as long as the property
spring.cloud.gateway.metrics.enabled is not set to false. This filter adds a timer metric named
gateway.requests with the following tags:

• routeId: The route ID.

• routeUri: The URI to which the API is routed.

• outcome: The outcome, as classified by HttpStatus.Series.

https://github.com/sockjs
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/HttpStatus.Series.html

• status: The HTTP status of the request returned to the client.

• httpStatusCode: The HTTP Status of the request returned to the client.

• httpMethod: The HTTP method used for the request.

These metrics are then available to be scraped from /actuator/metrics/gateway.requests and can be
easily integrated with Prometheus to create a Grafana dashboard.

To enable the prometheus endpoint, add micrometer-registry-prometheus as a
project dependency.

16.7.10. Marking An Exchange As Routed

After the gateway has routed a ServerWebExchange, it marks that exchange as “routed” by adding
gatewayAlreadyRouted to the exchange attributes. Once a request has been marked as routed, other
routing filters will not route the request again, essentially skipping the filter. There are convenience
methods that you can use to mark an exchange as routed or check if an exchange has already been
routed.

• ServerWebExchangeUtils.isAlreadyRouted takes a ServerWebExchange object and checks if it has
been “routed”.

• ServerWebExchangeUtils.setAlreadyRouted takes a ServerWebExchange object and marks it as
“routed”.

16.8. HttpHeadersFilters
HttpHeadersFilters are applied to requests before sending them downstream, such as in the
NettyRoutingFilter.

16.8.1. Forwarded Headers Filter

The Forwarded Headers Filter creates a Forwarded header to send to the downstream service. It adds
the Host header, scheme and port of the current request to any existing Forwarded header.

16.8.2. RemoveHopByHop Headers Filter

The RemoveHopByHop Headers Filter removes headers from forwarded requests. The default list of
headers that is removed comes from the IETF.

The default removed headers are:

• Connection

• Keep-Alive

• Proxy-Authenticate

• Proxy-Authorization

• TE

• Trailer

images/gateway-grafana-dashboard.jpeg
gateway-grafana-dashboard.json
https://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-14#section-7.1.3

• Transfer-Encoding

• Upgrade

To change this, set the spring.cloud.gateway.filter.remove-non-proxy-headers.headers property to
the list of header names to remove.

16.8.3. XForwarded Headers Filter

The XForwarded Headers Filter creates various a X-Forwarded-* headers to send to the downstream
service. It users the Host header, scheme, port and path of the current request to create the various
headers.

Creating of individual headers can be controlled by the following boolean properties (defaults to
true):

• spring.cloud.gateway.x-forwarded.for-enabled

• spring.cloud.gateway.x-forwarded.host-enabled

• spring.cloud.gateway.x-forwarded.port-enabled

• spring.cloud.gateway.x-forwarded.proto-enabled

• spring.cloud.gateway.x-forwarded.prefix-enabled

Appending multiple headers can be controlled by the following boolean properties (defaults to
true):

• spring.cloud.gateway.x-forwarded.for-append

• spring.cloud.gateway.x-forwarded.host-append

• spring.cloud.gateway.x-forwarded.port-append

• spring.cloud.gateway.x-forwarded.proto-append

• spring.cloud.gateway.x-forwarded.prefix-append

16.9. TLS and SSL
The gateway can listen for requests on HTTPS by following the usual Spring server configuration.
The following example shows how to do so:

Example 100. application.yml

server:
 ssl:
 enabled: true
 key-alias: scg
 key-store-password: scg1234
 key-store: classpath:scg-keystore.p12
 key-store-type: PKCS12

You can route gateway routes to both HTTP and HTTPS backends. If you are routing to an HTTPS

backend, you can configure the gateway to trust all downstream certificates with the following
configuration:

Example 101. application.yml

spring:
 cloud:
 gateway:
 httpclient:
 ssl:
 useInsecureTrustManager: true

Using an insecure trust manager is not suitable for production. For a production deployment, you
can configure the gateway with a set of known certificates that it can trust with the following
configuration:

Example 102. application.yml

spring:
 cloud:
 gateway:
 httpclient:
 ssl:
 trustedX509Certificates:
 - cert1.pem
 - cert2.pem

If the Spring Cloud Gateway is not provisioned with trusted certificates, the default trust store is
used (which you can override by setting the javax.net.ssl.trustStore system property).

16.9.1. TLS Handshake

The gateway maintains a client pool that it uses to route to backends. When communicating over
HTTPS, the client initiates a TLS handshake. A number of timeouts are associated with this
handshake. You can configure these timeouts can be configured (defaults shown) as follows:

Example 103. application.yml

spring:
 cloud:
 gateway:
 httpclient:
 ssl:
 handshake-timeout-millis: 10000
 close-notify-flush-timeout-millis: 3000
 close-notify-read-timeout-millis: 0

16.10. Configuration
Configuration for Spring Cloud Gateway is driven by a collection of RouteDefinitionLocator
instances. The following listing shows the definition of the RouteDefinitionLocator interface:

Example 104. RouteDefinitionLocator.java

public interface RouteDefinitionLocator {
 Flux<RouteDefinition> getRouteDefinitions();
}

By default, a PropertiesRouteDefinitionLocator loads properties by using Spring Boot’s
@ConfigurationProperties mechanism.

The earlier configuration examples all use a shortcut notation that uses positional arguments
rather than named ones. The following two examples are equivalent:

Example 105. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setstatus_route
 uri: https://example.org
 filters:
 - name: SetStatus
 args:
 status: 401
 - id: setstatusshortcut_route
 uri: https://example.org
 filters:
 - SetStatus=401

For some usages of the gateway, properties are adequate, but some production use cases benefit
from loading configuration from an external source, such as a database. Future milestone versions
will have RouteDefinitionLocator implementations based off of Spring Data Repositories, such as
Redis, MongoDB, and Cassandra.

16.11. Route Metadata Configuration
You can configure additional parameters for each route by using metadata, as follows:

Example 106. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: route_with_metadata
 uri: https://example.org
 metadata:
 optionName: "OptionValue"
 compositeObject:
 name: "value"
 iAmNumber: 1

You could acquire all metadata properties from an exchange, as follows:

Route route = exchange.getAttribute(GATEWAY_ROUTE_ATTR);
// get all metadata properties
route.getMetadata();
// get a single metadata property
route.getMetadata(someKey);

16.12. Http timeouts configuration
Http timeouts (response and connect) can be configured for all routes and overridden for each
specific route.

16.12.1. Global timeouts

To configure Global http timeouts:
connect-timeout must be specified in milliseconds.
response-timeout must be specified as a java.time.Duration

global http timeouts example

spring:
 cloud:
 gateway:
 httpclient:
 connect-timeout: 1000
 response-timeout: 5s

16.12.2. Per-route timeouts

To configure per-route timeouts:
connect-timeout must be specified in milliseconds.
response-timeout must be specified in milliseconds.

per-route http timeouts configuration via configuration

 - id: per_route_timeouts
 uri: https://example.org
 predicates:
 - name: Path
 args:
 pattern: /delay/{timeout}
 metadata:
 response-timeout: 200
 connect-timeout: 200

per-route timeouts configuration using Java DSL

import static
org.springframework.cloud.gateway.support.RouteMetadataUtils.CONNECT_TIMEOUT_ATTR;
import static
org.springframework.cloud.gateway.support.RouteMetadataUtils.RESPONSE_TIMEOUT_ATTR;

 @Bean
 public RouteLocator customRouteLocator(RouteLocatorBuilder routeBuilder){
 return routeBuilder.routes()
 .route("test1", r -> {
 return r.host("*.somehost.org").and().path("/somepath")
 .filters(f -> f.addRequestHeader("header1", "header-value-1"))
 .uri("http://someuri")
 .metadata(RESPONSE_TIMEOUT_ATTR, 200)
 .metadata(CONNECT_TIMEOUT_ATTR, 200);
 })
 .build();
 }

16.12.3. Fluent Java Routes API

To allow for simple configuration in Java, the RouteLocatorBuilder bean includes a fluent API. The
following listing shows how it works:

Example 107. GatewaySampleApplication.java

// static imports from GatewayFilters and RoutePredicates
@Bean
public RouteLocator customRouteLocator(RouteLocatorBuilder builder,
ThrottleGatewayFilterFactory throttle) {
 return builder.routes()
 .route(r -> r.host("**.abc.org").and().path("/image/png")
 .filters(f ->
 f.addResponseHeader("X-TestHeader", "foobar"))
 .uri("http://httpbin.org:80")
)
 .route(r -> r.path("/image/webp")
 .filters(f ->
 f.addResponseHeader("X-AnotherHeader", "baz"))
 .uri("http://httpbin.org:80")
 .metadata("key", "value")
)
 .route(r -> r.order(-1)
 .host("**.throttle.org").and().path("/get")
 .filters(f -> f.filter(throttle.apply(1,
 1,
 10,
 TimeUnit.SECONDS)))
 .uri("http://httpbin.org:80")
 .metadata("key", "value")
)
 .build();
}

This style also allows for more custom predicate assertions. The predicates defined by
RouteDefinitionLocator beans are combined using logical and. By using the fluent Java API, you can
use the and(), or(), and negate() operators on the Predicate class.

16.12.4. The DiscoveryClient Route Definition Locator

You can configure the gateway to create routes based on services registered with a DiscoveryClient
compatible service registry.

To enable this, set spring.cloud.gateway.discovery.locator.enabled=true and make sure a
DiscoveryClient implementation (such as Netflix Eureka, Consul, or Zookeeper) is on the classpath
and enabled.

Configuring Predicates and Filters For DiscoveryClient Routes

By default, the gateway defines a single predicate and filter for routes created with a
DiscoveryClient.

The default predicate is a path predicate defined with the pattern /serviceId/**, where serviceId is
the ID of the service from the DiscoveryClient.

The default filter is a rewrite path filter with the regex /serviceId/(?<remaining>.*) and the
replacement /${remaining}. This strips the service ID from the path before the request is sent
downstream.

If you want to customize the predicates or filters used by the DiscoveryClient routes, set
spring.cloud.gateway.discovery.locator.predicates[x] and
spring.cloud.gateway.discovery.locator.filters[y]. When doing so, you need to make sure to
include the default predicate and filter shown earlier, if you want to retain that functionality. The
following example shows what this looks like:

Example 108. application.properties

spring.cloud.gateway.discovery.locator.predicates[0].name: Path
spring.cloud.gateway.discovery.locator.predicates[0].args[pattern]:
"'/'+serviceId+'/**'"
spring.cloud.gateway.discovery.locator.predicates[1].name: Host
spring.cloud.gateway.discovery.locator.predicates[1].args[pattern]: "'**.foo.com'"
spring.cloud.gateway.discovery.locator.filters[0].name: Hystrix
spring.cloud.gateway.discovery.locator.filters[0].args[name]: serviceId
spring.cloud.gateway.discovery.locator.filters[1].name: RewritePath
spring.cloud.gateway.discovery.locator.filters[1].args[regexp]: "'/' + serviceId +
'/(?<remaining>.*)'"
spring.cloud.gateway.discovery.locator.filters[1].args[replacement]:
"'/${remaining}'"

16.13. Reactor Netty Access Logs
To enable Reactor Netty access logs, set -Dreactor.netty.http.server.accessLogEnabled=true.

 It must be a Java System Property, not a Spring Boot property.

You can configure the logging system to have a separate access log file. The following example
creates a Logback configuration:

Example 109. logback.xml

 <appender name="accessLog" class="ch.qos.logback.core.FileAppender">
 <file>access_log.log</file>
 <encoder>
 <pattern>%msg%n</pattern>
 </encoder>
 </appender>
 <appender name="async" class="ch.qos.logback.classic.AsyncAppender">
 <appender-ref ref="accessLog" />
 </appender>

 <logger name="reactor.netty.http.server.AccessLog" level="INFO"
additivity="false">
 <appender-ref ref="async"/>
 </logger>

16.14. CORS Configuration
You can configure the gateway to control CORS behavior. The “global” CORS configuration is a map
of URL patterns to Spring Framework CorsConfiguration. The following example configures CORS:

Example 110. application.yml

spring:
 cloud:
 gateway:
 globalcors:
 cors-configurations:
 '[/**]':
 allowedOrigins: "https://docs.spring.io"
 allowedMethods:
 - GET

In the preceding example, CORS requests are allowed from requests that originate from
docs.spring.io for all GET requested paths.

To provide the same CORS configuration to requests that are not handled by some gateway route
predicate, set the spring.cloud.gateway.globalcors.add-to-simple-url-handler-mapping property to
true. This is useful when you try to support CORS preflight requests and your route predicate does
not evalute to true because the HTTP method is options.

16.15. Actuator API
The /gateway actuator endpoint lets you monitor and interact with a Spring Cloud Gateway

https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/cors/CorsConfiguration.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/cors/CorsConfiguration.html

application. To be remotely accessible, the endpoint has to be enabled and exposed over HTTP or
JMX in the application properties. The following listing shows how to do so:

Example 111. application.properties

management.endpoint.gateway.enabled=true # default value
management.endpoints.web.exposure.include=gateway

16.15.1. Verbose Actuator Format

A new, more verbose format has been added to Spring Cloud Gateway. It adds more detail to each
route, letting you view the predicates and filters associated with each route along with any
configuration that is available. The following example configures /actuator/gateway/routes:

[
 {
 "predicate": "(Hosts: [**.addrequestheader.org] && Paths: [/headers], match
trailing slash: true)",
 "route_id": "add_request_header_test",
 "filters": [
 "[[AddResponseHeader X-Response-Default-Foo = 'Default-Bar'], order = 1]",
 "[[AddRequestHeader X-Request-Foo = 'Bar'], order = 1]",
 "[[PrefixPath prefix = '/httpbin'], order = 2]"
],
 "uri": "lb://testservice",
 "order": 0
 }
]

This feature is enabled by default. To disable it, set the following property:

Example 112. application.properties

spring.cloud.gateway.actuator.verbose.enabled=false

This will default to true in a future release.

16.15.2. Retrieving Route Filters

This section details how to retrieve route filters, including:

• Global Filters

• [gateway-route-filters]

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-enabling-endpoints
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-exposing-endpoints
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-exposing-endpoints

Global Filters

To retrieve the global filters applied to all routes, make a GET request to
/actuator/gateway/globalfilters. The resulting response is similar to the following:

{
 "org.springframework.cloud.gateway.filter.LoadBalancerClientFilter@77856cc5":
10100,
 "org.springframework.cloud.gateway.filter.RouteToRequestUrlFilter@4f6fd101":
10000,
 "org.springframework.cloud.gateway.filter.NettyWriteResponseFilter@32d22650":
-1,
 "org.springframework.cloud.gateway.filter.ForwardRoutingFilter@106459d9":
2147483647,
 "org.springframework.cloud.gateway.filter.NettyRoutingFilter@1fbd5e0":
2147483647,
 "org.springframework.cloud.gateway.filter.ForwardPathFilter@33a71d23": 0,
 "org.springframework.cloud.gateway.filter.AdaptCachedBodyGlobalFilter@135064ea":
2147483637,
 "org.springframework.cloud.gateway.filter.WebsocketRoutingFilter@23c05889":
2147483646
}

The response contains the details of the global filters that are in place. For each global filter, there is
a string representation of the filter object (for example,
org.springframework.cloud.gateway.filter.LoadBalancerClientFilter@77856cc5) and the
corresponding order in the filter chain.}

Route Filters

To retrieve the GatewayFilter factories applied to routes, make a GET request to
/actuator/gateway/routefilters. The resulting response is similar to the following:

{
 "[AddRequestHeaderGatewayFilterFactory@570ed9c configClass =
AbstractNameValueGatewayFilterFactory.NameValueConfig]": null,
 "[SecureHeadersGatewayFilterFactory@fceab5d configClass = Object]": null,
 "[SaveSessionGatewayFilterFactory@4449b273 configClass = Object]": null
}

The response contains the details of the GatewayFilter factories applied to any particular route. For
each factory there is a string representation of the corresponding object (for example,
[SecureHeadersGatewayFilterFactory@fceab5d configClass = Object]). Note that the null value is due
to an incomplete implementation of the endpoint controller, because it tries to set the order of the
object in the filter chain, which does not apply to a GatewayFilter factory object.

16.15.3. Refreshing the Route Cache

To clear the routes cache, make a POST request to /actuator/gateway/refresh. The request returns a
200 without a response body.

16.15.4. Retrieving the Routes Defined in the Gateway

To retrieve the routes defined in the gateway, make a GET request to /actuator/gateway/routes. The
resulting response is similar to the following:

[{
 "route_id": "first_route",
 "route_object": {
 "predicate":
"org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory$$La
mbda$432/1736826640@1e9d7e7d",
 "filters": [

"OrderedGatewayFilter{delegate=org.springframework.cloud.gateway.filter.factory.Pr
eserveHostHeaderGatewayFilterFactory$$Lambda$436/674480275@6631ef72, order=0}"
]
 },
 "order": 0
},
{
 "route_id": "second_route",
 "route_object": {
 "predicate":
"org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory$$La
mbda$432/1736826640@cd8d298",
 "filters": []
 },
 "order": 0
}]

The response contains the details of all the routes defined in the gateway. The following table
describes the structure of each element (each is a route) of the response:

Path Type Description

route_id String The route ID.

route_object.predicate Object The route predicate.

route_object.filters Array The GatewayFilter factories applied to the
route.

order Number The route order.

16.15.5. Retrieving Information about a Particular Route

To retrieve information about a single route, make a GET request to /actuator/gateway/routes/{id}
(for example, /actuator/gateway/routes/first_route). The resulting response is similar to the
following:

{
 "id": "first_route",
 "predicates": [{
 "name": "Path",
 "args": {"_genkey_0":"/first"}
 }],
 "filters": [],
 "uri": "https://www.uri-destination.org",
 "order": 0
}]

The following table describes the structure of the response:

Path Type Description

id String The route ID.

predicates Array The collection of route predicates. Each
item defines the name and the arguments
of a given predicate.

filters Array The collection of filters applied to the
route.

uri String The destination URI of the route.

order Number The route order.

16.15.6. Creating and Deleting a Particular Route

To create a route, make a POST request to /gateway/routes/{id_route_to_create} with a JSON body
that specifies the fields of the route (see Retrieving Information about a Particular Route).

To delete a route, make a DELETE request to /gateway/routes/{id_route_to_delete}.

16.15.7. Recap: The List of All endpoints

The folloiwng table below summarizes the Spring Cloud Gateway actuator endpoints (note that
each endpoint has /actuator/gateway as the base-path):

ID HTTP Method Description

globalfilters GET Displays the list of global filters applied to the routes.

ID HTTP Method Description

routefilters GET Displays the list of GatewayFilter factories applied to a
particular route.

refresh POST Clears the routes cache.

routes GET Displays the list of routes defined in the gateway.

routes/{id} GET Displays information about a particular route.

routes/{id} POST Adds a new route to the gateway.

routes/{id} DELETE Removes an existing route from the gateway.

16.16. Troubleshooting
This section covers common problems that may arise when you use Spring Cloud Gateway.

16.16.1. Log Levels

The following loggers may contain valuable troubleshooting information at the DEBUG and TRACE
levels:

• org.springframework.cloud.gateway

• org.springframework.http.server.reactive

• org.springframework.web.reactive

• org.springframework.boot.autoconfigure.web

• reactor.netty

• redisratelimiter

16.16.2. Wiretap

The Reactor Netty HttpClient and HttpServer can have wiretap enabled. When combined with
setting the reactor.netty log level to DEBUG or TRACE, it enables the logging of information, such as
headers and bodies sent and received across the wire. To enable wiretap, set
spring.cloud.gateway.httpserver.wiretap=true or spring.cloud.gateway.httpclient.wiretap=true for
the HttpServer and HttpClient, respectively.

16.17. Developer Guide
These are basic guides to writing some custom components of the gateway.

16.17.1. Writing Custom Route Predicate Factories

In order to write a Route Predicate you will need to implement RoutePredicateFactory. There is an
abstract class called AbstractRoutePredicateFactory which you can extend.

MyRoutePredicateFactory.java

public class MyRoutePredicateFactory extends
AbstractRoutePredicateFactory<HeaderRoutePredicateFactory.Config> {

 public MyRoutePredicateFactory() {
 super(Config.class);
 }

 @Override
 public Predicate<ServerWebExchange> apply(Config config) {
 // grab configuration from Config object
 return exchange -> {
 //grab the request
 ServerHttpRequest request = exchange.getRequest();
 //take information from the request to see if it
 //matches configuration.
 return matches(config, request);
 };
 }

 public static class Config {
 //Put the configuration properties for your filter here
 }

}

16.17.2. Writing Custom GatewayFilter Factories

To write a GatewayFilter, you must implement GatewayFilterFactory. You can extend an abstract
class called AbstractGatewayFilterFactory. The following examples show how to do so:

Example 113. PreGatewayFilterFactory.java

public class PreGatewayFilterFactory extends
AbstractGatewayFilterFactory<PreGatewayFilterFactory.Config> {

 public PreGatewayFilterFactory() {
 super(Config.class);
 }

 @Override
 public GatewayFilter apply(Config config) {
 // grab configuration from Config object
 return (exchange, chain) -> {
 //If you want to build a "pre" filter you need to manipulate the
 //request before calling chain.filter
 ServerHttpRequest.Builder builder = exchange.getRequest().mutate();
 //use builder to manipulate the request
 return
chain.filter(exchange.mutate().request(builder.build()).build());
 };
 }

 public static class Config {
 //Put the configuration properties for your filter here
 }

}

PostGatewayFilterFactory.java

public class PostGatewayFilterFactory extends
AbstractGatewayFilterFactory<PostGatewayFilterFactory.Config> {

 public PostGatewayFilterFactory() {
 super(Config.class);
 }

 @Override
 public GatewayFilter apply(Config config) {
 // grab configuration from Config object
 return (exchange, chain) -> {
 return chain.filter(exchange).then(Mono.fromRunnable(() -> {
 ServerHttpResponse response = exchange.getResponse();
 //Manipulate the response in some way
 }));
 };
 }

 public static class Config {
 //Put the configuration properties for your filter here
 }

}

Naming Custom Filters And References In Configuration

Custom filters class names should end in GatewayFilterFactory.

For example, to reference a filter named Something in configuration files, the filter must be in a class
named SomethingGatewayFilterFactory.

It is possible to create a gateway filter named without the GatewayFilterFactory
suffix, such as class AnotherThing. This filter could be referenced as AnotherThing
in configuration files. This is not a supported naming convention and this syntax
may be removed in future releases. Please update the filter name to be compliant.

16.17.3. Writing Custom Global Filters

To write a custom global filter, you must implement GlobalFilter interface. This applies the filter to
all requests.

The following examples show how to set up global pre and post filters, respectively:

@Bean
public GlobalFilter customGlobalFilter() {
 return (exchange, chain) -> exchange.getPrincipal()
 .map(Principal::getName)
 .defaultIfEmpty("Default User")
 .map(userName -> {
 //adds header to proxied request
 exchange.getRequest().mutate().header("CUSTOM-REQUEST-HEADER",
userName).build();
 return exchange;
 })
 .flatMap(chain::filter);
}

@Bean
public GlobalFilter customGlobalPostFilter() {
 return (exchange, chain) -> chain.filter(exchange)
 .then(Mono.just(exchange))
 .map(serverWebExchange -> {
 //adds header to response
 serverWebExchange.getResponse().getHeaders().set("CUSTOM-RESPONSE-
HEADER",

HttpStatus.OK.equals(serverWebExchange.getResponse().getStatusCode()) ? "It
worked": "It did not work");
 return serverWebExchange;
 })
 .then();
}

16.18. Building a Simple Gateway by Using Spring MVC
or Webflux

The following describes an alternative style gateway. None of the prior
documentation applies to what follows.

Spring Cloud Gateway provides a utility object called ProxyExchange. You can use it inside a regular
Spring web handler as a method parameter. It supports basic downstream HTTP exchanges
through methods that mirror the HTTP verbs. With MVC, it also supports forwarding to a local
handler through the forward() method. To use the ProxyExchange, include the right module in your
classpath (either spring-cloud-gateway-mvc or spring-cloud-gateway-webflux).

The following MVC example proxies a request to /test downstream to a remote server:

@RestController
@SpringBootApplication
public class GatewaySampleApplication {

 @Value("${remote.home}")
 private URI home;

 @GetMapping("/test")
 public ResponseEntity<?> proxy(ProxyExchange<byte[]> proxy) throws Exception {
 return proxy.uri(home.toString() + "/image/png").get();
 }

}

The following example does the same thing with Webflux:

@RestController
@SpringBootApplication
public class GatewaySampleApplication {

 @Value("${remote.home}")
 private URI home;

 @GetMapping("/test")
 public Mono<ResponseEntity<?>> proxy(ProxyExchange<byte[]> proxy) throws
Exception {
 return proxy.uri(home.toString() + "/image/png").get();
 }

}

Convenience methods on the ProxyExchange enable the handler method to discover and enhance the
URI path of the incoming request. For example, you might want to extract the trailing elements of a
path to pass them downstream:

@GetMapping("/proxy/path/**")
public ResponseEntity<?> proxyPath(ProxyExchange<byte[]> proxy) throws Exception {
 String path = proxy.path("/proxy/path/");
 return proxy.uri(home.toString() + "/foos/" + path).get();
}

All the features of Spring MVC and Webflux are available to gateway handler methods. As a result,

you can inject request headers and query parameters, for instance, and you can constrain the
incoming requests with declarations in the mapping annotation. See the documentation for
@RequestMapping in Spring MVC for more details of those features.

You can add headers to the downstream response by using the header() methods on ProxyExchange.

You can also manipulate response headers (and anything else you like in the response) by adding a
mapper to the get() method (and other methods). The mapper is a Function that takes the incoming
ResponseEntity and converts it to an outgoing one.

First-class support is provided for “sensitive” headers (by default, cookie and authorization), which
are not passed downstream, and for “proxy” (x-forwarded-*) headers.

16.19. Configuration properties
To see the list of all Spring Cloud Gateway related configuration properties, see the appendix.

appendix.html

Chapter 17. Spring Cloud Function
Mark Fisher, Dave Syer, Oleg Zhurakousky, Anshul Mehra

3.0.0.RC2

17.1. Introduction
Spring Cloud Function is a project with the following high-level goals:

• Promote the implementation of business logic via functions.

• Decouple the development lifecycle of business logic from any specific runtime target so that
the same code can run as a web endpoint, a stream processor, or a task.

• Support a uniform programming model across serverless providers, as well as the ability to run
standalone (locally or in a PaaS).

• Enable Spring Boot features (auto-configuration, dependency injection, metrics) on serverless
providers.

It abstracts away all of the transport details and infrastructure, allowing the developer to keep all
the familiar tools and processes, and focus firmly on business logic.

Here’s a complete, executable, testable Spring Boot application (implementing a simple string
manipulation):

@SpringBootApplication
public class Application {

 @Bean
 public Function<Flux<String>, Flux<String>> uppercase() {
 return flux -> flux.map(value -> value.toUpperCase());
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

It’s just a Spring Boot application, so it can be built, run and tested, locally and in a CI build, the
same way as any other Spring Boot application. The Function is from java.util and Flux is a
Reactive Streams Publisher from Project Reactor. The function can be accessed over HTTP or
messaging.

Spring Cloud Function has 4 main features:

In the nutshell Spring Cloud Function provides the following features: 1. Wrappers for @Beans of

https://www.reactive-streams.org/
https://projectreactor.io/

type Function, Consumer and Supplier, exposing them to the outside world as either HTTP endpoints
and/or message stream listeners/publishers with RabbitMQ, Kafka etc.

• Choice of programming styles - reactive, imperative or hybrid.

• Function composition and adaptation (e.g., composing imperative functions with reactive).

• Support for reactive function with multiple inputs and outputs allowing merging, joining and
other complex streaming operation to be handled by functions.

• Transparent type conversion of inputs and outputs.

• Packaging functions for deployments, specific to the target platform (e.g., Project Riff, AWS
Lambda and more)

• Adapters to expose function to the outside world as HTTP endpoints etc.

• Deploying a JAR file containing such an application context with an isolated classloader, so that
you can pack them together in a single JVM.

• Compiling strings which are Java function bodies into bytecode, and then turning them into @Beans
that can be wrapped as above.

• Adapters for AWS Lambda, Azure, Google Cloud Functions, Apache OpenWhisk and possibly other
"serverless" service providers.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

17.2. Getting Started
Build from the command line (and "install" the samples):

$./mvnw clean install

(If you like to YOLO add -DskipTests.)

Run one of the samples, e.g.

$ java -jar spring-cloud-function-samples/function-sample/target/*.jar

This runs the app and exposes its functions over HTTP, so you can convert a string to uppercase,
like this:

$ curl -H "Content-Type: text/plain" localhost:8080/uppercase -d Hello
HELLO

You can convert multiple strings (a Flux<String>) by separating them with new lines

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-azure
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-gcp
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-openwhisk
https://github.com/spring-cloud/spring-cloud-function/tree/master/docs/src/main/asciidoc

$ curl -H "Content-Type: text/plain" localhost:8080/uppercase -d 'Hello
> World'
HELLOWORLD

(You can use QJ in a terminal to insert a new line in a literal string like that.)

17.3. Programming model

17.3.1. Function Catalog and Flexible Function Signatures

One of the main features of Spring Cloud Function is to adapt and support a range of type
signatures for user-defined functions, while providing a consistent execution model. That’s why all
user defined functions are transformed into a canonical representation by FunctionCatalog.

While users don’t normally have to care about the FunctionCatalog at all, it is useful to know what
kind of functions are supported in user code.

It is also important to understand that Spring Cloud Function provides first class support for
reactive API provided by Project Reactor allowing reactive primitives such as Mono and Flux to be
used as types in user defined functions providing greater flexibility when choosing programming
model for your function implementation. Reactive programming model also enables functional
support for features that would be otherwise difficult to impossible to implement using imperative
programming style. For more on this please read Function Arity section.

17.3.2. Java 8 function support

Spring Cloud Function embraces and builds on top of the 3 core functional interfaces defined by
Java and available to us since Java 8.

• Supplier<O>

• Function<I, O>

• Consumer<I>

Supplier

Supplier can be reactive - Supplier<Flux<T>> or imperative - Supplier<T>. From the invocation
standpoint this should make no difference to the implementor of such Supplier. However, when
used within frameworks (e.g., Spring Cloud Stream), Suppliers, especially reactive, often used to
represent the source of the stream, therefore they are invoked once to get the stream (e.g., Flux) to
which consumers can subscribe to. In other words such suppliers represent an equivalent of an
infinite stream. However, the same reactive suppliers can also represent finite stream(s) (e.g., result
set on the polled JDBC data). In those cases such reactive suppliers must be hooked up to some
polling mechanism of the underlying framework.

To assist with that Spring Cloud Function provides a marker annotation
org.springframework.cloud.function.context.PollableSupplier to signal that such supplier produces
a finite stream and may need to be polled again. That said, it is important to understand that Spring

https://projectreactor.io/
https://spring.io/projects/spring-cloud-stream

Cloud Function itself provides no behavior for this annotation.

In addition PollableSupplier annotation exposes a splittable attribute to signal that produced
stream needs to be split (see Splitter EIP)

Here is the example:

@PollableSupplier(splittable = true)
public Supplier<Flux<String>> someSupplier() {
 return () -> {
 String v1 = String.valueOf(System.nanoTime());
 String v2 = String.valueOf(System.nanoTime());
 String v3 = String.valueOf(System.nanoTime());
 return Flux.just(v1, v2, v3);
 };
}

Function

Function can also be written in imperative or reactive way, yet unlike Supplier and Consumer there
are no special considerations for the implementor other then understanding that when used within
frameworks such as Spring Cloud Stream and others, reactive function is invoked only once to pass
a reference to the stream (Flux or Mono) and imperative is invoked once per event.

Consumer

Consumer is a little bit special because it has a void return type, which implies blocking, at least
potentially. Most likely you will not need to write Consumer<Flux<?>>, but if you do need to do that,
remember to subscribe to the input flux.

17.3.3. Function Composition

Function Composition is a feature that allows one to compose several functions into one. The core
support is based on function composition feature available with Function.andThen(..) support
available since Java 8. However on top of it, we provide few additional features.

Declarative Function Composition

This feature allows you to provide composition instruction in a declarative way using | (pipe) or ,
(comma) delimiter when providing spring.cloud.function.definition property.

For example

--spring.cloud.function.definition=uppercase|reverse

Here we effectively provided a definition of a single function which itself is a composition of
function uppercase and function reverse. In fact that is one of the reasons why the property name is
definition and not name, since the definition of a function can be a composition of several named

https://www.enterpriseintegrationpatterns.com/patterns/messaging/Sequencer.html
https://spring.io/projects/spring-cloud-stream
https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html#andThen-java.util.function.Function-

functions. And as mentioned you can use , instead of pipe (such as …
definition=uppercase,reverse).

Composing non-Functions

Spring Cloud Function also supports composing Supplier with Consumer or Function as well as
Function with Consumer. What’s important here is to understand the end product of such definitions.
Composing Supplier with Function still results in Supplier while composing Supplier with
Consumer will effectively render Runnable. Following the same logic composing Function with
Consumer will result in Consumer.

And of course you can’t compose uncomposable such as Consumer and Function, Consumer and
Supplier etc.

17.3.4. Function Routing

Since version 2.2 Spring Cloud Function provides routing feature allowing you to invoke a single
function which acts as a router to an actual function you wish to invoke This feature is very useful
in certain FAAS environments where maintaining configurations for several functions could be
cumbersome or exposing more then one function is not possible.

The RoutingFunction is registered in FunctionCatalog under the name functionRouter. For simplicity
and consistency you can also refer to RoutingFunction.FUNCTION_NAME constant.

This function has the following signature:

public class RoutingFunction implements Function<Object, Object> {
. . .
}

The routing instructions could be communicated in several ways;

Message Headers

If the input argument is of type Message<?>, you can communicate routing instruction by setting one
of spring.cloud.function.definition or spring.cloud.function.routing-expression Message headers.
For more static cases you can use spring.cloud.function.definition header which allows you to
provide the name of a single function (e.g., …definition=foo) or a composition instruction (e.g., …
definition=foo|bar|baz). For more dynamic cases you can use spring.cloud.function.routing-
expression header which allows you to use Spring Expression Language (SpEL) and provide SpEL
expression that should resolve into definition of a function (as described above).

SpEL evaluation context’s root object is the actual input argument, so in he case of
Message<?> you can construct expression that has access to both payload and
headers (e.g., spring.cloud.function.routing-expression=headers.function_name).

In specific execution environments/models the adapters are responsible to translate and
communicate spring.cloud.function.definition and/or spring.cloud.function.routing-expression
via Message header. For example, when using spring-cloud-function-web you can provide

spring.cloud.function.definition as an HTTP header and the framework will propagate it as well
as other HTTP headers as Message headers.

Application Properties

Routing instruction can also be communicated via spring.cloud.function.definition or
spring.cloud.function.routing-expression as application properties. The rules described in the
previous section apply here as well. The only difference is you provide these instructions as
application properties (e.g., --spring.cloud.function.definition=foo).

When dealing with reactive inputs (e.g., Publisher), routing instructions must only
be provided via Function properties. This is due to the nature of the reactive
functions which are invoked only once to pass a Publisher and the rest is handled
by the reactor, hence we can not access and/or rely on the routing instructions
communicated via individual values (e.g., Message).

17.3.5. Function Arity

There are times when a stream of data needs to be categorized and organized. For example,
consider a classic big-data use case of dealing with unorganized data containing, let’s say, ‘orders’
and ‘invoices’, and you want each to go into a separate data store. This is where function arity
(functions with multiple inputs and outputs) support comes to play.

Let’s look at an example of such a function (full implementation details are available here),

@Bean
public Function<Flux<Integer>, Tuple2<Flux<String>, Flux<String>>> organise() {
 return flux -> ...;
}

Given that Project Reactor is a core dependency of SCF, we are using its Tuple library. Tuples give us
a unique advantage by communicating to us both cardinality and type information. Both are
extremely important in the context of SCSt. Cardinality lets us know how many input and output
bindings need to be created and bound to the corresponding inputs and outputs of a function.
Awareness of the type information ensures proper type conversion.

Also, this is where the ‘index’ part of the naming convention for binding names comes into play,
since, in this function, the two output binding names are organise-out-0 and organise-out-1.

IMPORTANT: At the moment, function arity is only supported for reactive
functions (Function<TupleN<Flux<?>…>, TupleN<Flux<?>…>>) centered on Complex
event processing where evaluation and computation on confluence of events
typically requires view into a stream of events rather than single event.

17.3.6. Kotlin Lambda support

We also provide support for Kotlin lambdas (since v2.0). Consider the following:

https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream/src/test/java/org/springframework/cloud/stream/function/MultipleInputOutputFunctionTests.java#L342

@Bean
open fun kotlinSupplier(): () -> String {
 return { "Hello from Kotlin" }
}

@Bean
open fun kotlinFunction(): (String) -> String {
 return { it.toUpperCase() }
}

@Bean
open fun kotlinConsumer(): (String) -> Unit {
 return { println(it) }
}

The above represents Kotlin lambdas configured as Spring beans. The signature of each maps to a
Java equivalent of Supplier, Function and Consumer, and thus supported/recognized signatures by the
framework. While mechanics of Kotlin-to-Java mapping are outside of the scope of this
documentation, it is important to understand that the same rules for signature transformation
outlined in "Java 8 function support" section are applied here as well.

To enable Kotlin support all you need is to add spring-cloud-function-kotlin module to your
classpath which contains the appropriate autoconfiguration and supporting classes.

17.3.7. Function Component Scan

Spring Cloud Function will scan for implementations of Function, Consumer and Supplier in a
package called functions if it exists. Using this feature you can write functions that have no
dependencies on Spring - not even the @Component annotation is needed. If you want to use a
different package, you can set spring.cloud.function.scan.packages. You can also use
spring.cloud.function.scan.enabled=false to switch off the scan completely.

17.4. Standalone Web Applications
Functions could be automatically exported as HTTP endpoints.

The spring-cloud-function-web module has autoconfiguration that activates when it is included in a
Spring Boot web application (with MVC support). There is also a spring-cloud-starter-function-web
to collect all the optional dependencies in case you just want a simple getting started experience.

With the web configurations activated your app will have an MVC endpoint (on "/" by default, but
configurable with spring.cloud.function.web.path) that can be used to access the functions in the
application context where function name becomes part of the URL path. The supported content
types are plain text and JSON.

Method Path Request Response Status

GET /{supplier} - Items from the
named supplier

200 OK

POST /{consumer} JSON object or text Mirrors input and
pushes request
body into
consumer

202 Accepted

POST /{consumer} JSON array or text
with new lines

Mirrors input and
pushes body into
consumer one by
one

202 Accepted

POST /{function} JSON object or text The result of
applying the
named function

200 OK

POST /{function} JSON array or text
with new lines

The result of
applying the
named function

200 OK

GET /{function}/{item} - Convert the item
into an object and
return the result
of applying the
function

200 OK

As the table above shows the behaviour of the endpoint depends on the method and also the type of
incoming request data. When the incoming data is single valued, and the target function is declared
as obviously single valued (i.e. not returning a collection or Flux), then the response will also
contain a single value. For multi-valued responses the client can ask for a server-sent event stream
by sending `Accept: text/event-stream".

Functions and consumers that are declared with input and output in Message<?> will see the request
headers on the input messages, and the output message headers will be converted to HTTP headers.

When POSTing text the response format might be different with Spring Boot 2.0 and older versions,
depending on the content negotiation (provide content type and accept headers for the best
results).

See Testing Functional Applications to see the details and example on how to test such application.

17.4.1. Function Mapping rules

If there is only a single function (consumer etc.) in the catalog, the name in the path is optional. In
other words, providing you only have uppercase function in catalog curl -H "Content-Type:

text/plain" localhost:8080/uppercase -d hello and curl -H "Content-Type: text/plain"

localhost:8080/ -d hello calls are identical.

Composite functions can be addressed using pipes or commas to separate function names (pipes

are legal in URL paths, but a bit awkward to type on the command line). For example, curl -H
"Content-Type: text/plain" localhost:8080/uppercase,reverse -d hello.

For cases where there is more then a single function in catalog, each function will be exported and
mapped with function name being part of the path (e.g., localhost:8080/uppercase). In this scenario
you can still map specific function or function composition to the root path by providing
spring.cloud.function.definition property

For example,

--spring.cloud.function.definition=foo|bar

The above property will compose 'foo' and 'bar' function and map the composed function to the "/"
path.

17.4.2. Function Filtering rules

In situations where there are more then one function in catalog there may be a need to only export
certain functions or function compositions. In that case you can use the same
spring.cloud.function.definition property listing functions you intend to export delimited by ;.
Note that in this case nothing will be mapped to the root path and functions that are not listed
(including compositions) are not going to be exported

For example,

--spring.cloud.function.definition=foo;bar

This will only export function foo and function bar regardless how many functions are available in
catalog (e.g., localhost:8080/foo).

--spring.cloud.function.definition=foo|bar;baz

This will only export function composition foo|bar and function baz regardless how many functions
are available in catalog (e.g., localhost:8080/foo,bar).

17.5. Standalone Streaming Applications
To send or receive messages from a broker (such as RabbitMQ or Kafka) you can leverage spring-
cloud-stream project and it’s integration with Spring Cloud Function. Please refer to Spring Cloud
Function section of the Spring Cloud Stream reference manual for more details and examples.

17.6. Deploying a Packaged Function
Spring Cloud Function provides a "deployer" library that allows you to launch a jar file (or exploded
archive, or set of jar files) with an isolated class loader and expose the functions defined in it. This

https://cloud.spring.io/spring-cloud-static/spring-cloud-stream/current/reference/html/spring-cloud-stream.html#spring_cloud_function
https://cloud.spring.io/spring-cloud-static/spring-cloud-stream/current/reference/html/spring-cloud-stream.html#spring_cloud_function

is quite a powerful tool that would allow you to, for instance, adapt a function to a range of
different input-output adapters without changing the target jar file. Serverless platforms often have
this kind of feature built in, so you could see it as a building block for a function invoker in such a
platform (indeed the Riff Java function invoker uses this library).

The standard entry point is to add spring-cloud-function-deployer to the classpath, the deployer
kicks in and looks for some configuration to tell it where to find the function jar.

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-deployer</artifactId>
 <version>${spring.cloud.function.version}</version>
</dependency>

At a minimum the user has to provide a spring.cloud.function.location which is a URL or resource
location for the archive containing the functions. It can optionally use a maven: prefix to locate the
artifact via a dependency lookup (see FunctionProperties for complete details). A Spring Boot
application is bootstrapped from the jar file, using the MANIFEST.MF to locate a start class, so that a
standard Spring Boot fat jar works well, for example. If the target jar can be launched successfully
then the result is a function registered in the main application’s FunctionCatalog. The registered
function can be applied by code in the main application, even though it was created in an isolated
class loader (by deault).

Here is the example of deploying a JAR which contains an 'uppercase' function and invoking it .

@SpringBootApplication
public class DeployFunctionDemo {

 public static void main(String[] args) {
 ApplicationContext context = SpringApplication.run(DeployFunctionDemo.class,
 "--spring.cloud.function.location=..../target/uppercase-0.0.1-
SNAPSHOT.jar",
 "--spring.cloud.function.definition=uppercase");

 FunctionCatalog catalog = context.getBean(FunctionCatalog.class);
 Function<String, String> function = catalog.lookup("uppercase");
 System.out.println(function.apply("hello"));
 }
}

17.6.1. Supported Packaging Scenarios

Currently Spring Cloud Function supports several packaging scenarios to give you the most
flexibility when it comes to deploying functions.

Simple JAR

This packaging option implies no dependency on anything related to Spring. For example; Consider

https://projectriff.io

that such JAR contains the following class:

package function.example;
. . .
public class UpperCaseFunction implements Function<String, String> {
 @Override
 public String apply(String value) {
 return value.toUpperCase();
 }
}

All you need to do is specify location and function-class properties when deploying such package:

--spring.cloud.function.location=target/it/simplestjar/target/simplestjar
-1.0.0.RELEASE.jar
--spring.cloud.function.function-class=function.example.UpperCaseFunction

It’s conceivable in some cases that you might want to package multiple functions together. For such
scenarios you can use spring.cloud.function.function-class property to list several classes
delimiting them by ;.

For example,

--spring.cloud.function.function
-class=function.example.UpperCaseFunction;function.example.ReverseFunction

Here we are identifying two functions to deploy, which we can now access in function catalog by
name (e.g., catalog.lookup("reverseFunction");).

For more details please reference the complete sample available here. You can also find a
corresponding test in FunctionDeployerTests.

Spring Boot JAR

This packaging option implies there is a dependency on Spring Boot and that the JAR was generated
as Spring Boot JAR. That said, given that the deployed JAR runs in the isolated class loader, there
will not be any version conflict with the Spring Boot version used by the actual deployer. For
example; Consider that such JAR contains the following class (which could have some additional
Spring dependencies providing Spring/Spring Boot is on the classpath):

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/simplestjar
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L70

package function.example;
. . .
public class UpperCaseFunction implements Function<String, String> {
 @Override
 public String apply(String value) {
 return value.toUpperCase();
 }
}

As before all you need to do is specify location and function-class properties when deploying such
package:

--spring.cloud.function.location=target/it/simplestjar/target/simplestjar
-1.0.0.RELEASE.jar
--spring.cloud.function.function-class=function.example.UpperCaseFunction

For more details please reference the complete sample available here. You can also find a
corresponding test in FunctionDeployerTests.

Spring Boot Application

This packaging option implies your JAR is complete stand alone Spring Boot application with
functions as managed Spring beans. As before there is an obvious assumption that there is a
dependency on Spring Boot and that the JAR was generated as Spring Boot JAR. That said, given that
the deployed JAR runs in the isolated class loader, there will not be any version conflict with the
Spring Boot version used by the actual deployer. For example; Consider that such JAR contains the
following class:

package function.example;
. . .
@SpringBootApplication
public class SimpleFunctionAppApplication {

 public static void main(String[] args) {
 SpringApplication.run(SimpleFunctionAppApplication.class, args);
 }

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }
}

Given that we’re effectively dealing with another Spring Application context and that functions are
spring managed beans, in addition to the location property we also specify definition property
instead of function-class.

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/bootjar
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L50

--spring.cloud.function.location=target/it/bootapp/target/bootapp-1.0.0.RELEASE
-exec.jar
--spring.cloud.function.definition=uppercase

For more details please reference the complete sample available here. You can also find a
corresponding test in FunctionDeployerTests.

This particular deployment option may or may not have Spring Cloud Function on
it’s classpath. From the deployer perspective this doesn’t matter.

17.7. Functional Bean Definitions
Spring Cloud Function supports a "functional" style of bean declarations for small apps where you
need fast startup. The functional style of bean declaration was a feature of Spring Framework 5.0
with significant enhancements in 5.1.

17.7.1. Comparing Functional with Traditional Bean Definitions

Here’s a vanilla Spring Cloud Function application from with the familiar @Configuration and @Bean
declaration style:

@SpringBootApplication
public class DemoApplication {

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }

 public static void main(String[] args) {
 SpringApplication.run(DemoApplication.class, args);
 }

}

Now for the functional beans: the user application code can be recast into "functional" form, like
this:

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/bootapp
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L164

@SpringBootConfiguration
public class DemoApplication implements
ApplicationContextInitializer<GenericApplicationContext> {

 public static void main(String[] args) {
 FunctionalSpringApplication.run(DemoApplication.class, args);
 }

 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }

 @Override
 public void initialize(GenericApplicationContext context) {
 context.registerBean("demo", FunctionRegistration.class,
 () -> new FunctionRegistration<>(uppercase())
 .type(FunctionType.from(String.class).to(String.class)));
 }

}

The main differences are:

• The main class is an ApplicationContextInitializer.

• The @Bean methods have been converted to calls to context.registerBean()

• The @SpringBootApplication has been replaced with @SpringBootConfiguration to signify that we
are not enabling Spring Boot autoconfiguration, and yet still marking the class as an "entry
point".

• The SpringApplication from Spring Boot has been replaced with a FunctionalSpringApplication
from Spring Cloud Function (it’s a subclass).

The business logic beans that you register in a Spring Cloud Function app are of type
FunctionRegistration. This is a wrapper that contains both the function and information about the
input and output types. In the @Bean form of the application that information can be derived
reflectively, but in a functional bean registration some of it is lost unless we use a
FunctionRegistration.

An alternative to using an ApplicationContextInitializer and FunctionRegistration is to make the
application itself implement Function (or Consumer or Supplier). Example (equivalent to the above):

@SpringBootConfiguration
public class DemoApplication implements Function<String, String> {

 public static void main(String[] args) {
 FunctionalSpringApplication.run(DemoApplication.class, args);
 }

 @Override
 public String apply(String value) {
 return value.toUpperCase();
 }

}

It would also work if you add a separate, standalone class of type Function and register it with the
SpringApplication using an alternative form of the run() method. The main thing is that the generic
type information is available at runtime through the class declaration.

Suppose you have

@Component
public class CustomFunction implements Function<Flux<Foo>, Flux<Bar>> {
 @Override
 public Flux<Bar> apply(Flux<Foo> flux) {
 return flux.map(foo -> new Bar("This is a Bar object from Foo value: " +
foo.getValue()));
 }

}

You register it as such:

@Override
public void initialize(GenericApplicationContext context) {
 context.registerBean("function", FunctionRegistration.class,
 () -> new FunctionRegistration<>(new
CustomFunction()).type(CustomFunction.class));
}

17.7.2. Limitations of Functional Bean Declaration

Most Spring Cloud Function apps have a relatively small scope compared to the whole of Spring
Boot, so we are able to adapt it to these functional bean definitions easily. If you step outside that
limited scope, you can extend your Spring Cloud Function app by switching back to @Bean style
configuration, or by using a hybrid approach. If you want to take advantage of Spring Boot
autoconfiguration for integrations with external datastores, for example, you will need to use
@EnableAutoConfiguration. Your functions can still be defined using the functional declarations if

you want (i.e. the "hybrid" style), but in that case you will need to explicitly switch off the "full
functional mode" using spring.functional.enabled=false so that Spring Boot can take back control.

17.8. Testing Functional Applications
Spring Cloud Function also has some utilities for integration testing that will be very familiar to
Spring Boot users.

Suppose this is your application:

@SpringBootApplication
public class SampleFunctionApplication {

 public static void main(String[] args) {
 SpringApplication.run(SampleFunctionApplication.class, args);
 }

 @Bean
 public Function<String, String> uppercase() {
 return v -> v.toUpperCase();
 }
}

Here is an integration test for the HTTP server wrapping this application:

@SpringBootTest(classes = SampleFunctionApplication.class,
 webEnvironment = WebEnvironment.RANDOM_PORT)
public class WebFunctionTests {

 @Autowired
 private TestRestTemplate rest;

 @Test
 public void test() throws Exception {
 ResponseEntity<String> result = this.rest.exchange(
 RequestEntity.post(new URI("/uppercase")).body("hello"), String.class);
 System.out.println(result.getBody());
 }
}

or when function bean definition style is used:

@FunctionalSpringBootTest
public class WebFunctionTests {

 @Autowired
 private TestRestTemplate rest;

 @Test
 public void test() throws Exception {
 ResponseEntity<String> result = this.rest.exchange(
 RequestEntity.post(new URI("/uppercase")).body("hello"), String.class);
 System.out.println(result.getBody());
 }
}

This test is almost identical to the one you would write for the @Bean version of the same app - the
only difference is the @FunctionalSpringBootTest annotation, instead of the regular @SpringBootTest.
All the other pieces, like the @Autowired TestRestTemplate, are standard Spring Boot features.

And to help with correct dependencies here is the excerpt from POM

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.2.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-web</artifactId>
 <version>3.0.1.BUILD-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 <exclusions>
 <exclusion>
 <groupId>org.junit.vintage</groupId>
 <artifactId>junit-vintage-engine</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

Or you could write a test for a non-HTTP app using just the FunctionCatalog. For example:

@RunWith(SpringRunner.class)
@FunctionalSpringBootTest
public class FunctionalTests {

 @Autowired
 private FunctionCatalog catalog;

 @Test
 public void words() throws Exception {
 Function<String, String> function = catalog.lookup(Function.class,
 "uppercase");
 assertThat(function.apply("hello")).isEqualTo("HELLO");
 }

}

17.9. Dynamic Compilation
There is a sample app that uses the function compiler to create a function from a configuration
property. The vanilla "function-sample" also has that feature. And there are some scripts that you
can run to see the compilation happening at run time. To run these examples, change into the
scripts directory:

cd scripts

Also, start a RabbitMQ server locally (e.g. execute rabbitmq-server).

Start the Function Registry Service:

./function-registry.sh

Register a Function:

./registerFunction.sh -n uppercase -f "f->f.map(s->s.toString().toUpperCase())"

Run a REST Microservice using that Function:

./web.sh -f uppercase -p 9000
curl -H "Content-Type: text/plain" -H "Accept: text/plain" localhost:9000/uppercase -d
foo

Register a Supplier:

./registerSupplier.sh -n words -f "()->Flux.just(\"foo\",\"bar\")"

Run a REST Microservice using that Supplier:

./web.sh -s words -p 9001
curl -H "Accept: application/json" localhost:9001/words

Register a Consumer:

./registerConsumer.sh -n print -t String -f "System.out::println"

Run a REST Microservice using that Consumer:

./web.sh -c print -p 9002
curl -X POST -H "Content-Type: text/plain" -d foo localhost:9002/print

Run Stream Processing Microservices:

First register a streaming words supplier:

./registerSupplier.sh -n wordstream -f "()-
>Flux.interval(Duration.ofMillis(1000)).map(i->\"message-\"+i)"

Then start the source (supplier), processor (function), and sink (consumer) apps (in reverse order):

./stream.sh -p 9103 -i uppercaseWords -c print

./stream.sh -p 9102 -i words -f uppercase -o uppercaseWords

./stream.sh -p 9101 -s wordstream -o words

The output will appear in the console of the sink app (one message per second, converted to
uppercase):

MESSAGE-0
MESSAGE-1
MESSAGE-2
MESSAGE-3
MESSAGE-4
MESSAGE-5
MESSAGE-6
MESSAGE-7
MESSAGE-8
MESSAGE-9
...

17.10. Serverless Platform Adapters
As well as being able to run as a standalone process, a Spring Cloud Function application can be
adapted to run one of the existing serverless platforms. In the project there are adapters for AWS
Lambda, Azure, and Apache OpenWhisk. The Oracle Fn platform has its own Spring Cloud Function
adapter. And Riff supports Java functions and its Java Function Invoker acts natively is an adapter
for Spring Cloud Function jars.

17.10.1. AWS Lambda

The AWS adapter takes a Spring Cloud Function app and converts it to a form that can run in AWS
Lambda.

The details of how to get stared with AWS Lambda is out of scope of this document, so the
expectation is that user has some familiarity with AWS and AWS Lambda and wants to learn what
additional value spring provides.

Getting Started

One of the goals of Spring Cloud Function framework is to provide necessary infrastructure
elements to enable a simple function application to interact in a certain way in a particular
environment. A simple function application (in context or Spring) is an application that contains
beans of type Supplier, Function or Consumer. So, with AWS it means that a simple function bean
should somehow be recognised and executed in AWS Lambda environment.

Let’s look at the example:

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-azure
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-openwhisk
https://github.com/fnproject/fn
https://projectriff.io
https://github.com/projectriff/java-function-invoker
https://aws.amazon.com/

@SpringBootApplication
public class FunctionConfiguration {

 public static void main(String[] args) {
 SpringApplication.run(FunctionConfiguration.class, args);
 }

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }
}

It shows a complete Spring Boot application with a function bean defined in it. What’s interesting is
that on the surface this is just another boot app, but in the context of AWS Adapter it is also a
perfectly valid AWS Lambda application. No other code or configuration is required. All you need to
do is package it and deploy it, so let’s look how we can do that.

To make things simpler we’ve provided a sample project ready to be built and deployed and you
can access it here.

You simply execute ./mvnw clean package to generate JAR file. All the necessary maven plugins have
already been setup to generate appropriate AWS deployable JAR file. (You can read more details
about JAR layout in Notes on JAR Layout).

Then you have to upload the JAR file (via AWS dashboard or AWS CLI) to AWS.

When ask about handler you specify
org.springframework.cloud.function.adapter.aws.FunctionInvoker::handleRequest which is a generic
request handler.

[AWS deploy] | https://raw.github.com/spring-cloud/master/docs/src/main/asciidoc/images/AWS-

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-aws

deploy.png

That is all. Save and execute the function with some sample data which for this function is expected
to be a String which function will uppercase and return back.

While org.springframework.cloud.function.adapter.aws.FunctionInvoker is a general purpose AWS’s
RequestHandler implementation aimed at completely isolating you from the specifics of AWS
Lambda API, for some cases you may want to specify which specific AWS’s RequestHandler you want
to use. The next section will explain you how you can accomplish just that.

AWS Request Handlers

The adapter has a couple of generic request handlers that you can use. The most generic is (and the
one we used in the Getting Started section) is
org.springframework.cloud.function.adapter.aws.FunctionInvoker which is the implementation of
AWS’s RequestStreamHandler. User doesn’t need to do anything other then specify it as 'handler' on
AWS dashborad when deploying function. It will handle most of the case including Kinesis,
streaming etc. .

If your app has more than one @Bean of type Function etc. then you can choose the one to use by
configuring spring.cloud.function.definition property or environment variable. The functions are
extracted from the Spring Cloud FunctionCatalog. In the event you don’t specify
spring.cloud.function.definition the framework will attempt to find a default following the search
order where it searches first for Function then Consumer and finally Supplier).

Notes on JAR Layout

You don’t need the Spring Cloud Function Web or Stream adapter at runtime in Lambda, so you
might need to exclude those before you create the JAR you send to AWS. A Lambda application has
to be shaded, but a Spring Boot standalone application does not, so you can run the same app using
2 separate jars (as per the sample). The sample app creates 2 jar files, one with an aws classifier for
deploying in Lambda, and one executable (thin) jar that includes spring-cloud-function-web at
runtime. Spring Cloud Function will try and locate a "main class" for you from the JAR file manifest,
using the Start-Class attribute (which will be added for you by the Spring Boot tooling if you use
the starter parent). If there is no Start-Class in your manifest you can use an environment variable
or system property MAIN_CLASS when you deploy the function to AWS.

If you are not using the functional bean definitions but relying on Spring Boot’s auto-configuration,
then additional transformers must be configured as part of the maven-shade-plugin execution.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </dependency>
 </dependencies>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 <shadedArtifactAttached>true</shadedArtifactAttached>
 <shadedClassifierName>aws</shadedClassifierName>
 <transformers>
 <transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
 <resource>META-INF/spring.handlers</resource>
 </transformer>
 <transformer
implementation="org.springframework.boot.maven.PropertiesMergingResourceTransformer">
 <resource>META-INF/spring.factories</resource>
 </transformer>
 <transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
 <resource>META-INF/spring.schemas</resource>
 </transformer>
 </transformers>
 </configuration>
</plugin>

Build file setup

In order to run Spring Cloud Function applications on AWS Lambda, you can leverage Maven or
Gradle plugins offered by the cloud platform provider.

Maven

In order to use the adapter plugin for Maven, add the plugin dependency to your pom.xml file:

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-adapter-aws</artifactId>
 </dependency>
</dependencies>

As pointed out in the Notes on JAR Layout, you will need a shaded jar in order to upload it to AWS
Lambda. You can use the Maven Shade Plugin for that. The example of the setup can be found

https://maven.apache.org/plugins/maven-shade-plugin/

above.

You can use theSpring Boot Maven Plugin to generate the thin jar.

<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot.experimental</groupId>
 <artifactId>spring-boot-thin-layout</artifactId>
 <version>${wrapper.version}</version>
 </dependency>
 </dependencies>
</plugin>

You can find the entire sample pom.xml file for deploying Spring Cloud Function applications to AWS
Lambda with Maven here.

Gradle

In order to use the adapter plugin for Gradle, add the dependency to your build.gradle file:

dependencies {
 compile("org.springframework.cloud:spring-cloud-function-adapter-aws:${version}")
}

As pointed out in Notes on JAR Layout, you will need a shaded jar in order to upload it to AWS
Lambda. You can use the Gradle Shadow Plugin for that:

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-aws/pom.xml
https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow/

buildscript {
 dependencies {
 classpath "com.github.jengelman.gradle.plugins:shadow:${shadowPluginVersion}"
 }
}
apply plugin: 'com.github.johnrengelman.shadow'

assemble.dependsOn = [shadowJar]

import com.github.jengelman.gradle.plugins.shadow.transformers.*

shadowJar {
 classifier = 'aws'
 dependencies {
 exclude(
 dependency("org.springframework.cloud:spring-cloud-function-
web:${springCloudFunctionVersion}"))
 }
 // Required for Spring
 mergeServiceFiles()
 append 'META-INF/spring.handlers'
 append 'META-INF/spring.schemas'
 append 'META-INF/spring.tooling'
 transform(PropertiesFileTransformer) {
 paths = ['META-INF/spring.factories']
 mergeStrategy = "append"
 }
}

You can use the Spring Boot Gradle Plugin and Spring Boot Thin Gradle Plugin to generate the thin
jar.

buildscript {
 dependencies {
 classpath("org.springframework.boot.experimental:spring-boot-thin-gradle-
plugin:${wrapperVersion}")
 classpath("org.springframework.boot:spring-boot-gradle-
plugin:${springBootVersion}")
 }
}
apply plugin: 'org.springframework.boot'
apply plugin: 'org.springframework.boot.experimental.thin-launcher'
assemble.dependsOn = [thinJar]

You can find the entire sample build.gradle file for deploying Spring Cloud Function applications to
AWS Lambda with Gradle here.

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-aws/build.gradle

Upload

Build the sample under spring-cloud-function-samples/function-sample-aws and upload the -aws jar
file to Lambda. The handler can be example.Handler or
org.springframework.cloud.function.adapter.aws.SpringBootStreamHandler (FQN of the class, not a
method reference, although Lambda does accept method references).

./mvnw -U clean package

Using the AWS command line tools it looks like this:

aws lambda create-function --function-name Uppercase --role
arn:aws:iam::[USERID]:role/service-role/[ROLE] --zip-file fileb://function-sample-
aws/target/function-sample-aws-2.0.0.BUILD-SNAPSHOT-aws.jar --handler
org.springframework.cloud.function.adapter.aws.SpringBootStreamHandler --description
"Spring Cloud Function Adapter Example" --runtime java8 --region us-east-1 --timeout
30 --memory-size 1024 --publish

The input type for the function in the AWS sample is a Foo with a single property called "value". So
you would need this to test it:

{
 "value": "test"
}

The AWS sample app is written in the "functional" style (as an
ApplicationContextInitializer). This is much faster on startup in Lambda than the
traditional @Bean style, so if you don’t need @Beans (or @EnableAutoConfiguration) it’s
a good choice. Warm starts are not affected.

Type Conversion

Spring Cloud Function will attempt to transparently handle type conversion between the raw input
stream and types declared by your function.

For example, if your function signature is as such Function<Foo, Bar> we will attempt to convert
incoming stream event to an instance of Foo.

In the event type is not known or can not be determined (e.g., Function<?, ?>) we will attempt to
convert an incoming stream event to a generic Map.

Raw Input

There are times when you may want to have access to a raw input. In this case all you need is to
declare your function signature to accept InputStream. For example, Function<InputStream, ?>. In
this case we will not attempt any conversion and will pass the raw input directly to a function.

17.10.2. Microsoft Azure

The Azure adapter bootstraps a Spring Cloud Function context and channels function calls from the
Azure framework into the user functions, using Spring Boot configuration where necessary. Azure
Functions has quite a unique, but invasive programming model, involving annotations in user code
that are specific to the platform. The easiest way to use it with Spring Cloud is to extend a base class
and write a method in it with the @FunctionName annotation which delegates to a base class method.

This project provides an adapter layer for a Spring Cloud Function application onto Azure. You can
write an app with a single @Bean of type Function and it will be deployable in Azure if you get the
JAR file laid out right.

There is an AzureSpringBootRequestHandler which you must extend, and provide the input and
output types as annotated method parameters (enabling Azure to inspect the class and create JSON
bindings). The base class has two useful methods (handleRequest and handleOutput) to which you can
delegate the actual function call, so mostly the function will only ever have one line.

Example:

public class FooHandler extends AzureSpringBootRequestHandler<Foo, Bar> {
 @FunctionName("uppercase")
 public Bar execute(@HttpTrigger(name = "req", methods = {HttpMethod.GET,
 HttpMethod.POST}, authLevel = AuthorizationLevel.ANONYMOUS)
HttpRequestMessage<Optional<Foo>> request,
 ExecutionContext context) {
 return handleRequest(request.getBody().get(), context);
 }
}

This Azure handler will delegate to a Function<Foo,Bar> bean (or a
Function<Publisher<Foo>,Publisher<Bar>>). Some Azure triggers (e.g. @CosmosDBTrigger) result in a
input type of List and in that case you can bind to List in the Azure handler, or String (the raw
JSON). The List input delegates to a Function with input type Map<String,Object>, or Publisher or
List of the same type. The output of the Function can be a List (one-for-one) or a single value
(aggregation), and the output binding in the Azure declaration should match.

If your app has more than one @Bean of type Function etc. then you can choose the one to use by
configuring function.name. Or if you make the @FunctionName in the Azure handler method match the
function name it should work that way (also for function apps with multiple functions). The
functions are extracted from the Spring Cloud FunctionCatalog so the default function names are
the same as the bean names.

Accessing Azure ExecutionContext

Some time there is a need to access the target execution context provided by Azure runtime in the
form of com.microsoft.azure.functions.ExecutionContext. For example one of such needs is logging,
so it can appear in the Azure console.

For that purpose Spring Cloud Function will register ExecutionContext as bean in the Application

https://azure.microsoft.com

context, so it could be injected into your function. For example

@Bean
public Function<Foo, Bar> uppercase(ExecutionContext targetContext) {
 return foo -> {
 targetContext.getLogger().info("Invoking 'uppercase' on " + foo.getValue());
 return new Bar(foo.getValue().toUpperCase());
 };
}

Normally type-based injection should suffice, however if need to you can also utilise the bean name
under which it is registered which is targetExecutionContext.

Notes on JAR Layout

You don’t need the Spring Cloud Function Web at runtime in Azure, so you can exclude this before
you create the JAR you deploy to Azure, but it won’t be used if you include it, so it doesn’t hurt to
leave it in. A function application on Azure is an archive generated by the Maven plugin. The
function lives in the JAR file generated by this project. The sample creates it as an executable jar,
using the thin layout, so that Azure can find the handler classes. If you prefer you can just use a
regular flat JAR file. The dependencies should not be included.

Build file setup

In order to run Spring Cloud Function applications on Microsoft Azure, you can leverage the Maven
plugin offered by the cloud platform provider.

In order to use the adapter plugin for Maven, add the plugin dependency to your pom.xml file:

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-adapter-azure</artifactId>
 </dependency>
</dependencies>

Then, configure the plugin. You will need to provide Azure-specific configuration for your
application, specifying the resourceGroup, appName and other optional properties, and add the package
goal execution so that the function.json file required by Azure is generated for you. Full plugin
documentation can be found in the plugin repository.

https://github.com/microsoft/azure-maven-plugins

<plugin>
 <groupId>com.microsoft.azure</groupId>
 <artifactId>azure-functions-maven-plugin</artifactId>
 <configuration>
 <resourceGroup>${functionResourceGroup}</resourceGroup>
 <appName>${functionAppName}</appName>
 </configuration>
 <executions>
 <execution>
 <id>package-functions</id>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
</plugin>

You will also have to ensure that the files to be scanned by the plugin can be found in the Azure
functions staging directory (see the plugin repository for more details on the staging directory and
it’s default location).

You can find the entire sample pom.xml file for deploying Spring Cloud Function applications to
Microsoft Azure with Maven here.

As of yet, only Maven plugin is available. Gradle plugin has not been created by the
cloud platform provider.

Build

./mvnw -U clean package

Running the sample

You can run the sample locally, just like the other Spring Cloud Function samples:

and curl -H "Content-Type: text/plain" localhost:8080/api/uppercase -d '{"value": "hello

foobar"}'.

You will need the az CLI app (see docs.microsoft.com/en-us/azure/azure-functions/functions-create-
first-java-maven for more detail). To deploy the function on Azure runtime:

$ az login
$ mvn azure-functions:deploy

https://github.com/microsoft/azure-maven-plugins
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-azure/pom.xml
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-java-maven
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-java-maven

On another terminal try this: curl <azure-function-url-from-the-log>/api/uppercase -d '{"value":
"hello foobar!"}'. Please ensure that you use the right URL for the function above. Alternatively
you can test the function in the Azure Dashboard UI (click on the function name, go to the right
hand side and click "Test" and to the bottom right, "Run").

The input type for the function in the Azure sample is a Foo with a single property called "value". So
you need this to test it with something like below:

{
 "value": "foobar"
}

The Azure sample app is written in the "non-functional" style (using @Bean). The
functional style (with just Function or ApplicationContextInitializer) is much
faster on startup in Azure than the traditional @Bean style, so if you don’t need
@Beans (or @EnableAutoConfiguration) it’s a good choice. Warm starts are not
affected. :branch: master

17.10.3. Google Cloud Functions (Alpha)

The Google Cloud Functions adapter enables Spring Cloud Function apps to run on the Google
Cloud Functions serverless platform. You can either run the function locally using the open source
Google Functions Framework for Java or on GCP.

Project Dependencies

Start by adding the spring-cloud-function-adapter-gcp dependency to your project.

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-adapter-gcp</artifactId>
 </dependency>

 ...
</dependencies>

In addition, add the spring-boot-maven-plugin which will build the JAR of the function to deploy.

Notice that we also reference spring-cloud-function-adapter-gcp as a dependency
of the spring-boot-maven-plugin. This is necessary because it modifies the plugin to
package your function in the correct JAR format for deployment on Google Cloud
Functions.

https://<azure-function-url-from-the-log>/api/uppercase
https://<azure-function-url-from-the-log>/api/uppercase
https://<azure-function-url-from-the-log>/api/uppercase
https://<azure-function-url-from-the-log>/api/uppercase
https://<azure-function-url-from-the-log>/api/uppercase
https://cloud.google.com/functions
https://cloud.google.com/functions
https://github.com/GoogleCloudPlatform/functions-framework-java

<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <outputDirectory>target/deploy</outputDirectory>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-adapter-gcp</artifactId>
 </dependency>
 </dependencies>
</plugin>

Finally, add the Maven plugin provided as part of the Google Functions Framework for Java. This
allows you to test your functions locally via mvn function:run.

The function target should always be set to
org.springframework.cloud.function.adapter.gcp.GcfJarLauncher; this is an adapter
class which acts as the entry point to your Spring Cloud Function from the Google
Cloud Functions platform.

<plugin>
 <groupId>com.google.cloud.functions</groupId>
 <artifactId>function-maven-plugin</artifactId>
 <version>0.9.1</version>
 <configuration>

<functionTarget>org.springframework.cloud.function.adapter.gcp.GcfJarLauncher</functio
nTarget>
 <port>8080</port>
 </configuration>
</plugin>

A full example of a working pom.xml can be found in the Spring Cloud Functions GCP sample.

HTTP Functions

Google Cloud Functions supports deploying HTTP Functions, which are functions that are invoked
by HTTP request. The sections below describe instructions for deploying a Spring Cloud Function as
an HTTP Function.

Getting Started

Let’s start with a simple Spring Cloud Function example:

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-gcp-http/pom.xml
https://cloud.google.com/functions/docs/writing/http

@SpringBootApplication
public class CloudFunctionMain {

 public static void main(String[] args) {
 SpringApplication.run(CloudFunctionMain.class, args);
 }

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }
}

Specify your configuration main class in resources/META-INF/MANIFEST.MF.

Main-Class: com.example.CloudFunctionMain

Then run the function locally. This is provided by the Google Cloud Functions function-maven-plugin
described in the project dependencies section.

mvn function:run

Invoke the HTTP function:

curl http://localhost:8080/ -d "hello"

Deploy to GCP

As of March 2020, Google Cloud Functions for Java is in Alpha. You can get on the whitelist to try it
out.

Start by packaging your application.

mvn package

If you added the custom spring-boot-maven-plugin plugin defined above, you should see the
resulting JAR in target/deploy directory. This JAR is correctly formatted for deployment to Google
Cloud Functions.

Next, make sure that you have the Cloud SDK CLI installed.

From the project base directory run the following command to deploy.

https://docs.google.com/forms/d/e/1FAIpQLScC98jGi7CfG0n3UYlj7Xad8XScvZC8-BBOg7Pk3uSZx_2cdQ/viewform
https://cloud.google.com/sdk/install

gcloud alpha functions deploy function-sample-gcp-http \
--entry-point org.springframework.cloud.function.adapter.gcp.GcfJarLauncher \
--runtime java11 \
--trigger-http \
--source target/deploy \
--memory 512MB

Invoke the HTTP function:

curl https://REGION-PROJECT_ID.cloudfunctions.net/function-sample-gcp-http -d "hello"

Background Functions

Google Cloud Functions also supports deploying Background Functions which are invoked
indirectly in response to an event, such as a message on a Cloud Pub/Sub topic, a change in a Cloud
Storage bucket, or a Firebase event.

The spring-cloud-function-adapter-gcp allows for functions to be deployed as background functions
as well.

The sections below describe the process for writing a Cloud Pub/Sub topic background function.
However, there are a number of different event types that can trigger a background function to
execute which are not discussed here; these are described in the Background Function triggers
documentation.

Getting Started

Let’s start with a simple Spring Cloud Function which will run as a GCF background function:

@SpringBootApplication
public class BackgroundFunctionMain {

 public static void main(String[] args) {
 SpringApplication.run(BackgroundFunctionMain.class, args);
 }

 @Bean
 public Consumer<PubSubMessage> pubSubFunction() {
 return message -> System.out.println("The Pub/Sub message data: " +
message.getData());
 }
}

In addition, create PubSubMessage class in the project with the below definition. This class represents
the Pub/Sub event structure which gets passed to your function on a Pub/Sub topic event.

https://cloud.google.com/functions/docs/writing/background
https://cloud.google.com/pubsub
https://cloud.google.com/storage
https://cloud.google.com/storage
https://firebase.google.com/
https://cloud.google.com/functions/docs/calling
https://cloud.google.com/functions/docs/calling
https://cloud.google.com/functions/docs/calling/pubsub#event_structure

public class PubSubMessage {

 private String data;

 private Map<String, String> attributes;

 private String messageId;

 private String publishTime;

 public String getData() {
 return data;
 }

 public void setData(String data) {
 this.data = data;
 }

 public Map<String, String> getAttributes() {
 return attributes;
 }

 public void setAttributes(Map<String, String> attributes) {
 this.attributes = attributes;
 }

 public String getMessageId() {
 return messageId;
 }

 public void setMessageId(String messageId) {
 this.messageId = messageId;
 }

 public String getPublishTime() {
 return publishTime;
 }

 public void setPublishTime(String publishTime) {
 this.publishTime = publishTime;
 }

}

Specify your configuration main class in resources/META-INF/MANIFEST.MF.

Main-Class: com.example.BackgroundFunctionMain

Then run the function locally. This is provided by the Google Cloud Functions function-maven-plugin
described in the project dependencies section.

mvn function:run

Invoke the HTTP function:

curl localhost:8080 -H "Content-Type: application/json" -d '{"data":"hello"}'

Verify that the function was invoked by viewing the logs.

Deploy to GCP

In order to deploy your background function to GCP, first package your application.

mvn package

If you added the custom spring-boot-maven-plugin plugin defined above, you should see the
resulting JAR in target/deploy directory. This JAR is correctly formatted for deployment to Google
Cloud Functions.

Next, make sure that you have the Cloud SDK CLI installed.

From the project base directory run the following command to deploy.

gcloud alpha functions deploy function-sample-gcp-background \
--entry-point org.springframework.cloud.function.adapter.gcp.GcfJarLauncher \
--runtime java11 \
--trigger-topic my-functions-topic \
--source target/deploy \
--memory 512MB

Google Cloud Function will now invoke the function every time a message is published to the topic
specified by --trigger-topic.

For a walkthrough on testing and verifying your background function, see the instructions for
running the GCF Background Function sample.

Sample Functions

The project provides the following sample functions as reference:

• The function-sample-gcp-http is an HTTP Function which you can test locally and try deploying.

• The function-sample-gcp-background shows an example of a background function that is
triggered by a message being published to a specified Pub/Sub topic.

https://cloud.google.com/sdk/install
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-background/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-http/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-background/

Chapter 18. Spring Cloud Kubernetes
This reference guide covers how to use Spring Cloud Kubernetes.

18.1. Why do you need Spring Cloud Kubernetes?
Spring Cloud Kubernetes provide Spring Cloud common interface implementations that consume
Kubernetes native services. The main objective of the projects provided in this repository is to
facilitate the integration of Spring Cloud and Spring Boot applications running inside Kubernetes.

18.2. Starters
Starters are convenient dependency descriptors you can include in your application. Include a
starter to get the dependencies and Spring Boot auto-configuration for a feature set.

Starter Features

<dependency>

<groupId>org.springframework.cloud</grou
pId>
 <artifactId>spring-cloud-starter-
kubernetes</artifactId>
</dependency>

Discovery Client implementation that resolves
service names to Kubernetes Services.

<dependency>

<groupId>org.springframework.cloud</grou
pId>
 <artifactId>spring-cloud-starter-
kubernetes-config</artifactId>
</dependency>

Load application properties from Kubernetes
ConfigMaps and Secrets. Reload application
properties when a ConfigMap or Secret changes.

<dependency>

<groupId>org.springframework.cloud</grou
pId>
 <artifactId>spring-cloud-starter-
kubernetes-all</artifactId>
</dependency>

All Spring Cloud Kubernetes features.

18.3. DiscoveryClient for Kubernetes
This project provides an implementation of Discovery Client for Kubernetes. This client lets you
query Kubernetes endpoints (see services) by name. A service is typically exposed by the
Kubernetes API server as a collection of endpoints that represent http and https addresses and that
a client can access from a Spring Boot application running as a pod.

This is something that you get for free by adding the following dependency inside your project:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-kubernetes</artifactId>
</dependency>

To enable loading of the DiscoveryClient, add @EnableDiscoveryClient to the according configuration
or application class, as the following example shows:

@SpringBootApplication
@EnableDiscoveryClient
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Then you can inject the client in your code simply by autowiring it, as the following example shows:

@Autowired
private DiscoveryClient discoveryClient;

You can choose to enable DiscoveryClient from all namespaces by setting the following property in
application.properties:

spring.cloud.kubernetes.discovery.all-namespaces=true

If, for any reason, you need to disable the DiscoveryClient, you can set the following property in
application.properties:

https://github.com/spring-cloud/spring-cloud-commons/blob/master/spring-cloud-commons/src/main/java/org/springframework/cloud/client/discovery/DiscoveryClient.java
https://kubernetes.io
https://kubernetes.io/docs/user-guide/services/

spring.cloud.kubernetes.discovery.enabled=false

Some Spring Cloud components use the DiscoveryClient in order to obtain information about the
local service instance. For this to work, you need to align the Kubernetes service name with the
spring.application.name property.

spring.application.name has no effect as far as the name registered for the
application within Kubernetes

Spring Cloud Kubernetes can also watch the Kubernetes service catalog for changes and update the
DiscoveryClient implementation accordingly. In order to enable this functionality you need to add
@EnableScheduling on a configuration class in your application.

18.4. Kubernetes native service discovery
Kubernetes itself is capable of (server side) service discovery (see: kubernetes.io/docs/concepts/
services-networking/service/#discovering-services). Using native kubernetes service discovery
ensures compatibility with additional tooling, such as Istio (istio.io), a service mesh that is capable
of load balancing, circuit breaker, failover, and much more.

The caller service then need only refer to names resolvable in a particular Kubernetes cluster. A
simple implementation might use a spring RestTemplate that refers to a fully qualified domain name
(FQDN), such as {service-name}.{namespace}.svc.{cluster}.local:{service-port}.

Additionally, you can use Hystrix for:

• Circuit breaker implementation on the caller side, by annotating the spring boot application
class with @EnableCircuitBreaker

• Fallback functionality, by annotating the respective method with
@HystrixCommand(fallbackMethod=

18.5. Kubernetes PropertySource implementations
The most common approach to configuring your Spring Boot application is to create an
application.properties or application.yaml or an application-profile.properties or application-
profile.yaml file that contains key-value pairs that provide customization values to your
application or Spring Boot starters. You can override these properties by specifying system
properties or environment variables.

18.5.1. Using a ConfigMap PropertySource

Kubernetes provides a resource named ConfigMap to externalize the parameters to pass to your
application in the form of key-value pairs or embedded application.properties or application.yaml
files. The Spring Cloud Kubernetes Config project makes Kubernetes ConfigMap instances available
during application bootstrapping and triggers hot reloading of beans or Spring context when

https://kubernetes.io/docs/concepts/services-networking/service/#discovering-services
https://kubernetes.io/docs/concepts/services-networking/service/#discovering-services
https://istio.io
https://{service-name}.{namespace}.svc.{cluster}.local:{service-port}
https://kubernetes.io/docs/user-guide/configmap/
./spring-cloud-kubernetes-config

changes are detected on observed ConfigMap instances.

The default behavior is to create a ConfigMapPropertySource based on a Kubernetes ConfigMap that
has a metadata.name value of either the name of your Spring application (as defined by its
spring.application.name property) or a custom name defined within the bootstrap.properties file
under the following key: spring.cloud.kubernetes.config.name.

However, more advanced configuration is possible where you can use multiple ConfigMap instances.
The spring.cloud.kubernetes.config.sources list makes this possible. For example, you could define
the following ConfigMap instances:

spring:
 application:
 name: cloud-k8s-app
 cloud:
 kubernetes:
 config:
 name: default-name
 namespace: default-namespace
 sources:
 # Spring Cloud Kubernetes looks up a ConfigMap named c1 in namespace
default-namespace
 - name: c1
 # Spring Cloud Kubernetes looks up a ConfigMap named default-name in
whatever namespace n2
 - namespace: n2
 # Spring Cloud Kubernetes looks up a ConfigMap named c3 in namespace n3
 - namespace: n3
 name: c3

In the preceding example, if spring.cloud.kubernetes.config.namespace had not been set, the
ConfigMap named c1 would be looked up in the namespace that the application runs.

Any matching ConfigMap that is found is processed as follows:

• Apply individual configuration properties.

• Apply as yaml the content of any property named application.yaml.

• Apply as a properties file the content of any property named application.properties.

The single exception to the aforementioned flow is when the ConfigMap contains a single key that
indicates the file is a YAML or properties file. In that case, the name of the key does NOT have to be
application.yaml or application.properties (it can be anything) and the value of the property is
treated correctly. This features facilitates the use case where the ConfigMap was created by using
something like the following:

kubectl create configmap game-config --from-file=/path/to/app-config.yaml

Assume that we have a Spring Boot application named demo that uses the following properties to
read its thread pool configuration.

• pool.size.core

• pool.size.maximum

This can be externalized to config map in yaml format as follows:

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 pool.size.core: 1
 pool.size.max: 16

Individual properties work fine for most cases. However, sometimes, embedded yaml is more
convenient. In this case, we use a single property named application.yaml to embed our yaml, as
follows:

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 application.yaml: |-
 pool:
 size:
 core: 1
 max:16

The following example also works:

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 custom-name.yaml: |-
 pool:
 size:
 core: 1
 max:16

You can also configure Spring Boot applications differently depending on active profiles that are
merged together when the ConfigMap is read. You can provide different property values for different
profiles by using an application.properties or application.yaml property, specifying profile-specific
values, each in their own document (indicated by the --- sequence), as follows:

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 application.yml: |-
 greeting:
 message: Say Hello to the World
 farewell:
 message: Say Goodbye

 spring:
 profiles: development
 greeting:
 message: Say Hello to the Developers
 farewell:
 message: Say Goodbye to the Developers

 spring:
 profiles: production
 greeting:
 message: Say Hello to the Ops

In the preceding case, the configuration loaded into your Spring Application with the development
profile is as follows:

 greeting:
 message: Say Hello to the Developers
 farewell:
 message: Say Goodbye to the Developers

However, if the production profile is active, the configuration becomes:

 greeting:
 message: Say Hello to the Ops
 farewell:
 message: Say Goodbye

If both profiles are active, the property that appears last within the ConfigMap overwrites any
preceding values.

Another option is to create a different config map per profile and spring boot will automatically
fetch it based on active profiles

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 application.yml: |-
 greeting:
 message: Say Hello to the World
 farewell:
 message: Say Goodbye

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo-development
data:
 application.yml: |-
 spring:
 profiles: development
 greeting:
 message: Say Hello to the Developers
 farewell:
 message: Say Goodbye to the Developers

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo-production
data:
 application.yml: |-
 spring:
 profiles: production
 greeting:
 message: Say Hello to the Ops
 farewell:
 message: Say Goodbye

To tell Spring Boot which profile should be enabled at bootstrap, you can pass
SPRING_PROFILES_ACTIVE environment variable. To do so, you can launch your Spring Boot
application with an environment variable that you can define it in the PodSpec at the container
specification. Deployment resource file, as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: deployment-name
 labels:
 app: deployment-name
spec:
 replicas: 1
 selector:
 matchLabels:
 app: deployment-name
 template:
 metadata:
 labels:
 app: deployment-name
 spec:
 containers:
 - name: container-name
 image: your-image
 env:
 - name: SPRING_PROFILES_ACTIVE
 value: "development"

You should check the security configuration section. To access config maps from
inside a pod you need to have the correct Kubernetes service accounts, roles and
role bindings.

Another option for using ConfigMap instances is to mount them into the Pod by running the Spring
Cloud Kubernetes application and having Spring Cloud Kubernetes read them from the file system.
This behavior is controlled by the spring.cloud.kubernetes.config.paths property. You can use it in
addition to or instead of the mechanism described earlier. You can specify multiple (exact) file
paths in spring.cloud.kubernetes.config.paths by using the , delimiter.

You have to provide the full exact path to each property file, because directories
are not being recursively parsed.

Table 10. Properties:

Name Type Default Description

spring.cloud.kubernete
s.config.enabled

Boolean true Enable ConfigMaps
PropertySource

spring.cloud.kubernete
s.config.name

String ${spring.application.n
ame}

Sets the name of
ConfigMap to look up

Name Type Default Description

spring.cloud.kubernete
s.config.namespace

String Client namespace Sets the Kubernetes
namespace where to
lookup

spring.cloud.kubernete
s.config.paths

List null Sets the paths where
ConfigMap instances are
mounted

spring.cloud.kubernete
s.config.enableApi

Boolean true Enable or disable
consuming ConfigMap
instances through APIs

18.5.2. Secrets PropertySource

Kubernetes has the notion of Secrets for storing sensitive data such as passwords, OAuth tokens,
and so on. This project provides integration with Secrets to make secrets accessible by Spring Boot
applications. You can explicitly enable or disable This feature by setting the
spring.cloud.kubernetes.secrets.enabled property.

When enabled, the SecretsPropertySource looks up Kubernetes for Secrets from the following
sources:

1. Reading recursively from secrets mounts

2. Named after the application (as defined by spring.application.name)

3. Matching some labels

Note:

By default, consuming Secrets through the API (points 2 and 3 above) is not enabled for security
reasons. The permission 'list' on secrets allows clients to inspect secrets values in the specified
namespace. Further, we recommend that containers share secrets through mounted volumes.

If you enable consuming Secrets through the API, we recommend that you limit access to Secrets by
using an authorization policy, such as RBAC. For more information about risks and best practices
when consuming Secrets through the API refer to this doc.

If the secrets are found, their data is made available to the application.

Assume that we have a spring boot application named demo that uses properties to read its database
configuration. We can create a Kubernetes secret by using the following command:

oc create secret generic db-secret --from-literal=username=user --from
-literal=password=p455w0rd

The preceding command would create the following secret (which you can see by using oc get
secrets db-secret -o yaml):

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/#best-practices

apiVersion: v1
data:
 password: cDQ1NXcwcmQ=
 username: dXNlcg==
kind: Secret
metadata:
 creationTimestamp: 2017-07-04T09:15:57Z
 name: db-secret
 namespace: default
 resourceVersion: "357496"
 selfLink: /api/v1/namespaces/default/secrets/db-secret
 uid: 63c89263-6099-11e7-b3da-76d6186905a8
type: Opaque

Note that the data contains Base64-encoded versions of the literal provided by the create command.

Your application can then use this secret — for example, by exporting the secret’s value as
environment variables:

apiVersion: v1
kind: Deployment
metadata:
 name: ${project.artifactId}
spec:
 template:
 spec:
 containers:
 - env:
 - name: DB_USERNAME
 valueFrom:
 secretKeyRef:
 name: db-secret
 key: username
 - name: DB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: db-secret
 key: password

You can select the Secrets to consume in a number of ways:

1. By listing the directories where secrets are mapped:

-Dspring.cloud.kubernetes.secrets.paths=/etc/secrets/db
-secret,etc/secrets/postgresql

If you have all the secrets mapped to a common root, you can set them like:

-Dspring.cloud.kubernetes.secrets.paths=/etc/secrets

2. By setting a named secret:

-Dspring.cloud.kubernetes.secrets.name=db-secret

3. By defining a list of labels:

-Dspring.cloud.kubernetes.secrets.labels.broker=activemq
-Dspring.cloud.kubernetes.secrets.labels.db=postgresql

As the case with ConfigMap, more advanced configuration is also possible where you can use
multiple Secret instances. The spring.cloud.kubernetes.secrets.sources list makes this possible. For
example, you could define the following Secret instances:

spring:
 application:
 name: cloud-k8s-app
 cloud:
 kubernetes:
 secrets:
 name: default-name
 namespace: default-namespace
 sources:
 # Spring Cloud Kubernetes looks up a Secret named s1 in namespace
default-namespace
 - name: s1
 # Spring Cloud Kubernetes looks up a Secret named default-name in
whatever namespace n2
 - namespace: n2
 # Spring Cloud Kubernetes looks up a Secret named s3 in namespace n3
 - namespace: n3
 name: s3

In the preceding example, if spring.cloud.kubernetes.secrets.namespace had not been set, the Secret
named s1 would be looked up in the namespace that the application runs.

Table 11. Properties:

Name Type Default Description

spring.cloud.kubernete
s.secrets.enabled

Boolean true Enable Secrets
PropertySource

spring.cloud.kubernete
s.secrets.name

String ${spring.application.n
ame}

Sets the name of the
secret to look up

spring.cloud.kubernete
s.secrets.namespace

String Client namespace Sets the Kubernetes
namespace where to
look up

spring.cloud.kubernete
s.secrets.labels

Map null Sets the labels used to
lookup secrets

spring.cloud.kubernete
s.secrets.paths

List null Sets the paths where
secrets are mounted
(example 1)

spring.cloud.kubernete
s.secrets.enableApi

Boolean false Enables or disables
consuming secrets
through APIs (examples
2 and 3)

Notes:

• The spring.cloud.kubernetes.secrets.labels property behaves as defined by Map-based

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding

binding.

• The spring.cloud.kubernetes.secrets.paths property behaves as defined by Collection-based
binding.

• Access to secrets through the API may be restricted for security reasons. The preferred way is to
mount secrets to the Pod.

You can find an example of an application that uses secrets (though it has not been updated to use
the new spring-cloud-kubernetes project) at spring-boot-camel-config

18.5.3. PropertySource Reload

Some applications may need to detect changes on external property sources and update their
internal status to reflect the new configuration. The reload feature of Spring Cloud Kubernetes is
able to trigger an application reload when a related ConfigMap or Secret changes.

By default, this feature is disabled. You can enable it by using the
spring.cloud.kubernetes.reload.enabled=true configuration property (for example, in the
application.properties file).

The following levels of reload are supported (by setting the
spring.cloud.kubernetes.reload.strategy property): * refresh (default): Only configuration beans
annotated with @ConfigurationProperties or @RefreshScope are reloaded. This reload level leverages
the refresh feature of Spring Cloud Context. * restart_context: the whole Spring ApplicationContext
is gracefully restarted. Beans are recreated with the new configuration. * shutdown: the Spring
ApplicationContext is shut down to activate a restart of the container. When you use this level,
make sure that the lifecycle of all non-daemon threads is bound to the ApplicationContext and that
a replication controller or replica set is configured to restart the pod.

Assuming that the reload feature is enabled with default settings (refresh mode), the following
bean is refreshed when the config map changes:

@Configuration
@ConfigurationProperties(prefix = "bean")
public class MyConfig {

 private String message = "a message that can be changed live";

 // getter and setters

}

To see that changes effectively happen, you can create another bean that prints the message
periodically, as follows

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#collection-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#collection-based-binding
https://github.com/fabric8-quickstarts/spring-boot-camel-config

@Component
public class MyBean {

 @Autowired
 private MyConfig config;

 @Scheduled(fixedDelay = 5000)
 public void hello() {
 System.out.println("The message is: " + config.getMessage());
 }
}

You can change the message printed by the application by using a ConfigMap, as follows:

apiVersion: v1
kind: ConfigMap
metadata:
 name: reload-example
data:
 application.properties: |-
 bean.message=Hello World!

Any change to the property named bean.message in the ConfigMap associated with the pod is reflected
in the output. More generally speaking, changes associated to properties prefixed with the value
defined by the prefix field of the @ConfigurationProperties annotation are detected and reflected in
the application. Associating a ConfigMap with a pod is explained earlier in this chapter.

The full example is available in spring-cloud-kubernetes-reload-example.

The reload feature supports two operating modes: * Event (default): Watches for changes in config
maps or secrets by using the Kubernetes API (web socket). Any event produces a re-check on the
configuration and, in case of changes, a reload. The view role on the service account is required in
order to listen for config map changes. A higher level role (such as edit) is required for secrets (by
default, secrets are not monitored). * Polling: Periodically re-creates the configuration from config
maps and secrets to see if it has changed. You can configure the polling period by using the
spring.cloud.kubernetes.reload.period property and defaults to 15 seconds. It requires the same
role as the monitored property source. This means, for example, that using polling on file-mounted
secret sources does not require particular privileges.

Table 12. Properties:

https://github.com/fabric8io/spring-cloud-kubernetes/tree/master/spring-cloud-kubernetes-examples/kubernetes-reload-example

Name Type Default Description

spring.cloud.kubernete
s.reload.enabled

Boolean false Enables monitoring of
property sources and
configuration reload

spring.cloud.kubernete
s.reload.monitoring-
config-maps

Boolean true Allow monitoring
changes in config maps

spring.cloud.kubernete
s.reload.monitoring-
secrets

Boolean false Allow monitoring
changes in secrets

spring.cloud.kubernete
s.reload.strategy

Enum refresh The strategy to use
when firing a reload
(refresh,
restart_context, or
shutdown)

spring.cloud.kubernete
s.reload.mode

Enum event Specifies how to listen
for changes in property
sources (event or
polling)

spring.cloud.kubernete
s.reload.period

Duration 15s The period for
verifying changes when
using the polling
strategy

Notes: * You should not use properties under spring.cloud.kubernetes.reload in config maps or
secrets. Changing such properties at runtime may lead to unexpected results. * Deleting a property
or the whole config map does not restore the original state of the beans when you use the refresh
level.

18.6. Kubernetes Ecosystem Awareness
All of the features described earlier in this guide work equally well, regardless of whether your
application is running inside Kubernetes. This is really helpful for development and
troubleshooting. From a development point of view, this lets you start your Spring Boot application
and debug one of the modules that is part of this project. You need not deploy it in Kubernetes, as
the code of the project relies on the Fabric8 Kubernetes Java client, which is a fluent DSL that can
communicate by using http protocol to the REST API of the Kubernetes Server.

To disable the integration with Kubernetes you can set spring.cloud.kubernetes.enabled to false.
Please be aware that when spring-cloud-kubernetes-config is on the classpath,
spring.cloud.kubernetes.enabled should be set in bootstrap.{properties|yml} (or the profile specific
one) otherwise it should be in application.{properties|yml} (or the profile specific one). Also note
that these properties: spring.cloud.kubernetes.config.enabled and
spring.cloud.kubernetes.secrets.enabled only take effect when set in bootstrap.{properties|yml}

https://github.com/fabric8io/kubernetes-client

18.6.1. Kubernetes Profile Autoconfiguration

When the application runs as a pod inside Kubernetes, a Spring profile named kubernetes
automatically gets activated. This lets you customize the configuration, to define beans that are
applied when the Spring Boot application is deployed within the Kubernetes platform (for example,
different development and production configuration).

18.6.2. Istio Awareness

When you include the spring-cloud-kubernetes-istio module in the application classpath, a new
profile is added to the application, provided the application is running inside a Kubernetes Cluster
with Istio installed. You can then use spring @Profile("istio") annotations in your Beans and
@Configuration classes.

The Istio awareness module uses me.snowdrop:istio-client to interact with Istio APIs, letting us
discover traffic rules, circuit breakers, and so on, making it easy for our Spring Boot applications to
consume this data to dynamically configure themselves according to the environment.

18.7. Pod Health Indicator
Spring Boot uses HealthIndicator to expose info about the health of an application. That makes it
really useful for exposing health-related information to the user and makes it a good fit for use as
readiness probes.

The Kubernetes health indicator (which is part of the core module) exposes the following info:

• Pod name, IP address, namespace, service account, node name, and its IP address

• A flag that indicates whether the Spring Boot application is internal or external to Kubernetes

18.8. Leader Election
<TBD>

18.9. Security Configurations Inside Kubernetes

18.9.1. Namespace

Most of the components provided in this project need to know the namespace. For Kubernetes
(1.3+), the namespace is made available to the pod as part of the service account secret and is
automatically detected by the client. For earlier versions, it needs to be specified as an environment
variable to the pod. A quick way to do this is as follows:

https://istio.io
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthEndpoint.java
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

 env:
 - name: "KUBERNETES_NAMESPACE"
 valueFrom:
 fieldRef:
 fieldPath: "metadata.namespace"

18.9.2. Service Account

For distributions of Kubernetes that support more fine-grained role-based access within the cluster,
you need to make sure a pod that runs with spring-cloud-kubernetes has access to the Kubernetes
API. For any service accounts you assign to a deployment or pod, you need to make sure they have
the correct roles.

Depending on the requirements, you’ll need get, list and watch permission on the following
resources:

Table 13. Kubernetes Resource Permissions

Dependency Resources

spring-cloud-starter-kubernetes pods, services, endpoints

spring-cloud-starter-kubernetes-config configmaps, secrets

For development purposes, you can add cluster-reader permissions to your default service
account. On a production system you’ll likely want to provide more granular permissions.

The following Role and RoleBinding are an example for namespaced permissions for the default
account:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: YOUR-NAME-SPACE
 name: namespace-reader
rules:
 - apiGroups: ["", "extensions", "apps"]
 resources: ["configmaps", "pods", "services", "endpoints", "secrets"]
 verbs: ["get", "list", "watch"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: namespace-reader-binding
 namespace: YOUR-NAME-SPACE
subjects:
- kind: ServiceAccount
 name: default
 apiGroup: ""
roleRef:
 kind: Role
 name: namespace-reader
 apiGroup: ""

18.10. Service Registry Implementation
In Kubernetes service registration is controlled by the platform, the application itself does not
control registration as it may do in other platforms. For this reason using spring.cloud.service-
registry.auto-registration.enabled or setting @EnableDiscoveryClient(autoRegister=false) will
have no effect in Spring Cloud Kubernetes.

18.11. Examples
Spring Cloud Kubernetes tries to make it transparent for your applications to consume Kubernetes
Native Services by following the Spring Cloud interfaces.

In your applications, you need to add the spring-cloud-kubernetes-discovery dependency to your
classpath and remove any other dependency that contains a DiscoveryClient implementation (that
is, a Eureka discovery client). The same applies for PropertySourceLocator, where you need to add to
the classpath the spring-cloud-kubernetes-config and remove any other dependency that contains a
PropertySourceLocator implementation (that is, a configuration server client).

The following projects highlight the usage of these dependencies and demonstrate how you can use
these libraries from any Spring Boot application:

• Spring Cloud Kubernetes Examples: the ones located inside this repository.

• Spring Cloud Kubernetes Full Example: Minions and Boss

◦ Minion

◦ Boss

• Spring Cloud Kubernetes Full Example: SpringOne Platform Tickets Service

• Spring Cloud Gateway with Spring Cloud Kubernetes Discovery and Config

• Spring Boot Admin with Spring Cloud Kubernetes Discovery and Config

18.12. Other Resources
This section lists other resources, such as presentations (slides) and videos about Spring Cloud
Kubernetes.

• S1P Spring Cloud on PKS

• Spring Cloud, Docker, Kubernetes → London Java Community July 2018

Please feel free to submit other resources through pull requests to this repository.

18.13. Configuration properties
To see the list of all Sleuth related configuration properties please check the Appendix page.

18.14. Building

18.14.1. Basic Compile and Test

To build the source you will need to install JDK 1.7.

Spring Cloud uses Maven for most build-related activities, and you should be able to get off the
ground quite quickly by cloning the project you are interested in and typing

$./mvnw install

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of
./mvnw in the examples below. If you do that you also might need to add -P spring
if your local Maven settings do not contain repository declarations for spring pre-
release artifacts.

Be aware that you might need to increase the amount of memory available to
Maven by setting a MAVEN_OPTS environment variable with a value like -Xmx512m
-XX:MaxPermSize=128m. We try to cover this in the .mvn configuration, so if you find
you have to do it to make a build succeed, please raise a ticket to get the settings
added to source control.

https://github.com/spring-cloud/spring-cloud-kubernetes/tree/master/spring-cloud-kubernetes-examples
https://github.com/salaboy/spring-cloud-k8s-minion
https://github.com/salaboy/spring-cloud-k8s-boss
https://github.com/salaboy/s1p_docs
https://github.com/salaboy/s1p_gateway
https://github.com/salaboy/showcase-admin-tool
https://salaboy.com/2018/09/27/the-s1p-experience/
https://salaboy.com/2018/07/18/ljc-july-18-spring-cloud-docker-k8s/
https://github.com/spring-cloud/spring-cloud-kubernetes
appendix.html

For hints on how to build the project look in .travis.yml if there is one. There should be a "script"
and maybe "install" command. Also look at the "services" section to see if any services need to be
running locally (e.g. mongo or rabbit). Ignore the git-related bits that you might find in
"before_install" since they’re related to setting git credentials and you already have those.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

 If all else fails, build with the command from .travis.yml (usually ./mvnw install).

18.14.2. Documentation

The spring-cloud-build module has a "docs" profile, and if you switch that on it will try to build
asciidoc sources from src/main/asciidoc. As part of that process it will look for a README.adoc and
process it by loading all the includes, but not parsing or rendering it, just copying it to
${main.basedir} (defaults to $/Users/ryanjbaxter/git-repos/spring-cloud-samples/scripts, i.e. the
root of the project). If there are any changes in the README it will then show up after a Maven
build as a modified file in the correct place. Just commit it and push the change.

18.14.3. Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or
Eclipse when working with the code. We use the m2eclipse eclipse plugin for maven support. Other
IDEs and tools should also work without issue as long as they use Maven 3.3.3 or better.

Activate the Spring Maven profile

Spring Cloud projects require the 'spring' Maven profile to be activated to resolve the spring
milestone and snapshot repositories. Use your preferred IDE to set this profile to be active, or you
may experience build errors.

Importing into eclipse with m2eclipse

We recommend the m2eclipse eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Older versions of m2e do not support Maven 3.3, so once the projects are imported
into Eclipse you will also need to tell m2eclipse to use the right profile for the
projects. If you see many different errors related to the POMs in the projects, check
that you have an up to date installation. If you can’t upgrade m2e, add the "spring"
profile to your settings.xml. Alternatively you can copy the repository settings
from the "spring" profile of the parent pom into your settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

https://docs.docker.com/compose/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
https://www.springsource.com/developer/sts
https://eclipse.org
https://eclipse.org/m2e/
https://eclipse.org/m2e/

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the file
menu.

18.15. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master.
If you want to contribute even something trivial please do not hesitate, but follow the guidelines
below.

18.15.1. Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the Contributor
License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to
the main repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and given the
ability to merge pull requests.

18.15.2. Code of Conduct

This project adheres to the Contributor Covenant code of conduct. By participating, you are
expected to uphold this code. Please report unacceptable behavior to spring-code-of-
conduct@pivotal.io.

18.15.3. Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import
formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project.
If using IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the
project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target
branch in the main project).

https://cla.pivotal.io/sign/spring
https://cla.pivotal.io/sign/spring
https://github.com/spring-cloud/spring-cloud-build/blob/master/docs/src/main/asciidoc/code-of-conduct.adoc
mailto:spring-code-of-conduct@pivotal.io
mailto:spring-code-of-conduct@pivotal.io
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
https://plugins.jetbrains.com/plugin/6546

• When writing a commit message please follow these conventions, if you are fixing an existing
issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue
number).

18.15.4. Checkstyle

Spring Cloud Build comes with a set of checkstyle rules. You can find them in the spring-cloud-
build-tools module. The most notable files under the module are:

spring-cloud-build-tools/

└── src
 ├── checkstyle
 │ └── checkstyle-suppressions.xml ③
 └── main
 └── resources
 ├── checkstyle-header.txt ②
 └── checkstyle.xml ①

① Default Checkstyle rules

② File header setup

③ Default suppression rules

Checkstyle configuration

Checkstyle rules are disabled by default. To add checkstyle to your project just define the
following properties and plugins.

https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

pom.xml

<properties>
<maven-checkstyle-plugin.failsOnError>true</maven-checkstyle-plugin.failsOnError> ①
 <maven-checkstyle-plugin.failsOnViolation>true
 </maven-checkstyle-plugin.failsOnViolation> ②
 <maven-checkstyle-plugin.includeTestSourceDirectory>true
 </maven-checkstyle-plugin.includeTestSourceDirectory> ③
</properties>

<build>
 <plugins>
 <plugin> ④
 <groupId>io.spring.javaformat</groupId>
 <artifactId>spring-javaformat-maven-plugin</artifactId>
 </plugin>
 <plugin> ⑤
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 </plugin>
 </plugins>

 <reporting>
 <plugins>
 <plugin> ⑤
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 </plugin>
 </plugins>
 </reporting>
</build>

① Fails the build upon Checkstyle errors

② Fails the build upon Checkstyle violations

③ Checkstyle analyzes also the test sources

④ Add the Spring Java Format plugin that will reformat your code to pass most of the Checkstyle
formatting rules

⑤ Add checkstyle plugin to your build and reporting phases

If you need to suppress some rules (e.g. line length needs to be longer), then it’s enough for you to
define a file under ${project.root}/src/checkstyle/checkstyle-suppressions.xml with your
suppressions. Example:

projectRoot/src/checkstyle/checkstyle-suppresions.xml

<?xml version="1.0"?>
<!DOCTYPE suppressions PUBLIC
 "-//Puppy Crawl//DTD Suppressions 1.1//EN"
 "https://www.puppycrawl.com/dtds/suppressions_1_1.dtd">
<suppressions>
 <suppress files=".*ConfigServerApplication\.java"
checks="HideUtilityClassConstructor"/>
 <suppress files=".*ConfigClientWatch\.java" checks="LineLengthCheck"/>
</suppressions>

It’s advisable to copy the ${spring-cloud-build.rootFolder}/.editorconfig and ${spring-cloud-
build.rootFolder}/.springformat to your project. That way, some default formatting rules will be
applied. You can do so by running this script:

$ curl https://raw.githubusercontent.com/spring-cloud/spring-cloud-
build/master/.editorconfig -o .editorconfig
$ touch .springformat

18.15.5. IDE setup

Intellij IDEA

In order to setup Intellij you should import our coding conventions, inspection profiles and set up
the checkstyle plugin. The following files can be found in the Spring Cloud Build project.

spring-cloud-build-tools/

└── src
 ├── checkstyle
 │ └── checkstyle-suppressions.xml ③
 └── main
 └── resources
 ├── checkstyle-header.txt ②
 ├── checkstyle.xml ①
 └── intellij
 ├── Intellij_Project_Defaults.xml ④
 └── Intellij_Spring_Boot_Java_Conventions.xml ⑤

① Default Checkstyle rules

② File header setup

③ Default suppression rules

④ Project defaults for Intellij that apply most of Checkstyle rules

⑤ Project style conventions for Intellij that apply most of Checkstyle rules

https://github.com/spring-cloud/spring-cloud-build/tree/master/spring-cloud-build-tools

Figure 4. Code style

Go to File → Settings → Editor → Code style. There click on the icon next to the Scheme section.
There, click on the Import Scheme value and pick the Intellij IDEA code style XML option. Import
the spring-cloud-build-

tools/src/main/resources/intellij/Intellij_Spring_Boot_Java_Conventions.xml file.

Figure 5. Inspection profiles

Go to File → Settings → Editor → Inspections. There click on the icon next to the Profile section.
There, click on the Import Profile and import the spring-cloud-build-

tools/src/main/resources/intellij/Intellij_Project_Defaults.xml file.

Checkstyle

To have Intellij work with Checkstyle, you have to install the Checkstyle plugin. It’s advisable to also
install the Assertions2Assertj to automatically convert the JUnit assertions

Go to File → Settings → Other settings → Checkstyle. There click on the + icon in the Configuration
file section. There, you’ll have to define where the checkstyle rules should be picked from. In the
image above, we’ve picked the rules from the cloned Spring Cloud Build repository. However, you
can point to the Spring Cloud Build’s GitHub repository (e.g. for the checkstyle.xml :
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/

main/resources/checkstyle.xml). We need to provide the following variables:

• checkstyle.header.file - please point it to the Spring Cloud Build’s, spring-cloud-build-

tools/src/main/resources/checkstyle-header.txt file either in your cloned repo or via the
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/

src/main/resources/checkstyle-header.txt URL.

• checkstyle.suppressions.file - default suppressions. Please point it to the Spring Cloud Build’s,
spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml file either in your cloned
repo or via the raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-

cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml URL.

• checkstyle.additional.suppressions.file - this variable corresponds to suppressions in your
local project. E.g. you’re working on spring-cloud-contract. Then point to the project-

root/src/checkstyle/checkstyle-suppressions.xml folder. Example for spring-cloud-contract

would be: /home/username/spring-cloud-contract/src/checkstyle/checkstyle-suppressions.xml.

Remember to set the Scan Scope to All sources since we apply checkstyle rules for
production and test sources.

https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml

Chapter 19. Spring Cloud GCP
João André Martins; Jisha Abubaker; Ray Tsang; Mike Eltsufin; Artem Bilan; Andreas Berger; Balint
Pato; Chengyuan Zhao; Dmitry Solomakha; Elena Felder; Daniel Zou, Eddú Meléndez

19.1. Introduction
The Spring Cloud GCP project makes the Spring Framework a first-class citizen of Google Cloud
Platform (GCP).

Spring Cloud GCP lets you leverage the power and simplicity of the Spring Framework to:

• Publish and subscribe to Google Cloud Pub/Sub topics

• Configure Spring JDBC with a few properties to use Google Cloud SQL

• Map objects, relationships, and collections with Spring Data Cloud Spanner, Spring Data Cloud
Datastore and Spring Data Reactive Repositories for Cloud Firestore

• Write and read from Spring Resources backed up by Google Cloud Storage

• Exchange messages with Spring Integration using Google Cloud Pub/Sub on the background

• Trace the execution of your app with Spring Cloud Sleuth and Google Stackdriver Trace

• Configure your app with Spring Cloud Config, backed up by the Google Runtime Configuration
API

• Consume and produce Google Cloud Storage data via Spring Integration GCS Channel Adapters

• Use Spring Security via Google Cloud IAP

• Analyze your images for text, objects, and other content with Google Cloud Vision

19.2. Getting Started
This section describes how to get up to speed with Spring Cloud GCP libraries.

19.2.1. Setting up Dependencies

All Spring Cloud GCP artifacts are made available through Maven Central. The following resources
are provided to help you setup the libraries for your project:

• Maven Bill of Materials for dependency management

• Starter Dependencies for depending on Spring Cloud GCP modules

You may also consult our Github project to examine the code or build directly from source.

Bill of Materials

The Spring Cloud GCP Bill of Materials (BOM) contains the versions of all the dependencies it uses.

If you’re a Maven user, adding the following to your pom.xml file will allow you omit any Spring

https://github.com/spring-cloud/spring-cloud-gcp

Cloud GCP dependency version numbers from your configuration. Instead, the version of the BOM
you’re using determines the versions of the used dependencies.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-dependencies</artifactId>
 <version>1.2.0.RC2</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

See the sections in the README for selecting an available version and Maven repository.

In the following sections, it will be assumed you are using the Spring Cloud GCP BOM and the
dependency snippets will not contain versions.

Gradle users can achieve the same kind of BOM experience using Spring’s dependency-
management-plugin Gradle plugin. For simplicity, the Gradle dependency snippets in the remainder
of this document will also omit their versions.

Starter Dependencies

Spring Cloud GCP offers starter dependencies through Maven to easily depend on different modules
of the library. Each starter contains all the dependencies and transitive dependencies needed to
begin using their corresponding Spring Cloud GCP module.

For example, if you wish to write a Spring application with Cloud Pub/Sub, you would include the
spring-cloud-gcp-starter-pubsub dependency in your project. You do not need to include the
underlying spring-cloud-gcp-pubsub dependency, because the starter dependency includes it.

A summary of these artifacts are provided below.

Spring Cloud GCP Starter Description Maven Artifact Name

Core Automatically configure
authentication and Google
project settings

org.springframework.cloud:spri
ng-cloud-gcp-starter

Cloud Spanner Provides integrations with
Google Cloud Spanner

org.springframework.cloud:spri
ng-cloud-gcp-starter-data-
spanner

Cloud Datastore Provides integrations with
Google Cloud Datastore

org.springframework.cloud:spri
ng-cloud-gcp-starter-data-
datastore

https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-starters
core.pdf#spring-cloud-gcp-core
core.pdf#spring-cloud-gcp-core
spanner.pdf#_spring_data_cloud_spanner
spanner.pdf#_spring_data_cloud_spanner
spanner.pdf#_spring_data_cloud_spanner
datastore.pdf#_spring_data_cloud_datastore
datastore.pdf#_spring_data_cloud_datastore
datastore.pdf#_spring_data_cloud_datastore

Spring Cloud GCP Starter Description Maven Artifact Name

Cloud Pub/Sub Provides integrations with
Google Cloud Pub/Sub

org.springframework.cloud:spri
ng-cloud-gcp-starter-pubsub

Logging Enables Stackdriver Logging org.springframework.cloud:spri
ng-cloud-gcp-starter-logging

SQL - MySQL Cloud SQL integrations with
MySQL

org.springframework.cloud:spri
ng-cloud-gcp-starter-sql-mysql

SQL - PostgreSQL Cloud SQL integrations with
PostgreSQL

org.springframework.cloud:spri
ng-cloud-gcp-starter-sql-
postgresql

Storage Provides integrations with
Google Cloud Storage and
Spring Resource

org.springframework.cloud:spri
ng-cloud-gcp-starter-storage

Config Enables usage of Google
Runtime Configuration API as a
Spring Cloud Config server

org.springframework.cloud:spri
ng-cloud-gcp-starter-config

Trace Enables instrumentation with
Google Stackdriver Tracing

org.springframework.cloud:spri
ng-cloud-gcp-starter-trace

Vision Provides integrations with
Google Cloud Vision

org.springframework.cloud:spri
ng-cloud-gcp-starter-vision

Security - IAP Provides a security layer over
applications deployed to Google
Cloud

org.springframework.cloud:spri
ng-cloud-gcp-starter-security-
iap

Spring Initializr

Spring Initializr is a tool which generates the scaffolding code for a new Spring Boot project. It
handles the work of generating the Maven or Gradle build file so you do not have to manually add
the dependencies yourself.

Spring Initializr offers three modules from Spring Cloud GCP that you can use to generate your
project.

• GCP Support: The GCP Support module contains auto-configuration support for every Spring
Cloud GCP integration. Most of the autoconfiguration code is only enabled if the required
dependency is added to your project.

• GCP Messaging: Google Cloud Pub/Sub integrations work out of the box.

• GCP Storage: Google Cloud Storage integrations work out of the box.

19.2.2. Learning Spring Cloud GCP

There are a variety of resources to help you learn how to use Spring Cloud GCP libraries.

pubsub.pdf#_google_cloud_pubsub
pubsub.pdf#_google_cloud_pubsub
logging.pdf#_stackdriver_logging
logging.pdf#_stackdriver_logging
sql.pdf#_spring_jdbc
sql.pdf#_spring_jdbc
sql.pdf#_spring_jdbc
sql.pdf#_spring_jdbc
sql.pdf#_spring_jdbc
storage.pdf#_spring_resources
storage.pdf#_spring_resources
config.pdf#_spring_cloud_config
config.pdf#_spring_cloud_config
trace.pdf#_spring_cloud_sleuth
trace.pdf#_spring_cloud_sleuth
vision.pdf#_google_cloud_vision
vision.pdf#_google_cloud_vision
security-iap.pdf#_cloud_identity_aware_proxy_iap_authentication
security-iap.pdf#_cloud_identity_aware_proxy_iap_authentication
security-iap.pdf#_cloud_identity_aware_proxy_iap_authentication
https://start.spring.io/

Sample Applications

The easiest way to learn how to use Spring Cloud GCP is to consult the sample applications on
Github. Spring Cloud GCP provides sample applications which demonstrate how to use every
integration in the library. The table below highlights several samples of the most commonly used
integrations in Spring Cloud GCP.

GCP Integration Sample Application

Cloud Pub/Sub spring-cloud-gcp-pubsub-sample

Cloud Spanner spring-cloud-gcp-data-spanner-sample

Datastore spring-cloud-gcp-data-datastore-sample

Cloud SQL (w/ MySQL) spring-cloud-gcp-sql-mysql-sample

Cloud Storage spring-cloud-gcp-storage-resource-sample

Stackdriver Logging spring-cloud-gcp-logging-sample

Trace spring-cloud-gcp-trace-sample

Cloud Vision spring-cloud-gcp-vision-api-sample

Cloud Security - IAP spring-cloud-gcp-security-iap-sample

Each sample application demonstrates how to use Spring Cloud GCP libraries in context and how to
setup the dependencies for the project. The applications are fully functional and can be deployed to
Google Cloud Platform as well. If you are interested, you may consult guides for deploying an
application to AppEngine and to Google Kubernetes Engine.

Codelabs

For a more hands-on approach, there are several guides and codelabs to help you get up to speed.
These guides provide step-by-step instructions for building an application using Spring Cloud GCP.

Some examples include:

• Deploy a Spring Boot app to App Engine

• Build a Kotlin Spring Boot app with Cloud SQL and Cloud Pub/Sub

• Build a Spring Boot application with Datastore

• Messaging with Spring Integration and Cloud Pub/Sub

The full collection of Spring codelabs can be found on the Google Developer Codelabs page.

19.3. Spring Cloud GCP Core
Each Spring Cloud GCP module uses GcpProjectIdProvider and CredentialsProvider to get the GCP
project ID and access credentials.

Spring Cloud GCP provides a Spring Boot starter to auto-configure the core components.

Maven coordinates, using Spring Cloud GCP BOM:

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-data-spanner-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-data-datastore-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-sql-mysql-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-storage-resource-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-logging-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-trace-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-vision-api-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-security-iap-sample
https://codelabs.developers.google.com/codelabs/cloud-app-engine-springboot/index.html
https://codelabs.developers.google.com/codelabs/cloud-app-engine-springboot/index.html
https://codelabs.developers.google.com/codelabs/cloud-springboot-kubernetes/index.html
https://codelabs.developers.google.com/codelabs/cloud-app-engine-springboot/index.html
https://codelabs.developers.google.com/codelabs/cloud-spring-cloud-gcp-kotlin/index.html
https://codelabs.developers.google.com/codelabs/cloud-spring-datastore/index.html
https://codelabs.developers.google.com/codelabs/cloud-spring-cloud-gcp-pubsub-integration/index.html
https://codelabs.developers.google.com/spring
getting-started.pdf#_bill_of_materials

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter'
}

19.3.1. Configuration

The following options may be configured with Spring Cloud core.

Name Description Required Default value

spring.cloud.gcp.core.
enabled

Enables or disables GCP
core auto configuration

No true

19.3.2. Project ID

GcpProjectIdProvider is a functional interface that returns a GCP project ID string.

public interface GcpProjectIdProvider {
 String getProjectId();
}

The Spring Cloud GCP starter auto-configures a GcpProjectIdProvider. If a spring.cloud.gcp.project-
id property is specified, the provided GcpProjectIdProvider returns that property value.

spring.cloud.gcp.project-id=my-gcp-project-id

Otherwise, the project ID is discovered based on an ordered list of rules:

1. The project ID specified by the GOOGLE_CLOUD_PROJECT environment variable

2. The Google App Engine project ID

3. The project ID specified in the JSON credentials file pointed by the
GOOGLE_APPLICATION_CREDENTIALS environment variable

4. The Google Cloud SDK project ID

5. The Google Compute Engine project ID, from the Google Compute Engine Metadata Server

https://googlecloudplatform.github.io/google-cloud-java/google-cloud-clients/apidocs/com/google/cloud/ServiceOptions.html#getDefaultProjectId--

19.3.3. Credentials

CredentialsProvider is a functional interface that returns the credentials to authenticate and
authorize calls to Google Cloud Client Libraries.

public interface CredentialsProvider {
 Credentials getCredentials() throws IOException;
}

The Spring Cloud GCP starter auto-configures a CredentialsProvider. It uses the
spring.cloud.gcp.credentials.location property to locate the OAuth2 private key of a Google
service account. Keep in mind this property is a Spring Resource, so the credentials file can be
obtained from a number of different locations such as the file system, classpath, URL, etc. The next
example specifies the credentials location property in the file system.

spring.cloud.gcp.credentials.location=file:/usr/local/key.json

Alternatively, you can set the credentials by directly specifying the
spring.cloud.gcp.credentials.encoded-key property. The value should be the base64-encoded
account private key in JSON format.

If that credentials aren’t specified through properties, the starter tries to discover credentials from
a number of places:

1. Credentials file pointed to by the GOOGLE_APPLICATION_CREDENTIALS environment variable

2. Credentials provided by the Google Cloud SDK gcloud auth application-default login command

3. Google App Engine built-in credentials

4. Google Cloud Shell built-in credentials

5. Google Compute Engine built-in credentials

If your app is running on Google App Engine or Google Compute Engine, in most cases, you should
omit the spring.cloud.gcp.credentials.location property and, instead, let the Spring Cloud GCP
Starter get the correct credentials for those environments. On App Engine Standard, the App
Identity service account credentials are used, on App Engine Flexible, the Flexible service account
credential are used and on Google Compute Engine, the Compute Engine Default Service Account is
used.

Scopes

By default, the credentials provided by the Spring Cloud GCP Starter contain scopes for every
service supported by Spring Cloud GCP.

Service Scope

Spanner www.googleapis.com/auth/spanner.admin,
www.googleapis.com/auth/spanner.data

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html#resources-implementations
https://github.com/GoogleCloudPlatform/google-cloud-java#authentication
https://cloud.google.com/appengine/docs/standard/java/appidentity/
https://cloud.google.com/appengine/docs/standard/java/appidentity/
https://cloud.google.com/appengine/docs/flexible/java/service-account
https://cloud.google.com/appengine/docs/flexible/java/service-account
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-instances#using_the_compute_engine_default_service_account
https://www.googleapis.com/auth/spanner.admin
https://www.googleapis.com/auth/spanner.data

Datastore www.googleapis.com/auth/datastore

Pub/Sub www.googleapis.com/auth/pubsub

Storage (Read Only) www.googleapis.com/auth/devstorage.read_only

Storage (Write/Write) www.googleapis.com/auth/
devstorage.read_write

Runtime Config www.googleapis.com/auth/cloudruntimeconfig

Trace (Append) www.googleapis.com/auth/trace.append

Cloud Platform www.googleapis.com/auth/cloud-platform

Vision www.googleapis.com/auth/cloud-vision

The Spring Cloud GCP starter allows you to configure a custom scope list for the provided
credentials. To do that, specify a comma-delimited list of Google OAuth2 scopes in the
spring.cloud.gcp.credentials.scopes property.

spring.cloud.gcp.credentials.scopes is a comma-delimited list of Google OAuth2 scopes for Google
Cloud Platform services that the credentials returned by the provided CredentialsProvider support.

spring.cloud.gcp.credentials.scopes=https://www.googleapis.com/auth/pubsub,https://www
.googleapis.com/auth/sqlservice.admin

You can also use DEFAULT_SCOPES placeholder as a scope to represent the starters default scopes, and
append the additional scopes you need to add.

spring.cloud.gcp.credentials.scopes=DEFAULT_SCOPES,https://www.googleapis.com/auth/clo
ud-vision

19.3.4. Environment

GcpEnvironmentProvider is a functional interface, auto-configured by the Spring Cloud GCP starter,
that returns a GcpEnvironment enum. The provider can help determine programmatically in which
GCP environment (App Engine Flexible, App Engine Standard, Kubernetes Engine or Compute
Engine) the application is deployed.

public interface GcpEnvironmentProvider {
 GcpEnvironment getCurrentEnvironment();
}

19.3.5. Spring Initializr

This starter is available from Spring Initializr through the GCP Support entry.

https://www.googleapis.com/auth/datastore
https://www.googleapis.com/auth/pubsub
https://www.googleapis.com/auth/devstorage.read_only
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/cloudruntimeconfig
https://www.googleapis.com/auth/trace.append
https://www.googleapis.com/auth/cloud-platform
https://www.googleapis.com/auth/cloud-vision
https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes
https://start.spring.io/

19.4. Cloud Storage
Google Cloud Storage allows storing any types of files in single or multiple regions. A Spring Boot
starter is provided to auto-configure the various Storage components.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-storage</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-
storage'
}

This starter is also available from Spring Initializr through the GCP Storage entry.

19.4.1. Using Cloud Storage

The starter automatically configures and registers a Storage bean in the Spring application context.
The Storage bean (Javadoc) can be used to list/create/update/delete buckets (a group of objects with
similar permissions and resiliency requirements) and objects.

@Autowired
private Storage storage;

public void createFile() {
 Bucket bucket = storage.create(BucketInfo.of("my-app-storage-bucket"));

 storage.create(
 BlobInfo.newBuilder("my-app-storage-bucket", "subdirectory/my-file").build(),
 "file contents".getBytes()
);
}

19.4.2. Cloud Storage Objects As Spring Resources

Spring Resources are an abstraction for a number of low-level resources, such as file system files,
classpath files, servlet context-relative files, etc. Spring Cloud GCP adds a new resource type: a
Google Cloud Storage (GCS) object.

The Spring Resource Abstraction for Google Cloud Storage allows GCS objects to be accessed by

https://cloud.google.com/storage/docs
getting-started.pdf#_bill_of_materials
https://start.spring.io/
https://googleapis.dev/java/google-cloud-storage/latest/com/google/cloud/storage/Storage.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html

their GCS URL using the @Value annotation:

@Value("gs://[YOUR_GCS_BUCKET]/[GCS_FILE_NAME]")
private Resource gcsResource;

…or the Spring application context

SpringApplication.run(...).getResource("gs://[YOUR_GCS_BUCKET]/[GCS_FILE_NAME]");

This creates a Resource object that can be used to read the object, among other possible operations.

It is also possible to write to a Resource, although a WriteableResource is required.

@Value("gs://[YOUR_GCS_BUCKET]/[GCS_FILE_NAME]")
private Resource gcsResource;
...
try (OutputStream os = ((WritableResource) gcsResource).getOutputStream()) {
 os.write("foo".getBytes());
}

To work with the Resource as a Google Cloud Storage resource, cast it to GoogleStorageResource.

If the resource path refers to an object on Google Cloud Storage (as opposed to a bucket), then the
getBlob method can be called to obtain a Blob. This type represents a GCS file, which has associated
metadata, such as content-type, that can be set. The createSignedUrl method can also be used to
obtain signed URLs for GCS objects. However, creating signed URLs requires that the resource was
created using service account credentials.

The Spring Boot Starter for Google Cloud Storage auto-configures the Storage bean required by the
spring-cloud-gcp-storage module, based on the CredentialsProvider provided by the Spring Boot
GCP starter.

Setting the Content Type

You can set the content-type of Google Cloud Storage files from their corresponding Resource
objects:

((GoogleStorageResource)gcsResource).getBlob().toBuilder().setContentType("text/html")
.build().update();

19.4.3. Configuration

The Spring Boot Starter for Google Cloud Storage provides the following configuration options:

Name Description Required Default value

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html#resources-resource
https://github.com/GoogleCloudPlatform/google-cloud-java/blob/master/google-cloud-storage/src/main/java/com/google/cloud/storage/Blob.java
https://cloud.google.com/storage/docs/gsutil/addlhelp/WorkingWithObjectMetadata
https://cloud.google.com/storage/docs/access-control/signed-urls

spring.cloud.gcp.stora
ge.enabled

Enables the GCP
storage APIs.

No true

spring.cloud.gcp.stora
ge.auto-create-files

Creates files and
buckets on Google
Cloud Storage when
writes are made to non-
existent files

No true

spring.cloud.gcp.stora
ge.credentials.locatio
n

OAuth2 credentials for
authenticating with the
Google Cloud Storage
API, if different from
the ones in the Spring
Cloud GCP Core Module

No

spring.cloud.gcp.stora
ge.credentials.encoded
-key

Base64-encoded
contents of OAuth2
account private key for
authenticating with the
Google Cloud Storage
API, if different from
the ones in the Spring
Cloud GCP Core Module

No

spring.cloud.gcp.stora
ge.credentials.scopes

OAuth2 scope for
Spring Cloud GCP
Storage credentials

No www.googleapis.com/
auth/
devstorage.read_write

19.4.4. Sample

A sample application and a codelab are available.

19.5. Cloud SQL
Spring Cloud GCP adds integrations with Spring JDBC so you can run your MySQL or PostgreSQL
databases in Google Cloud SQL using Spring JDBC, or other libraries that depend on it like Spring
Data JPA.

The Cloud SQL support is provided by Spring Cloud GCP in the form of two Spring Boot starters, one
for MySQL and another one for PostgreSQL. The role of the starters is to read configuration from
properties and assume default settings so that user experience connecting to MySQL and
PostgreSQL is as simple as possible.

Maven coordinates, using Spring Cloud GCP BOM:

https://developers.google.com/identity/protocols/googlescopes
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-storage-resource-sample
https://codelabs.developers.google.com/codelabs/spring-cloud-gcp-gcs/index.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html
https://cloud.google.com/sql
getting-started.pdf#_bill_of_materials

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-sql-mysql</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-sql-postgresql</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-sql-
mysql'
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-sql-
postgresql'
}

19.5.1. Prerequisites

In order to use the Spring Boot Starters for Google Cloud SQL, the Google Cloud SQL API must be
enabled in your GCP project.

To do that, go to the API library page of the Google Cloud Console, search for "Cloud SQL API", click
the first result and enable the API.

There are several similar "Cloud SQL" results. You must access the "Google Cloud
SQL API" one and enable the API from there.

19.5.2. Spring Boot Starter for Google Cloud SQL

The Spring Boot Starters for Google Cloud SQL provide an auto-configured DataSource object.
Coupled with Spring JDBC, it provides a JdbcTemplate object bean that allows for operations such as
querying and modifying a database.

public List<Map<String, Object>> listUsers() {
 return jdbcTemplate.queryForList("SELECT * FROM user;");
}

You can rely on Spring Boot data source auto-configuration to configure a DataSource bean. In other
words, properties like the SQL username, spring.datasource.username, and password,
spring.datasource.password can be used. There is also some configuration specific to Google Cloud
SQL:

Property name Description Default value

https://console.cloud.google.com/apis/library
https://docs.oracle.com/javase/7/docs/api/javax/sql/DataSource.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html#jdbc-JdbcTemplate
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database

spring.cloud.gcp.sql.enabled Enables or disables Cloud SQL
auto configuration

true

spring.cloud.gcp.sql.database-
name

Name of the database to
connect to.

spring.cloud.gcp.sql.instance-
connection-name

A string containing a Google
Cloud SQL instance’s project ID,
region and name, each
separated by a colon. For
example, my-project-id:my-
region:my-instance-name.

spring.cloud.gcp.sql.credentia
ls.location

File system path to the Google
OAuth2 credentials private key
file. Used to authenticate and
authorize new connections to a
Google Cloud SQL instance.

Default credentials provided by
the Spring GCP Boot starter

spring.cloud.gcp.sql.credentia
ls.encoded-key

Base64-encoded contents of
OAuth2 account private key in
JSON format. Used to
authenticate and authorize new
connections to a Google Cloud
SQL instance.

Default credentials provided by
the Spring GCP Boot starter

If you provide your own spring.datasource.url, it will be ignored, unless you
disable Cloud SQL auto configuration with spring.cloud.gcp.sql.enabled=false.

DataSource creation flow

Based on the previous properties, the Spring Boot starter for Google Cloud SQL creates a
CloudSqlJdbcInfoProvider object which is used to obtain an instance’s JDBC URL and driver class
name. If you provide your own CloudSqlJdbcInfoProvider bean, it is used instead and the properties
related to building the JDBC URL or driver class are ignored.

The DataSourceProperties object provided by Spring Boot Autoconfigure is mutated in order to use
the JDBC URL and driver class names provided by CloudSqlJdbcInfoProvider, unless those values
were provided in the properties. It is in the DataSourceProperties mutation step that the credentials
factory is registered in a system property to be SqlCredentialFactory.

DataSource creation is delegated to Spring Boot. You can select the type of connection pool (e.g.,
Tomcat, HikariCP, etc.) by adding their dependency to the classpath.

Using the created DataSource in conjunction with Spring JDBC provides you with a fully configured
and operational JdbcTemplate object that you can use to interact with your SQL database. You can
connect to your database with as little as a database and instance names.

Troubleshooting tips

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database

Connection issues

If you’re not able to connect to a database and see an endless loop of Connecting to Cloud SQL
instance […] on IP […], it’s likely that exceptions are being thrown and logged at a level lower
than your logger’s level. This may be the case with HikariCP, if your logger is set to INFO or higher
level.

To see what’s going on in the background, you should add a logback.xml file to your application
resources folder, that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <include resource="org/springframework/boot/logging/logback/base.xml"/>
 <logger name="com.zaxxer.hikari.pool" level="DEBUG"/>
</configuration>

Errors like c.g.cloud.sql.core.SslSocketFactory : Re-throwing cached exception due to attempt to refresh
instance information too soon after error

If you see a lot of errors like this in a loop and can’t connect to your database, this is usually a
symptom that something isn’t right with the permissions of your credentials or the Google Cloud
SQL API is not enabled. Verify that the Google Cloud SQL API is enabled in the Cloud Console and
that your service account has the necessary IAM roles.

To find out what’s causing the issue, you can enable DEBUG logging level as mentioned above.

PostgreSQL: java.net.SocketException: already connected issue

We found this exception to be common if your Maven project’s parent is spring-boot version 1.5.x,
or in any other circumstance that would cause the version of the org.postgresql:postgresql
dependency to be an older one (e.g., 9.4.1212.jre7).

To fix this, re-declare the dependency in its correct version. For example, in Maven:

<dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>42.1.1</version>
</dependency>

19.5.3. Samples

Available sample applications and codelabs:

• Spring Cloud GCP MySQL

• Spring Cloud GCP PostgreSQL

• Spring Data JPA with Spring Cloud GCP SQL

• Codelab: Spring Pet Clinic using Cloud SQL

https://cloud.google.com/sql/docs/mysql/project-access-control#roles
#connection-issues
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-sql-mysql-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-sql-postgres-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-data-jpa-sample
https://codelabs.developers.google.com/codelabs/cloud-spring-petclinic-cloudsql/index.html

19.6. Cloud Pub/Sub
Spring Cloud GCP provides an abstraction layer to publish to and subscribe from Google Cloud
Pub/Sub topics and to create, list or delete Google Cloud Pub/Sub topics and subscriptions.

A Spring Boot starter is provided to auto-configure the various required Pub/Sub components.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-pubsub</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-
pubsub'
}

This starter is also available from Spring Initializr through the GCP Messaging entry.

19.6.1. Configuration

The Spring Boot starter for Google Cloud Pub/Sub provides the following configuration options.

Spring Cloud GCP Pub/Sub API Configuration

This section describes options for enabling the integration, specifying the GCP project and
credentials, and setting whether the APIs should connect to an emulator for local testing.

Name Description Required Default value

spring.cloud.gcp.pubsu
b.enabled

Enables or disables
Pub/Sub auto-
configuration

No true

spring.cloud.gcp.pubsu
b.project-id

GCP project ID where
the Google Cloud
Pub/Sub API is hosted,
if different from the
one in the Spring Cloud
GCP Core Module

No

getting-started.pdf#_bill_of_materials
https://start.spring.io

spring.cloud.gcp.pubsu
b.credentials.location

OAuth2 credentials for
authenticating with the
Google Cloud Pub/Sub
API, if different from
the ones in the Spring
Cloud GCP Core Module

No

spring.cloud.gcp.pubsu
b.emulator-host

The host and port of the
local running emulator.
If provided, this will
setup the client to
connect against a
running Google Cloud
Pub/Sub Emulator.

No

spring.cloud.gcp.pubsu
b.credentials.encoded-
key

Base64-encoded
contents of OAuth2
account private key for
authenticating with the
Google Cloud Pub/Sub
API, if different from
the ones in the Spring
Cloud GCP Core Module

No

spring.cloud.gcp.pubsu
b.credentials.scopes

OAuth2 scope for
Spring Cloud GCP
Pub/Sub credentials

No www.googleapis.com/
auth/pubsub

Publisher/Subscriber Configuration

This section describes configuration options to customize the behavior of the application’s Pub/Sub
publishers and subscribers.

Name Description Required Default value

spring.cloud.gcp.pubsu
b.subscriber.parallel-
pull-count

The number of pull
workers

No 1

spring.cloud.gcp.pubsu
b.subscriber.max-ack-
extension-period

The maximum period a
message ack deadline
will be extended, in
seconds

No 0

spring.cloud.gcp.pubsu
b.subscriber.pull-
endpoint

The endpoint for
synchronous pulling
messages

No pubsub.googleapis.com:
443

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].executor-threads

Number of threads
used by Subscriber
instances created by
SubscriberFactory

No 4

https://cloud.google.com/pubsub/docs/emulator
https://cloud.google.com/pubsub/docs/emulator
https://developers.google.com/identity/protocols/googlescopes
https://www.googleapis.com/auth/pubsub
https://www.googleapis.com/auth/pubsub

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r.batching].flow-
control.max-
outstanding-element-
count

Maximum number of
outstanding elements
to keep in memory
before enforcing flow
control.

No unlimited

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r.batching].flow-
control.max-
outstanding-request-
bytes

Maximum number of
outstanding bytes to
keep in memory before
enforcing flow control.

No unlimited

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r.batching].flow-
control.limit-
exceeded-behavior

The behavior when the
specified limits are
exceeded.

No Block

spring.cloud.gcp.pubsu
b.publisher.batching.e
lement-count-threshold

The element count
threshold to use for
batching.

No unset (threshold does
not apply)

spring.cloud.gcp.pubsu
b.publisher.batching.r
equest-byte-threshold

The request byte
threshold to use for
batching.

No unset (threshold does
not apply)

spring.cloud.gcp.pubsu
b.publisher.batching.d
elay-threshold-seconds

The delay threshold to
use for batching. After
this amount of time has
elapsed (counting from
the first element
added), the elements
will be wrapped up in a
batch and sent.

No unset (threshold does
not apply)

spring.cloud.gcp.pubsu
b.publisher.batching.e
nabled

Enables batching. No false

GRPC Connection Settings

The Pub/Sub API uses the GRPC protocol to send API requests to the Pub/Sub service. This section
describes configuration options for customizing the GRPC behavior.

The properties that refer to retry control the RPC retries for transient failures
during the gRPC call to Cloud Pub/Sub server. They do not control message
redelivery; only message acknowledgement deadline can be used to extend or
shorten the amount of time until Pub/Sub attempts redelivery.

Name Description Required Default value

https://cloud.google.com/pubsub/docs/reference/service_apis_overview#grpc_api

spring.cloud.gcp.pubsu
b.keepAliveIntervalMin
utes

Determines frequency
of keepalive gRPC ping

No 5 minutes

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.total-
timeout-seconds

TotalTimeout has
ultimate control over
how long the logic
should keep trying the
remote call until it
gives up completely.
The higher the total
timeout, the more
retries can be
attempted.

No 0

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.initial-
retry-delay-second

InitialRetryDelay
controls the delay
before the first retry.
Subsequent retries will
use this value adjusted
according to the
RetryDelayMultiplier.

No 0

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.retry-delay-
multiplier

RetryDelayMultiplier
controls the change in
retry delay. The retry
delay of the previous
call is multiplied by the
RetryDelayMultiplier to
calculate the retry
delay for the next call.

No 1

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.max-retry-
delay-seconds

MaxRetryDelay puts a
limit on the value of the
retry delay, so that the
RetryDelayMultiplier
can’t increase the retry
delay higher than this
amount.

No 0

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.max-attempts

MaxAttempts defines
the maximum number
of attempts to perform.
If this value is greater
than 0, and the number
of attempts reaches this
limit, the logic will give
up retrying even if the
total retry time is still
lower than
TotalTimeout.

No 0

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.jittered

Jitter determines if the
delay time should be
randomized.

No true

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.initial-rpc-
timeout-seconds

InitialRpcTimeout
controls the timeout for
the initial RPC.
Subsequent calls will
use this value adjusted
according to the
RpcTimeoutMultiplier.

No 0

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.rpc-timeout-
multiplier

RpcTimeoutMultiplier
controls the change in
RPC timeout. The
timeout of the previous
call is multiplied by the
RpcTimeoutMultiplier
to calculate the timeout
for the next call.

No 1

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.max-rpc-
timeout-seconds

MaxRpcTimeout puts a
limit on the value of the
RPC timeout, so that the
RpcTimeoutMultiplier
can’t increase the RPC
timeout higher than
this amount.

No 0

19.6.2. Spring Boot Actuator Support

Cloud Pub/Sub Health Indicator

If you are using Spring Boot Actuator, you can take advantage of the Cloud Pub/Sub health indicator
called pubsub. The health indicator will verify whether Cloud Pub/Sub is up and accessible by your
application. To enable it, all you need to do is add the Spring Boot Actuator to your project.

The pubsub indicator will then roll up to the overall application status visible at localhost:8080/
actuator/health (use the management.endpoint.health.show-details property to view per-indicator
details).

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready
http://localhost:8080/actuator/health
http://localhost:8080/actuator/health

If your application already has actuator and Cloud Pub/Sub starters, this health
indicator is enabled by default. To disable the Cloud Pub/Sub indicator, set
management.health.pubsub.enabled to false.

19.6.3. Pub/Sub Operations & Template

PubSubOperations is an abstraction that allows Spring users to use Google Cloud Pub/Sub without
depending on any Google Cloud Pub/Sub API semantics. It provides the common set of operations
needed to interact with Google Cloud Pub/Sub. PubSubTemplate is the default implementation of
PubSubOperations and it uses the Google Cloud Java Client for Pub/Sub to interact with Google Cloud
Pub/Sub.

Publishing to a topic

PubSubTemplate provides asynchronous methods to publish messages to a Google Cloud Pub/Sub
topic. The publish() method takes in a topic name to post the message to, a payload of a generic
type and, optionally, a map with the message headers. The topic name could either be a canonical
topic name within the current project, or the fully-qualified name referring to a topic in a different
project using the projects/<project_name>/topics/<topic_name> format.

Here is an example of how to publish a message to a Google Cloud Pub/Sub topic:

Map<String, String> headers = Collections.singletonMap("key1", "val1");
pubSubTemplate.publish(topicName, "message", headers).get();

By default, the SimplePubSubMessageConverter is used to convert payloads of type byte[], ByteString,
ByteBuffer, and String to Pub/Sub messages.

Subscribing to a subscription

Google Cloud Pub/Sub allows many subscriptions to be associated to the same topic. PubSubTemplate
allows you to listen to subscriptions via the subscribe() method. When listening to a subscription,
messages will be pulled from Google Cloud Pub/Sub asynchronously and passed to a user provided
message handler. The subscription name could either be a canonical subscription name within the
current project, or the fully-qualified name referring to a subscription in a different project using
the projects/<project_name>/subscriptions/<subscription_name> format.

Example

Subscribe to a subscription with a message handler:

Subscriber subscriber = pubSubTemplate.subscribe(subscriptionName, (message) -> {
 logger.info("Message received from " + subscriptionName + " subscription: "
 + message.getPubsubMessage().getData().toStringUtf8());
 message.ack();
});

https://github.com/GoogleCloudPlatform/google-cloud-java/tree/master/google-cloud-pubsub

Subscribe methods

PubSubTemplate provides the following subscribe methods:

subscribe(String
subscription,
Consumer<Basic
Acknowledgeable
PubsubMessage>
messageConsume
r)

asynchronously pulls messages and passes them to messageConsumer

subscribeAndCon
vert(String
subscription,
Consumer<Conve
rtedBasicAcknow
ledgeablePubsub
Message<T>>
messageConsume
r, Class<T>
payloadType)

same as pull, but converts message payload to payloadType using the converter
configured in the template

As of version 1.2, subscribing by itself is not enough to keep an application
running. For a command-line application, you may want to provide your own
ThreadPoolTaskScheduler bean named pubsubSubscriberThreadPool, which by default
creates non-daemon threads that will keep an application from stopping. This
default behavior has been overridden in Spring Cloud GCP for consistency with
Cloud Pub/Sub client library, and to avoid holding up command-line applications
that would like to shut down once their work is done.

Pulling messages from a subscription

Google Cloud Pub/Sub supports synchronous pulling of messages from a subscription. This is
different from subscribing to a subscription, in the sense that subscribing is an asynchronous task.

Example

Pull up to 10 messages:

int maxMessages = 10;
boolean returnImmediately = false;
List<AcknowledgeablePubsubMessage> messages = pubSubTemplate.pull(subscriptionName,
maxMessages,
 returnImmediately);

//acknowledge the messages
pubSubTemplate.ack(messages);

messages.forEach(message ->
logger.info(message.getPubsubMessage().getData().toStringUtf8()));

Pull methods

PubsubTemplate provides the following pull methods:

pull(String
subscription,
Integer
maxMessages,
Boolean
returnImmediate
ly)

Pulls a number of messages from a subscription, allowing for the retry settings
to be configured. Any messages received by pull() are not automatically
acknowledged. See Acknowledging messages.

The maxMessages parameter is the maximum limit of how many messages to
pull from a subscription in a single call; this value must be greater than 0. You
may omit this parameter by passing in null; this means there will be no limit
on the number of messages pulled (maxMessages will be Integer.MAX_INTEGER).

If returnImmediately is true, the system will respond immediately even if it
there are no messages available to return in the Pull response. Otherwise, the
system may wait (for a bounded amount of time) until at least one message is
available, rather than returning no messages.

pullAndAck Works the same as the pull method and, additionally, acknowledges all
received messages.

pullNext Allows for a single message to be pulled and automatically acknowledged
from a subscription.

pullAndConvert Works the same as the pull method and, additionally, converts the Pub/Sub
binary payload to an object of the desired type, using the converter configured
in the template.

Acknowledging messages

There are two ways to acknowledge messages.

1. To acknowledge multiple messages at once, you can use the PubSubTemplate.ack() method. You
can also use the PubSubTemplate.nack() for negatively acknowledging messages. Using these
methods for acknowledging messages in batches is more efficient than acknowledging messages
individually, but they require the collection of messages to be from the same project.

2. To acknowledge messages individually you can use the ack() or nack() method on each of them

(to acknowledge or negatively acknowledge, correspondingly).

All ack(), nack(), and modifyAckDeadline() methods on messages as well as
PubSubSubscriberTemplate are implemented asynchronously, returning a
ListenableFuture<Void> to be able to process the asynchronous execution.

JSON support

For serialization and deserialization of POJOs using Jackson JSON, configure a
PubSubMessageConverter bean, and the Spring Boot starter for GCP Pub/Sub will automatically wire it
into the PubSubTemplate.

// Note: The ObjectMapper is used to convert Java POJOs to and from JSON.
// You will have to configure your own instance if you are unable to depend
// on the ObjectMapper provided by Spring Boot starters.
@Bean
public PubSubMessageConverter pubSubMessageConverter() {
 return new JacksonPubSubMessageConverter(new ObjectMapper());
}

Alternatively, you can set it directly by calling the setMessageConverter() method
on the PubSubTemplate. Other implementations of the PubSubMessageConverter can
also be configured in the same manner.

Assuming you have the following class defined:

static class TestUser {

 String username;

 String password;

 public String getUsername() {
 return this.username;
 }

 void setUsername(String username) {
 this.username = username;
 }

 public String getPassword() {
 return this.password;
 }

 void setPassword(String password) {
 this.password = password;
 }
}

You can serialize objects to JSON on publish automatically:

TestUser user = new TestUser();
user.setUsername("John");
user.setPassword("password");
pubSubTemplate.publish(topicName, user);

And that’s how you convert messages to objects on pull:

int maxMessages = 1;
boolean returnImmediately = false;
List<ConvertedAcknowledgeablePubsubMessage<TestUser>> messages =
pubSubTemplate.pullAndConvert(
 subscriptionName, maxMessages, returnImmediately, TestUser.class);

ConvertedAcknowledgeablePubsubMessage<TestUser> message = messages.get(0);

//acknowledge the message
message.ack();

TestUser receivedTestUser = message.getPayload();

Please refer to our Pub/Sub JSON Payload Sample App as a reference for using this functionality.

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-integration-pubsub-json-sample

19.6.4. Reactive Stream Subscription

It is also possible to acquire a reactive stream backed by a subscription. To do so, a Project Reactor
dependency (io.projectreactor:reactor-core) must be added to the project. The combination of the
Pub/Sub starter and the Project Reactor dependencies will then make a PubSubReactiveFactory bean
available, which can then be used to get a Publisher.

@Autowired
PubSubReactiveFactory reactiveFactory;

// ...

Flux<AcknowledgeablePubsubMessage> flux
 = reactiveFactory.poll("exampleSubscription", 1000);

The Flux then represents an infinite stream of GCP Pub/Sub messages coming in through the
specified subscription. For unlimited demand, the Pub/Sub subscription will be polled regularly, at
intervals determined by pollingPeriodMs parameter passed in when creating the Flux. For bounded
demand, the pollingPeriodMs parameter is unused. Instead, as many messages as possible (up to the
requested number) are delivered immediately, with the remaining messages delivered as they
become available.

Any exceptions thrown by the underlying message retrieval logic will be passed as an error to the
stream. The error handling operators (Flux#retry(), Flux#onErrorResume() etc.) can be used to
recover.

The full range of Project Reactor operations can be applied to the stream. For example, if you only
want to fetch 5 messages, you can use limitRequest operation to turn the infinite stream into a finite
one:

Flux<AcknowledgeablePubsubMessage> fiveMessageFlux = flux.limitRequest(5);

Messages flowing through the Flux should be manually acknowledged.

flux.doOnNext(AcknowledgeablePubsubMessage::ack);

19.6.5. Pub/Sub management

PubSubAdmin is the abstraction provided by Spring Cloud GCP to manage Google Cloud Pub/Sub
resources. It allows for the creation, deletion and listing of topics and subscriptions.

Generally when referring to topics and subscriptions, you can either use the short
canonical name within the current project, or the fully-qualified name referring to
a topic or subscription in a different project using the
projects/<project_name>/(topics|subscriptions)/<name> format.

PubSubAdmin depends on GcpProjectIdProvider and either a CredentialsProvider or a
TopicAdminClient and a SubscriptionAdminClient. If given a CredentialsProvider, it creates a
TopicAdminClient and a SubscriptionAdminClient with the Google Cloud Java Library for Pub/Sub
default settings. The Spring Boot starter for GCP Pub/Sub auto-configures a PubSubAdmin object using
the GcpProjectIdProvider and the CredentialsProvider auto-configured by the Spring Boot GCP Core
starter.

Creating a topic

PubSubAdmin implements a method to create topics:

public Topic createTopic(String topicName)

Here is an example of how to create a Google Cloud Pub/Sub topic:

public void newTopic() {
 pubSubAdmin.createTopic("topicName");
}

Deleting a topic

PubSubAdmin implements a method to delete topics:

public void deleteTopic(String topicName)

Here is an example of how to delete a Google Cloud Pub/Sub topic:

public void deleteTopic() {
 pubSubAdmin.deleteTopic("topicName");
}

Listing topics

PubSubAdmin implements a method to list topics:

public List<Topic> listTopics

Here is an example of how to list every Google Cloud Pub/Sub topic name in a project:

List<String> topics = pubSubAdmin
 .listTopics()
 .stream()
 .map(Topic::getName)
 .collect(Collectors.toList());

Creating a subscription

PubSubAdmin implements a method to create subscriptions to existing topics:

public Subscription createSubscription(String subscriptionName, String topicName,
Integer ackDeadline, String pushEndpoint)

Here is an example of how to create a Google Cloud Pub/Sub subscription:

public void newSubscription() {
 pubSubAdmin.createSubscription("subscriptionName", "topicName", 10,
“https://my.endpoint/push”);
}

Alternative methods with default settings are provided for ease of use. The default value for
ackDeadline is 10 seconds. If pushEndpoint isn’t specified, the subscription uses message pulling,
instead.

public Subscription createSubscription(String subscriptionName, String topicName)

public Subscription createSubscription(String subscriptionName, String topicName,
Integer ackDeadline)

public Subscription createSubscription(String subscriptionName, String topicName,
String pushEndpoint)

Deleting a subscription

PubSubAdmin implements a method to delete subscriptions:

public void deleteSubscription(String subscriptionName)

Here is an example of how to delete a Google Cloud Pub/Sub subscription:

public void deleteSubscription() {
 pubSubAdmin.deleteSubscription("subscriptionName");
}

Listing subscriptions

PubSubAdmin implements a method to list subscriptions:

public List<Subscription> listSubscriptions()

Here is an example of how to list every subscription name in a project:

List<String> subscriptions = pubSubAdmin
 .listSubscriptions()
 .stream()
 .map(Subscription::getName)
 .collect(Collectors.toList());

19.6.6. Sample

Sample applications for using the template and using a subscription-backed reactive stream are
available.

19.7. Spring Integration
Spring Cloud GCP provides Spring Integration adapters that allow your applications to use
Enterprise Integration Patterns backed up by Google Cloud Platform services.

19.7.1. Channel Adapters for Cloud Pub/Sub

The channel adapters for Google Cloud Pub/Sub connect your Spring MessageChannels to Google
Cloud Pub/Sub topics and subscriptions. This enables messaging between different processes,
applications or micro-services backed up by Google Cloud Pub/Sub.

The Spring Integration Channel Adapters for Google Cloud Pub/Sub are included in the spring-
cloud-gcp-pubsub module and can be autoconfigured by using the spring-cloud-gcp-starter-pubsub
module in combination with a Spring Integration dependency.

Maven coordinates, using Spring Cloud GCP BOM:

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-reactive-sample
https://docs.spring.io/spring-integration/reference/html/messaging-channels-section.html#channel
getting-started.pdf#_bill_of_materials

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-pubsub</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-core</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-
pubsub'
 compile group: 'org.springframework.integration', name: 'spring-integration-core'
}

Inbound channel adapter (using Pub/Sub Streaming Pull)

PubSubInboundChannelAdapter is the inbound channel adapter for GCP Pub/Sub that listens to a GCP
Pub/Sub subscription for new messages. It converts new messages to an internal Spring Message and
then sends it to the bound output channel.

Google Pub/Sub treats message payloads as byte arrays. So, by default, the inbound channel adapter
will construct the Spring Message with byte[] as the payload. However, you can change the desired
payload type by setting the payloadType property of the PubSubInboundChannelAdapter. The
PubSubInboundChannelAdapter delegates the conversion to the desired payload type to the
PubSubMessageConverter configured in the PubSubTemplate.

To use the inbound channel adapter, a PubSubInboundChannelAdapter must be provided and
configured on the user application side.

https://docs.spring.io/spring-integration/reference/html/messaging-construction-chapter.html#message

@Bean
public MessageChannel pubsubInputChannel() {
 return new PublishSubscribeChannel();
}

@Bean
public PubSubInboundChannelAdapter messageChannelAdapter(
 @Qualifier("pubsubInputChannel") MessageChannel inputChannel,
 PubSubSubscriberOperations subscriberOperations) {
 PubSubInboundChannelAdapter adapter =
 new PubSubInboundChannelAdapter(subscriberOperations, "subscriptionName");
 adapter.setOutputChannel(inputChannel);
 adapter.setAckMode(AckMode.MANUAL);

 return adapter;
}

In the example, we first specify the MessageChannel where the adapter is going to write incoming
messages to. The MessageChannel implementation isn’t important here. Depending on your use case,
you might want to use a MessageChannel other than PublishSubscribeChannel.

Then, we declare a PubSubInboundChannelAdapter bean. It requires the channel we just created and a
SubscriberFactory, which creates Subscriber objects from the Google Cloud Java Client for Pub/Sub.
The Spring Boot starter for GCP Pub/Sub provides a configured PubSubSubscriberOperations object.

Acknowledging messages and handling failures

When working with Cloud Pub/Sub, it is important to understand the concept of ackDeadline — the
amount of time Cloud Pub/Sub will wait until attempting redelivery of an outstanding message.
Each subscription has a default ackDeadline applied to all messages sent to it. Additionally, the Cloud
Pub/Sub client library can extend each streamed message’s ackDeadline until the message
processing completes, fails or until the maximum extension period elapses.

In the Pub/Sub client library, default maximum extension period is an hour.
However, Spring Cloud GCP disables this auto-extension behavior. Use the
spring.cloud.gcp.pubsub.subscriber.max-ack-extension-period property to re-
enable it.

Acknowledging (acking) a message removes it from Pub/Sub’s known outstanding messages.
Nacking a message resets its acknowledgement deadline to 0, forcing immediate redelivery. This
could be useful in a load balanced architecture, where one of the subscribers is having issues but
others are available to process messages.

The PubSubInboundChannelAdapter supports three acknowledgement modes: the default AckMode.AUTO
(automatic acking on processing success and nacking on exception), as well as two modes for
additional manual control: AckMode.AUTO_ACK (automatic acking on success but no action on
exception) and AckMode.MANUAL (no automatic actions at all; both acking and nacking have to be
done manually).

Table 14. Acknowledgement mode behavior

AUTO AUTO_ACK MANUAL

Message processing
completes successfully

ack, no redelivery ack, no redelivery <no action>*

Message processing
fails, but error handler
completes
successfully**

ack, no redelivery ack, no redelivery <no action>*

Message processing
fails; no error handler
present

nack, immediate
redelivery

<no action>* <no action>*

Message processing
fails, and error handler
throws an exception

nack, immediate
redelivery

<no action>* <no action>*

* <no action> means that the message will be neither acked nor nacked. Cloud Pub/Sub will attempt
redelivery according to subscription ackDeadline setting and the max-ack-extension-period client
library setting.

** For the adapter, "success" means the Spring Integration flow processed without raising an
exception, so successful message processing and the successful completion of an error handler both
result in the same behavior (message will be acknowledged). To trigger default error behavior
(nacking in AUTO mode; neither acking nor nacking in AUTO_ACK mode), propagate the error back to
the adapter by throwing an exception from the Error Handling flow.

Manual acking/nacking

The adapter attaches a BasicAcknowledgeablePubsubMessage object to the Message headers. Users can
extract the BasicAcknowledgeablePubsubMessage using the GcpPubSubHeaders.ORIGINAL_MESSAGE key and
use it to ack (or nack) a message.

@Bean
@ServiceActivator(inputChannel = "pubsubInputChannel")
public MessageHandler messageReceiver() {
 return message -> {
 LOGGER.info("Message arrived! Payload: " + new String((byte[])
message.getPayload()));
 BasicAcknowledgeablePubsubMessage originalMessage =
 message.getHeaders().get(GcpPubSubHeaders.ORIGINAL_MESSAGE,
BasicAcknowledgeablePubsubMessage.class);
 originalMessage.ack();
 };
}

Error Handling

If you want to have more control over message processing in case of an error, you need to associate
the PubSubInboundChannelAdapter with a Spring Integration error channel and specify the behavior
to be invoked with @ServiceActivator.

In order to activate the default behavior (nacking in AUTO mode; neither acking nor
nacking in AUTO_ACK mode), your error handler has to throw an exception.
Otherwise, the adapter will assume that processing completed successfully and
will ack the message.

@Bean
public MessageChannel pubsubInputChannel() {
 return new PublishSubscribeChannel();
}

@Bean
public PubSubInboundChannelAdapter messageChannelAdapter(
 @Qualifier("pubsubInputChannel") MessageChannel inputChannel,
 SubscriberFactory subscriberFactory) {
 PubSubInboundChannelAdapter adapter =
 new PubSubInboundChannelAdapter(subscriberFactory, "subscriptionName");
 adapter.setOutputChannel(inputChannel);
 adapter.setAckMode(AckMode.AUTO_ACK);
 adapter.setErrorChannelName("pubsubErrors");

 return adapter;
}

@ServiceActivator(inputChannel = "pubsubErrors")
public void pubsubErrorHandler(Message<MessagingException> message) {
 LOGGER.warn("This message will be automatically acked because error handler
completes successfully");
}

If you would prefer to manually ack or nack the message, you can do it by retrieving the header of
the exception payload:

@ServiceActivator(inputChannel = "pubsubErrors")
public void pubsubErrorHandler(Message<MessagingException> exceptionMessage) {

 BasicAcknowledgeablePubsubMessage originalMessage =

(BasicAcknowledgeablePubsubMessage)exceptionMessage.getPayload().getFailedMessage()
 .getHeaders().get(GcpPubSubHeaders.ORIGINAL_MESSAGE);

 originalMessage.nack();
}

Pollable Message Source (using Pub/Sub Synchronous Pull)

While PubSubInboundChannelAdapter, through the underlying Asynchronous Pull Pub/Sub
mechanism, provides the best performance for high-volume applications that receive a steady flow
of messages, it can create load balancing anomalies due to message caching. This behavior is most
obvious when publishing a large batch of small messages that take a long time to process
individually. It manifests as one subscriber taking up most messages, even if multiple subscribers
are available to take on the work. For a more detailed explanation of this scenario, see GCP Pub/Sub
documentation.

In such a scenario, a PubSubMessageSource can help spread the load between different subscribers
more evenly.

As with the Inbound Channel Adapter, the message source has a configurable acknowledgement
mode, payload type, and header mapping.

The default behavior is to return from the synchronous pull operation immediately if no messages
are present. This can be overridden by using setBlockOnPull() method to wait for at least one
message to arrive.

By default, PubSubMessageSource pulls from the subscription one message at a time. To pull a batch of
messages on each request, use the setMaxFetchSize() method to set the batch size.

@Bean
@InboundChannelAdapter(channel = "pubsubInputChannel", poller = @Poller(fixedDelay =
"100"))
public MessageSource<Object> pubsubAdapter(PubSubTemplate pubSubTemplate) {
 PubSubMessageSource messageSource = new PubSubMessageSource(pubSubTemplate,
"exampleSubscription");
 messageSource.setAckMode(AckMode.MANUAL);
 messageSource.setPayloadType(String.class);
 messageSource.setBlockOnPull(true);
 messageSource.setMaxFetchSize(100);
 return messageSource;
}

The @InboundChannelAdapter annotation above ensures that the configured MessageSource is polled
for messages, which are then available for manipulation with any Spring Integration mechanism
on the pubsubInputChannel message channel. For example, messages can be retrieved in a method
annotated with @ServiceActivator, as seen below.

For additional flexibility, PubSubMessageSource attaches an AcknowledgeablePubSubMessage object to
the GcpPubSubHeaders.ORIGINAL_MESSAGE message header. The object can be used for manually
(n)acking the message.

https://cloud.google.com/pubsub/docs/pull#streamingpull_dealing_with_large_backlogs_of_small_messages
https://cloud.google.com/pubsub/docs/pull#streamingpull_dealing_with_large_backlogs_of_small_messages

@ServiceActivator(inputChannel = "pubsubInputChannel")
public void messageReceiver(String payload,
 @Header(GcpPubSubHeaders.ORIGINAL_MESSAGE) AcknowledgeablePubsubMessage
message)
 throws InterruptedException {
 LOGGER.info("Message arrived by Synchronous Pull! Payload: " + payload);
 message.ack();
}

AcknowledgeablePubSubMessage objects acquired by synchronous pull are aware of
their own acknowledgement IDs. Streaming pull does not expose this information
due to limitations of the underlying API, and returns
BasicAcknowledgeablePubsubMessage objects that allow acking/nacking individual
messages, but not extracting acknowledgement IDs for future processing.

Outbound channel adapter

PubSubMessageHandler is the outbound channel adapter for GCP Pub/Sub that listens for new
messages on a Spring MessageChannel. It uses PubSubTemplate to post them to a GCP Pub/Sub topic.

To construct a Pub/Sub representation of the message, the outbound channel adapter needs to
convert the Spring Message payload to a byte array representation expected by Pub/Sub. It delegates
this conversion to the PubSubTemplate. To customize the conversion, you can specify a
PubSubMessageConverter in the PubSubTemplate that should convert the Object payload and headers of
the Spring Message to a PubsubMessage.

To use the outbound channel adapter, a PubSubMessageHandler bean must be provided and
configured on the user application side.

@Bean
@ServiceActivator(inputChannel = "pubsubOutputChannel")
public MessageHandler messageSender(PubSubTemplate pubsubTemplate) {
 return new PubSubMessageHandler(pubsubTemplate, "topicName");
}

The provided PubSubTemplate contains all the necessary configuration to publish messages to a GCP
Pub/Sub topic.

PubSubMessageHandler publishes messages asynchronously by default. A publish timeout can be
configured for synchronous publishing. If none is provided, the adapter waits indefinitely for a
response.

It is possible to set user-defined callbacks for the publish() call in PubSubMessageHandler through the
setPublishFutureCallback() method. These are useful to process the message ID, in case of success,
or the error if any was thrown.

To override the default destination you can use the GcpPubSubHeaders.DESTINATION header.

@Autowired
private MessageChannel pubsubOutputChannel;

public void handleMessage(Message<?> msg) throws MessagingException {
 final Message<?> message = MessageBuilder
 .withPayload(msg.getPayload())
 .setHeader(GcpPubSubHeaders.TOPIC, "customTopic").build();
 pubsubOutputChannel.send(message);
}

It is also possible to set an SpEL expression for the topic with the setTopicExpression() or
setTopicExpressionString() methods.

Header mapping

These channel adapters contain header mappers that allow you to map, or filter out, headers from
Spring to Google Cloud Pub/Sub messages, and vice-versa. By default, the inbound channel adapter
maps every header on the Google Cloud Pub/Sub messages to the Spring messages produced by the
adapter. The outbound channel adapter maps every header from Spring messages into Google
Cloud Pub/Sub ones, except the ones added by Spring, like headers with key "id", "timestamp" and
"gcp_pubsub_acknowledgement". In the process, the outbound mapper also converts the value of the
headers into string.

Each adapter declares a setHeaderMapper() method to let you further customize which headers you
want to map from Spring to Google Cloud Pub/Sub, and vice-versa.

For example, to filter out headers "foo", "bar" and all headers starting with the prefix "prefix_", you
can use setHeaderMapper() along with the PubSubHeaderMapper implementation provided by this
module.

PubSubMessageHandler adapter = ...
...
PubSubHeaderMapper headerMapper = new PubSubHeaderMapper();
headerMapper.setOutboundHeaderPatterns("!foo", "!bar", "!prefix_*", "*");
adapter.setHeaderMapper(headerMapper);

The order in which the patterns are declared in
PubSubHeaderMapper.setOutboundHeaderPatterns() and
PubSubHeaderMapper.setInboundHeaderPatterns() matters. The first patterns have
precedence over the following ones.

In the previous example, the "*" pattern means every header is mapped. However, because it
comes last in the list, the previous patterns take precedence.

Samples

Available examples:

https://docs.spring.io/spring-integration/api/org/springframework/integration/util/PatternMatchUtils.html#smartMatch-java.lang.String-java.lang.String…-

• Sending/Receiving Messages with Channel Adapters

• Pub/Sub Channel Adapters with JSON payloads

• Spring Integration and Pub/Sub Codelab

19.7.2. Channel Adapters for Google Cloud Storage

The channel adapters for Google Cloud Storage allow you to read and write files to Google Cloud
Storage through MessageChannels.

Spring Cloud GCP provides two inbound adapters, GcsInboundFileSynchronizingMessageSource and
GcsStreamingMessageSource, and one outbound adapter, GcsMessageHandler.

The Spring Integration Channel Adapters for Google Cloud Storage are included in the spring-
cloud-gcp-storage module.

To use the Storage portion of Spring Integration for Spring Cloud GCP, you must also provide the
spring-integration-file dependency, since it isn’t pulled transitively.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-storage</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-file</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-
storage'
 compile group: 'org.springframework.integration', name: 'spring-integration-file'
}

Inbound channel adapter

The Google Cloud Storage inbound channel adapter polls a Google Cloud Storage bucket for new
files and sends each of them in a Message payload to the MessageChannel specified in the
@InboundChannelAdapter annotation. The files are temporarily stored in a folder in the local file
system.

Here is an example of how to configure a Google Cloud Storage inbound channel adapter.

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-integration-pubsub-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-integration-pubsub-json-sample
https://codelabs.developers.google.com/codelabs/cloud-spring-cloud-gcp-pubsub-integration/index.html
getting-started.pdf#_bill_of_materials

@Bean
@InboundChannelAdapter(channel = "new-file-channel", poller = @Poller(fixedDelay =
"5000"))
public MessageSource<File> synchronizerAdapter(Storage gcs) {
 GcsInboundFileSynchronizer synchronizer = new GcsInboundFileSynchronizer(gcs);
 synchronizer.setRemoteDirectory("your-gcs-bucket");

 GcsInboundFileSynchronizingMessageSource synchAdapter =
 new GcsInboundFileSynchronizingMessageSource(synchronizer);
 synchAdapter.setLocalDirectory(new File("local-directory"));

 return synchAdapter;
}

Inbound streaming channel adapter

The inbound streaming channel adapter is similar to the normal inbound channel adapter, except
it does not require files to be stored in the file system.

Here is an example of how to configure a Google Cloud Storage inbound streaming channel
adapter.

@Bean
@InboundChannelAdapter(channel = "streaming-channel", poller = @Poller(fixedDelay =
"5000"))
public MessageSource<InputStream> streamingAdapter(Storage gcs) {
 GcsStreamingMessageSource adapter =
 new GcsStreamingMessageSource(new GcsRemoteFileTemplate(new
GcsSessionFactory(gcs)));
 adapter.setRemoteDirectory("your-gcs-bucket");
 return adapter;
}

If you would like to process the files in your bucket in a specific order, you may pass in a
Comparator<BlobInfo> to the constructor GcsStreamingMessageSource to sort the files being processed.

Outbound channel adapter

The outbound channel adapter allows files to be written to Google Cloud Storage. When it receives
a Message containing a payload of type File, it writes that file to the Google Cloud Storage bucket
specified in the adapter.

Here is an example of how to configure a Google Cloud Storage outbound channel adapter.

@Bean
@ServiceActivator(inputChannel = "writeFiles")
public MessageHandler outboundChannelAdapter(Storage gcs) {
 GcsMessageHandler outboundChannelAdapter = new GcsMessageHandler(new
GcsSessionFactory(gcs));
 outboundChannelAdapter.setRemoteDirectoryExpression(new ValueExpression<>("your-gcs-
bucket"));

 return outboundChannelAdapter;
}

Sample

See the Spring Integration with Google Cloud Storage Sample Code.

19.8. Spring Cloud Stream
Spring Cloud GCP provides a Spring Cloud Stream binder to Google Cloud Pub/Sub.

The provided binder relies on the Spring Integration Channel Adapters for Google Cloud Pub/Sub.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-pubsub-stream-binder</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-pubsub-stream-
binder'
}

19.8.1. Overview

This binder binds producers to Google Cloud Pub/Sub topics and consumers to subscriptions.

 Partitioning is currently not supported by this binder.

19.8.2. Configuration

You can configure the Spring Cloud Stream Binder for Google Cloud Pub/Sub to automatically
generate the underlying resources, like the Google Cloud Pub/Sub topics and subscriptions for
producers and consumers. For that, you can use the

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-integration-storage-sample
https://cloud.spring.io/spring-cloud-stream/
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-pubsub/src/main/java/org/springframework/cloud/gcp/pubsub/integration
getting-started.pdf#_bill_of_materials

spring.cloud.stream.gcp.pubsub.bindings.<channelName>.<consumer|producer>.auto-create-resources

property, which is turned ON by default.

Starting with version 1.1, these and other binder properties can be configured globally for all the
bindings, e.g. spring.cloud.stream.gcp.pubsub.default.consumer.auto-create-resources.

If you are using Pub/Sub auto-configuration from the Spring Cloud GCP Pub/Sub Starter, you should
refer to the configuration section for other Pub/Sub parameters.

To use this binder with a running emulator, configure its host and port via
spring.cloud.gcp.pubsub.emulator-host.

Producer Destination Configuration

If automatic resource creation is turned ON and the topic corresponding to the destination name
does not exist, it will be created.

For example, for the following configuration, a topic called myEvents would be created.

application.properties

spring.cloud.stream.bindings.events.destination=myEvents
spring.cloud.stream.gcp.pubsub.bindings.events.producer.auto-create-resources=true

Consumer Destination Configuration

A PubSubInboundChannelAdapter will be configured for your consumer endpoint. You may adjust the
ack mode of the consumer endpoint using the ack-mode property. The ack mode controls how
messages will be acknowledged when they are successfully received. The three possible options
are: AUTO (default), AUTO_ACK, and MANUAL. These options are described in detail in the Pub/Sub
channel adapter documentation.

application.properties

How to set the ACK mode of the consumer endpoint.
spring.cloud.stream.gcp.pubsub.bindings.{CONSUMER_NAME}.consumer.ack-mode=AUTO_ACK

If automatic resource creation is turned ON and the subscription and/or the topic do not exist for a
consumer, a subscription and potentially a topic will be created. The topic name will be the same as
the destination name, and the subscription name will be the destination name followed by the
consumer group name.

Regardless of the auto-create-resources setting, if the consumer group is not specified, an
anonymous one will be created with the name anonymous.<destinationName>.<randomUUID>. Then
when the binder shuts down, all Pub/Sub subscriptions created for anonymous consumer groups
will be automatically cleaned up.

For example, for the following configuration, a topic named myEvents and a subscription called
myEvents.consumerGroup1 would be created. If the consumer group is not specified, a subscription

https://cloud.google.com/pubsub/docs/emulator

called anonymous.myEvents.a6d83782-c5a3-4861-ac38-e6e2af15a7be would be created and later
cleaned up.

If you are manually creating Pub/Sub subscriptions for consumers, make sure that
they follow the naming convention of <destinationName>.<consumerGroup>.

application.properties

spring.cloud.stream.bindings.events.destination=myEvents
spring.cloud.stream.gcp.pubsub.bindings.events.consumer.auto-create-resources=true

specify consumer group, and avoid anonymous consumer group generation
spring.cloud.stream.bindings.events.group=consumerGroup1

19.8.3. Binding with Functions

Since version 3.0, Spring Cloud Stream supports a functional programming model natively. This
means that the only requirement for turning your application into a sink is presence of a
java.util.function.Consumer bean in the application context.

@Bean
public Consumer<UserMessage> logUserMessage() {
 return userMessage -> {
 // process message
 }
};

A source application is one where a Supplier bean is present. It can return an object, in which case
Spring Cloud Stream will invoke the supplier repeatedly. Alternatively, the function can return a
reactive stream, which will be used as is.

@Bean
Supplier<Flux<UserMessage>> generateUserMessages() {
 return () -> /* flux creation logic */;
}

A processor application works similarly to a source application, except it is triggered by presence of
a Function bean.

19.8.4. Binding with Annotations

 As of version 3.0, annotation binding is considered legacy.

To set up a sink application in this style, you would associate a class with a binding interface, such
as the built-in Sink interface.

@EnableBinding(Sink.class)
public class SinkExample {

 @StreamListener(Sink.INPUT)
 public void handleMessage(UserMessage userMessage) {
 // process message
 }
}

To set up a source application, you would similarly associate a class with a built-in Source interface,
and inject an instance of it provided by Spring Cloud Stream.

@EnableBinding(Source.class)
public class SourceExample {

 @Autowired
 private Source source;

 public void sendMessage() {
 this.source.output().send(new GenericMessage<>(/* your object here */));
 }
}

19.8.5. Streaming vs. Polled Input

Many Spring Cloud Stream applications will use the built-in Sink binding, which triggers the
streaming input binder creation. Messages can then be consumed with an input handler marked by
@StreamListener(Sink.INPUT) annotation, at whatever rate Pub/Sub sends them.

For more control over the rate of message arrival, a polled input binder can be set up by defining a
custom binding interface with an @Input-annotated method returning PollableMessageSource.

public interface PollableSink {

 @Input("input")
 PollableMessageSource input();
}

The PollableMessageSource can then be injected and queried, as needed.

@EnableBinding(PollableSink.class)
public class SinkExample {

 @Autowired
 PollableMessageSource destIn;

 @Bean
 public ApplicationRunner singlePollRunner() {
 return args -> {
 // This will poll only once.
 // Add a loop or a scheduler to get more messages.
 destIn.poll((message) -> System.out.println("Message retrieved: " +
message));
 };
 }
}

19.8.6. Sample

Sample applications are available:

• For streaming input, annotation-based.

• For streaming input, functional style.

• For polled input.

19.9. Spring Cloud Bus
Using Cloud Pub/Sub as the Spring Cloud Bus implementation is as simple as importing the spring-
cloud-gcp-starter-bus-pubsub starter.

This starter brings in the Spring Cloud Stream binder for Cloud Pub/Sub, which is used to both
publish and subscribe to the bus. If the bus topic (named springCloudBus by default) does not exist,
the binder automatically creates it. The binder also creates anonymous subscriptions for each
project using the spring-cloud-gcp-starter-bus-pubsub starter.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-bus-pubsub</artifactId>
</dependency>

Gradle coordinates:

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-binder-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-stream-binder-functional-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-polling-binder-sample
https://cloud.google.com/pubsub/
https://spring.io/projects/spring-cloud-bus
spring-stream.pdf#_spring_cloud_stream
getting-started.pdf#_bill_of_materials

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-bus-
pubsub'
}

19.9.1. Configuration Management with Spring Cloud Config and Spring
Cloud Bus

Spring Cloud Bus can be used to push configuration changes from a Spring Cloud Config server to
the clients listening on the same bus.

To use GCP Pub/Sub as the bus implementation, both the configuration server and the configuration
client need the spring-cloud-gcp-starter-bus-pubsub dependency.

All other configuration is standard to Spring Cloud Config.

[spring cloud bus over pubsub] | spring_cloud_bus_over_pubsub.png

Spring Cloud Config Server typically runs on port 8888, and can read configuration from a variety of
source control systems such as GitHub, and even from the local filesystem. When the server is
notified that new configuration is available, it fetches the updated configuration and sends a
notification (RefreshRemoteApplicationEvent) out via Spring Cloud Bus.

When configuration is stored locally, config server polls the parent directory for changes. With
configuration stored in source control repository, such as GitHub, the config server needs to be
notified that a new version of configuration is available. In a deployed server, this would be done
automatically through a GitHub webhook, but in a local testing scenario, the /monitor HTTP
endpoint needs to be invoked manually.

curl -X POST http://localhost:8888/monitor -H "X-Github-Event: push" -H "Content-Type:
application/json" -d '{"commits": [{"modified": ["application.properties"]}]}'

By adding the spring-cloud-gcp-starter-bus-pubsub dependency, you instruct Spring Cloud Bus to
use Cloud Pub/Sub to broadcast configuration changes. Spring Cloud Bus will then create a topic
named springCloudBus, as well as a subscription for each configuration client.

The configuration server happens to also be a configuration client, subscribing to the configuration
changes that it sends out. Thus, in a scenario with one configuration server and one configuration
client, two anonymous subscriptions to the springCloudBus topic are created. However, a config
server disables configuration refresh by default (see ConfigServerBootstrapApplicationListener for
more details).

A demo application showing configuration management and distribution over a Cloud Pub/Sub-
powered bus is available. The sample contains two examples of configuration management with
Spring Cloud Bus: one monitoring a local file system, and the other retrieving configuration from a
GitHub repository.

https://spring.io/projects/spring-cloud-config
https://cloud.spring.io/spring-cloud-config/spring-cloud-config.html#_environment_repository
https://cloud.spring.io/spring-cloud-config/spring-cloud-config.html#_environment_repository
https://static.javadoc.io/org.springframework.cloud/spring-cloud-config-server/2.1.0.RELEASE/index.html
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-bus-config-sample

19.10. Stackdriver Trace
Google Cloud Platform provides a managed distributed tracing service called Stackdriver Trace, and
Spring Cloud Sleuth can be used with it to easily instrument Spring Boot applications for
observability.

Typically, Spring Cloud Sleuth captures trace information and forwards traces to services like
Zipkin for storage and analysis. However, on GCP, instead of running and maintaining your own
Zipkin instance and storage, you can use Stackdriver Trace to store traces, view trace details,
generate latency distributions graphs, and generate performance regression reports.

This Spring Cloud GCP starter can forward Spring Cloud Sleuth traces to Stackdriver Trace without
an intermediary Zipkin server.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-trace</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-trace'
}

You must enable Stackdriver Trace API from the Google Cloud Console in order to capture traces.
Navigate to the Stackdriver Trace API for your project and make sure it’s enabled.

If you are already using a Zipkin server capturing trace information from multiple
platform/frameworks, you can also use a Stackdriver Zipkin proxy to forward
those traces to Stackdriver Trace without modifying existing applications.

19.10.1. Tracing

Spring Cloud Sleuth uses the Brave tracer to generate traces. This integration enables Brave to use
the StackdriverTracePropagation propagation.

A propagation is responsible for extracting trace context from an entity (e.g., an HTTP servlet
request) and injecting trace context into an entity. A canonical example of the propagation usage is
a web server that receives an HTTP request, which triggers other HTTP requests from the server
before returning an HTTP response to the original caller. In the case of
StackdriverTracePropagation, first it looks for trace context in the x-cloud-trace-context key (e.g., an
HTTP request header). The value of the x-cloud-trace-context key can be formatted in three
different ways:

https://cloud.google.com/trace/
https://cloud.spring.io/spring-cloud-sleuth/
getting-started.pdf#_bill_of_materials
https://console.cloud.google.com/apis/api/cloudtrace.googleapis.com/overview
https://cloud.google.com/trace/docs/zipkin
https://github.com/openzipkin/brave
https://github.com/openzipkin/zipkin-gcp/tree/master/propagation-stackdriver

• x-cloud-trace-context: TRACE_ID

• x-cloud-trace-context: TRACE_ID/SPAN_ID

• x-cloud-trace-context: TRACE_ID/SPAN_ID;o=TRACE_TRUE

TRACE_ID is a 32-character hexadecimal value that encodes a 128-bit number.

SPAN_ID is an unsigned long. Since Stackdriver Trace doesn’t support span joins, a new span ID is
always generated, regardless of the one specified in x-cloud-trace-context.

TRACE_TRUE can either be 0 if the entity should be untraced, or 1 if it should be traced. This field
forces the decision of whether or not to trace the request; if omitted then the decision is deferred to
the sampler.

If a x-cloud-trace-context key isn’t found, StackdriverTracePropagation falls back to tracing with the
X-B3 headers.

19.10.2. Spring Boot Starter for Stackdriver Trace

Spring Boot Starter for Stackdriver Trace uses Spring Cloud Sleuth and auto-configures a
StackdriverSender that sends the Sleuth’s trace information to Stackdriver Trace.

All configurations are optional:

Name Description Required Default value

spring.cloud.gcp.trace
.enabled

Auto-configure Spring
Cloud Sleuth to send
traces to Stackdriver
Trace.

No true

spring.cloud.gcp.trace
.project-id

Overrides the project
ID from the Spring
Cloud GCP Module

No

spring.cloud.gcp.trace
.credentials.location

Overrides the
credentials location
from the Spring Cloud
GCP Module

No

spring.cloud.gcp.trace
.credentials.encoded-
key

Overrides the
credentials encoded
key from the Spring
Cloud GCP Module

No

spring.cloud.gcp.trace
.credentials.scopes

Overrides the
credentials scopes from
the Spring Cloud GCP
Module

No

spring.cloud.gcp.trace
.num-executor-threads

Number of threads
used by the Trace
executor

No 4

https://github.com/openzipkin/b3-propagation
https://github.com/openzipkin/zipkin-gcp/blob/master/sender-stackdriver/src/main/java/zipkin2/reporter/stackdriver/StackdriverSender.java

spring.cloud.gcp.trace
.authority

HTTP/2 authority the
channel claims to be
connecting to.

No

spring.cloud.gcp.trace
.compression

Name of the
compression to use in
Trace calls

No

spring.cloud.gcp.trace
.deadline-ms

Call deadline in
milliseconds

No

spring.cloud.gcp.trace
.max-inbound-size

Maximum size for
inbound messages

No

spring.cloud.gcp.trace
.max-outbound-size

Maximum size for
outbound messages

No

spring.cloud.gcp.trace
.wait-for-ready

Waits for the channel
to be ready in case of a
transient failure

No false

spring.cloud.gcp.trace
.messageTimeout

Timeout in seconds
before pending spans
will be sent in batches
to GCP Stackdriver
Trace. (previously
spring.zipkin.messageT

imeout)

No 1

You can use core Spring Cloud Sleuth properties to control Sleuth’s sampling rate, etc. Read Sleuth
documentation for more information on Sleuth configurations.

For example, when you are testing to see the traces are going through, you can set the sampling rate
to 100%.

spring.sleuth.sampler.probability=1 # Send 100% of the request
traces to Stackdriver.
spring.sleuth.web.skipPattern=(^cleanup.*|.+favicon.*) # Ignore some URL paths.
spring.sleuth.scheduled.enabled=false # disable executor 'async'
traces

By default, Spring Cloud Sleuth auto-configuration instruments executor beans,
which may cause recurring traces with the name async to appear in Stackdriver
Trace if your application or one of its dependencies introduces scheduler beans
into Spring application context. To avoid this noise, please disable automatic
instrumentation of executors via spring.sleuth.scheduled.enabled=false in your
application configuration.

Spring Cloud GCP Trace does override some Sleuth configurations:

• Always uses 128-bit Trace IDs. This is required by Stackdriver Trace.

https://github.com/grpc/grpc/blob/master/doc/wait-for-ready.md
https://github.com/grpc/grpc/blob/master/doc/wait-for-ready.md
https://cloud.spring.io/spring-cloud-sleuth/
https://cloud.spring.io/spring-cloud-sleuth/

• Does not use Span joins. Span joins will share the span ID between the client and server Spans.
Stackdriver requires that every Span ID within a Trace to be unique, so Span joins are not
supported.

• Uses StackdriverHttpClientParser and StackdriverHttpServerParser by default to populate
Stackdriver related fields.

19.10.3. Overriding the auto-configuration

Spring Cloud Sleuth supports sending traces to multiple tracing systems as of version 2.1.0. In order
to get this to work, every tracing system needs to have a Reporter and Sender. If you want to
override the provided beans you need to give them a specific name. To do this you can use
respectively StackdriverTraceAutoConfiguration.REPORTER_BEAN_NAME and
StackdriverTraceAutoConfiguration.SENDER_BEAN_NAME.

19.10.4. Customizing spans

You can add additional tags and annotations to spans by using the brave.SpanCustomizer, which is
available in the application context.

Here’s an example that uses WebMvcConfigurer to configure an MVC interceptor that adds two extra
tags to all web controller spans.

@SpringBootApplication
public class Application implements WebMvcConfigurer {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @Autowired
 private SpanCustomizer spanCustomizer;

 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(new HandlerInterceptor() {
 @Override
 public boolean preHandle(HttpServletRequest request, HttpServletResponse
response, Object handler) throws Exception {
 spanCustomizer.tag("session-id", request.getSession().getId());
 spanCustomizer.tag("environment", "QA");

 return true;
 }
 });
 }
}

You can then search and filter traces based on these additional tags in the Stackdriver Trace service.

19.10.5. Integration with Logging

Integration with Stackdriver Logging is available through the Stackdriver Logging Support. If the
Trace integration is used together with the Logging one, the request logs will be associated to the
corresponding traces. The trace logs can be viewed by going to the Google Cloud Console Trace List,
selecting a trace and pressing the Logs → View link in the Details section.

19.10.6. Sample

A sample application and a codelab are available.

19.11. Stackdriver Logging
Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-logging</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-
logging'
}

Stackdriver Logging is the managed logging service provided by Google Cloud Platform.

This module provides support for associating a web request trace ID with the corresponding log
entries. It does so by retrieving the X-B3-TraceId value from the Mapped Diagnostic Context (MDC),
which is set by Spring Cloud Sleuth. If Spring Cloud Sleuth isn’t used, the configured
TraceIdExtractor extracts the desired header value and sets it as the log entry’s trace ID. This allows
grouping of log messages by request, for example, in the Google Cloud Console Logs viewer.

Due to the way logging is set up, the GCP project ID and credentials defined in
application.properties are ignored. Instead, you should set the
GOOGLE_CLOUD_PROJECT and GOOGLE_APPLICATION_CREDENTIALS environment variables
to the project ID and credentials private key location, respectively. You can do this
easily if you’re using the Google Cloud SDK, using the gcloud config set project
[YOUR_PROJECT_ID] and gcloud auth application-default login commands,
respectively.

19.11.1. Web MVC Interceptor

For use in Web MVC-based applications, TraceIdLoggingWebMvcInterceptor is provided that extracts

logging.adoc
https://console.cloud.google.com/traces/traces
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-trace-sample
https://codelabs.developers.google.com/codelabs/cloud-spring-cloud-gcp-trace/index.html
getting-started.pdf#_bill_of_materials
https://cloud.google.com/logging/
https://logback.qos.ch/manual/mdc.html
https://console.cloud.google.com/logs/viewer
https://cloud.google.com/sdk

the request trace ID from an HTTP request using a TraceIdExtractor and stores it in a thread-local,
which can then be used in a logging appender to add the trace ID metadata to log messages.

If Spring Cloud GCP Trace is enabled, the logging module disables itself and
delegates log correlation to Spring Cloud Sleuth.

LoggingWebMvcConfigurer configuration class is also provided to help register the
TraceIdLoggingWebMvcInterceptor in Spring MVC applications.

Applications hosted on the Google Cloud Platform include trace IDs under the x-cloud-trace-
context header, which will be included in log entries. However, if Sleuth is used the trace ID will be
picked up from the MDC.

19.11.2. Logback Support

Currently, only Logback is supported and there are 2 possibilities to log to Stackdriver via this
library with Logback: via direct API calls and through JSON-formatted console logs.

Log via API

A Stackdriver appender is available using org/springframework/cloud/gcp/logging/logback-

appender.xml. This appender builds a Stackdriver Logging log entry from a JUL or Logback log entry,
adds a trace ID to it and sends it to Stackdriver Logging.

STACKDRIVER_LOG_NAME and STACKDRIVER_LOG_FLUSH_LEVEL environment variables can be used to
customize the STACKDRIVER appender.

Your configuration may then look like this:

<configuration>
 <include resource="org/springframework/cloud/gcp/logging/logback-appender.xml" />

 <root level="INFO">
 <appender-ref ref="STACKDRIVER" />
 </root>
</configuration>

If you want to have more control over the log output, you can further configure the appender. The
following properties are available:

Property Default Value Description

log spring.log The Stackdriver Log name. This
can also be set via the
STACKDRIVER_LOG_NAME

environmental variable.

Property Default Value Description

flushLevel WARN If a log entry with this level is
encountered, trigger a flush of
locally buffered log to
Stackdriver Logging. This can
also be set via the
STACKDRIVER_LOG_FLUSH_LEVEL

environmental variable.

Log via Console

For Logback, a org/springframework/cloud/gcp/logging/logback-json-appender.xml file is made
available for import to make it easier to configure the JSON Logback appender.

Your configuration may then look something like this:

<configuration>
 <include resource="org/springframework/cloud/gcp/logging/logback-json-appender.xml"
/>

 <root level="INFO">
 <appender-ref ref="CONSOLE_JSON" />
 </root>
</configuration>

If your application is running on Google Kubernetes Engine, Google Compute Engine or Google App
Engine Flexible, your console logging is automatically saved to Google Stackdriver Logging.
Therefore, you can just include org/springframework/cloud/gcp/logging/logback-json-appender.xml
in your logging configuration, which logs JSON entries to the console. The trace id will be set
correctly.

If you want to have more control over the log output, you can further configure the appender. The
following properties are available:

Property Default Value Description

projectId If not set, default value is
determined in the following
order:

1. SPRING_CLOUD_GCP_LOGGING_PR

OJECT_ID Environmental
Variable.

2. Value of
DefaultGcpProjectIdProvider
.getProjectId()

This is used to generate fully
qualified Stackdriver Trace ID
format: projects/[PROJECT-

ID]/traces/[TRACE-ID].

This format is required to
correlate trace between
Stackdriver Trace and
Stackdriver Logging.

If projectId is not set and
cannot be determined, then it’ll
log traceId without the fully
qualified format.

includeTraceId true Should the traceId be included

includeSpanId true Should the spanId be included

includeLevel true Should the severity be included

includeThreadName true Should the thread name be
included

includeMDC true Should all MDC properties be
included. The MDC properties
X-B3-TraceId, X-B3-SpanId and X-
Span-Export provided by Spring
Sleuth will get excluded as they
get handled separately

includeLoggerName true Should the name of the logger
be included

includeFormattedMessage true Should the formatted log
message be included.

includeExceptionInMessage true Should the stacktrace be
appended to the formatted log
message. This setting is only
evaluated if
includeFormattedMessage is true

includeContextName true Should the logging context be
included

includeMessage false Should the log message with
blank placeholders be included

includeException false Should the stacktrace be
included as a own field

Property Default Value Description

serviceContext none Define the Stackdriver service
context data (service and
version). This allows filtering of
error reports for service and
version in the Google Cloud
Error Reporting View.

customJson none Defines custom json data. Data
will be added to the json output.

This is an example of such an Logback configuration:

<configuration >
 <property name="projectId" value="${projectId:-${GOOGLE_CLOUD_PROJECT}}"/>

 <appender name="CONSOLE_JSON" class="ch.qos.logback.core.ConsoleAppender">
 <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
 <layout class="org.springframework.cloud.gcp.logging.StackdriverJsonLayout">
 <projectId>${projectId}</projectId>

 <!--<includeTraceId>true</includeTraceId>-->
 <!--<includeSpanId>true</includeSpanId>-->
 <!--<includeLevel>true</includeLevel>-->
 <!--<includeThreadName>true</includeThreadName>-->
 <!--<includeMDC>true</includeMDC>-->
 <!--<includeLoggerName>true</includeLoggerName>-->
 <!--<includeFormattedMessage>true</includeFormattedMessage>-->
 <!--<includeExceptionInMessage>true</includeExceptionInMessage>-->
 <!--<includeContextName>true</includeContextName>-->
 <!--<includeMessage>false</includeMessage>-->
 <!--<includeException>false</includeException>-->
 <!--<serviceContext>
 <service>service-name</service>
 <version>service-version</version>
 </serviceContext>-->
 <!--<customJson>{"custom-key": "custom-value"}</customJson>-->
 </layout>
 </encoder>
 </appender>
</configuration>

19.11.3. Sample

A Sample Spring Boot Application is provided to show how to use the Cloud logging starter.

https://console.cloud.google.com/errors
https://console.cloud.google.com/errors
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-logging-sample

19.12. Spring Data Cloud Spanner
Spring Data is an abstraction for storing and retrieving POJOs in numerous storage technologies.
Spring Cloud GCP adds Spring Data support for Google Cloud Spanner.

Maven coordinates for this module only, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-data-spanner</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-data-spanner'
}

We provide a Spring Boot Starter for Spring Data Spanner, with which you can leverage our
recommended auto-configuration setup. To use the starter, see the coordinates see below.

Maven:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-data-spanner</artifactId>
</dependency>

Gradle:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-data-
spanner'
}

This setup takes care of bringing in the latest compatible version of Cloud Java Cloud Spanner
libraries as well.

19.12.1. Configuration

To setup Spring Data Cloud Spanner, you have to configure the following:

• Setup the connection details to Google Cloud Spanner.

• Enable Spring Data Repositories (optional).

https://projects.spring.io/spring-data/
https://cloud.google.com/spanner/
getting-started.pdf#_bill_of_materials
../spring-cloud-gcp-starters/spring-cloud-gcp-starter-data-spanner

Cloud Spanner settings

You can the use Spring Boot Starter for Spring Data Spanner to autoconfigure Google Cloud Spanner
in your Spring application. It contains all the necessary setup that makes it easy to authenticate
with your Google Cloud project. The following configuration options are available:

Name Description Required Default value

spring.cloud.gcp.spann
er.instance-id

Cloud Spanner instance
to use

Yes

spring.cloud.gcp.spann
er.database

Cloud Spanner
database to use

Yes

spring.cloud.gcp.spann
er.project-id

GCP project ID where
the Google Cloud
Spanner API is hosted,
if different from the
one in the Spring Cloud
GCP Core Module

No

spring.cloud.gcp.spann
er.credentials.locatio
n

OAuth2 credentials for
authenticating with the
Google Cloud Spanner
API, if different from
the ones in the Spring
Cloud GCP Core Module

No

spring.cloud.gcp.spann
er.credentials.encoded
-key

Base64-encoded
OAuth2 credentials for
authenticating with the
Google Cloud Spanner
API, if different from
the ones in the Spring
Cloud GCP Core Module

No

spring.cloud.gcp.spann
er.credentials.scopes

OAuth2 scope for
Spring Cloud GCP Cloud
Spanner credentials

No www.googleapis.com/
auth/spanner.data

spring.cloud.gcp.spann
er.createInterleavedTa
bleDdlOnDeleteCascade

If true, then schema
statements generated
by SpannerSchemaUtils
for tables with
interleaved parent-
child relationships will
be "ON DELETE
CASCADE". The schema
for the tables will be
"ON DELETE NO
ACTION" if false.

No true

../spring-cloud-gcp-starters/spring-cloud-gcp-starter-data-spanner
https://developers.google.com/identity/protocols/googlescopes
https://www.googleapis.com/auth/spanner.data
https://www.googleapis.com/auth/spanner.data

spring.cloud.gcp.spann
er.numRpcChannels

Number of gRPC
channels used to
connect to Cloud
Spanner

No 4 - Determined by
Cloud Spanner client
library

spring.cloud.gcp.spann
er.prefetchChunks

Number of chunks
prefetched by Cloud
Spanner for read and
query

No 4 - Determined by
Cloud Spanner client
library

spring.cloud.gcp.spann
er.minSessions

Minimum number of
sessions maintained in
the session pool

No 0 - Determined by
Cloud Spanner client
library

spring.cloud.gcp.spann
er.maxSessions

Maximum number of
sessions session pool
can have

No 400 - Determined by
Cloud Spanner client
library

spring.cloud.gcp.spann
er.maxIdleSessions

Maximum number of
idle sessions session
pool will maintain

No 0 - Determined by
Cloud Spanner client
library

spring.cloud.gcp.spann
er.writeSessionsFracti
on

Fraction of sessions to
be kept prepared for
write transactions

No 0.2 - Determined by
Cloud Spanner client
library

spring.cloud.gcp.spann
er.keepAliveIntervalMi
nutes

How long to keep idle
sessions alive

No 30 - Determined by
Cloud Spanner client
library

spring.cloud.gcp.spann
er.failIfPoolExhausted

If all sessions are in
use, fail the request by
throwing an exception.
Otherwise, by default,
block until a session
becomes available.

No false

spring.cloud.gcp.spann
er.emulator.enabled

Enables the usage of an
emulator. If this is set
to true, then you should
set the
spring.cloud.gcp.spann

er.emulator-host to the
host:port of your
locally running
emulator instance.

No false

spring.cloud.gcp.spann
er.emulator-host

The host and port of the
Spanner emulator; can
be overridden to
specify connecting to
an already-running
Spanner emulator
instance.

No localhost:9010

Repository settings

Spring Data Repositories can be configured via the @EnableSpannerRepositories annotation on your
main @Configuration class. With our Spring Boot Starter for Spring Data Cloud Spanner,
@EnableSpannerRepositories is automatically added. It is not required to add it to any other class,
unless there is a need to override finer grain configuration parameters provided by
@EnableSpannerRepositories.

Autoconfiguration

Our Spring Boot autoconfiguration creates the following beans available in the Spring application
context:

• an instance of SpannerTemplate

• an instance of SpannerDatabaseAdminTemplate for generating table schemas from object
hierarchies and creating and deleting tables and databases

• an instance of all user-defined repositories extending SpannerRepository, CrudRepository,
PagingAndSortingRepository, when repositories are enabled

• an instance of DatabaseClient from the Google Cloud Java Client for Spanner, for convenience
and lower level API access

19.12.2. Object Mapping

Spring Data Cloud Spanner allows you to map domain POJOs to Cloud Spanner tables via
annotations:

https://cloud.google.com/spanner/docs/emulator#installing_and_running_the_emulator
https://github.com/spring-cloud/spring-cloud-gcp/blob/master/spring-cloud-gcp-data-spanner/src/main/java/org/springframework/cloud/gcp/data/spanner/repository/config/EnableSpannerRepositories.java

@Table(name = "traders")
public class Trader {

 @PrimaryKey
 @Column(name = "trader_id")
 String traderId;

 String firstName;

 String lastName;

 @NotMapped
 Double temporaryNumber;
}

Spring Data Cloud Spanner will ignore any property annotated with @NotMapped. These properties
will not be written to or read from Spanner.

Constructors

Simple constructors are supported on POJOs. The constructor arguments can be a subset of the
persistent properties. Every constructor argument needs to have the same name and type as a
persistent property on the entity and the constructor should set the property from the given
argument. Arguments that are not directly set to properties are not supported.

@Table(name = "traders")
public class Trader {
 @PrimaryKey
 @Column(name = "trader_id")
 String traderId;

 String firstName;

 String lastName;

 @NotMapped
 Double temporaryNumber;

 public Trader(String traderId, String firstName) {
 this.traderId = traderId;
 this.firstName = firstName;
 }
}

Table

The @Table annotation can provide the name of the Cloud Spanner table that stores instances of the
annotated class, one per row. This annotation is optional, and if not given, the name of the table is

inferred from the class name with the first character uncapitalized.

SpEL expressions for table names

In some cases, you might want the @Table table name to be determined dynamically. To do that, you
can use Spring Expression Language.

For example:

@Table(name = "trades_#{tableNameSuffix}")
public class Trade {
 // ...
}

The table name will be resolved only if the tableNameSuffix value/bean in the Spring application
context is defined. For example, if tableNameSuffix has the value "123", the table name will resolve
to trades_123.

Primary Keys

For a simple table, you may only have a primary key consisting of a single column. Even in that
case, the @PrimaryKey annotation is required. @PrimaryKey identifies the one or more ID properties
corresponding to the primary key.

Spanner has first class support for composite primary keys of multiple columns. You have to
annotate all of your POJO’s fields that the primary key consists of with @PrimaryKey as below:

@Table(name = "trades")
public class Trade {
 @PrimaryKey(keyOrder = 2)
 @Column(name = "trade_id")
 private String tradeId;

 @PrimaryKey(keyOrder = 1)
 @Column(name = "trader_id")
 private String traderId;

 private String action;

 private Double price;

 private Double shares;

 private String symbol;
}

The keyOrder parameter of @PrimaryKey identifies the properties corresponding to the primary key
columns in order, starting with 1 and increasing consecutively. Order is important and must reflect
the order defined in the Cloud Spanner schema. In our example the DDL to create the table and its

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

primary key is as follows:

CREATE TABLE trades (
 trader_id STRING(MAX),
 trade_id STRING(MAX),
 action STRING(15),
 symbol STRING(10),
 price FLOAT64,
 shares FLOAT64
) PRIMARY KEY (trader_id, trade_id)

Spanner does not have automatic ID generation. For most use-cases, sequential IDs should be used
with caution to avoid creating data hotspots in the system. Read Spanner Primary Keys
documentation for a better understanding of primary keys and recommended practices.

Columns

All accessible properties on POJOs are automatically recognized as a Cloud Spanner column.
Column naming is generated by the PropertyNameFieldNamingStrategy by default defined on the
SpannerMappingContext bean. The @Column annotation optionally provides a different column name
than that of the property and some other settings:

• name is the optional name of the column

• spannerTypeMaxLength specifies for STRING and BYTES columns the maximum length. This setting is
only used when generating DDL schema statements based on domain types.

• nullable specifies if the column is created as NOT NULL. This setting is only used when generating
DDL schema statements based on domain types.

• spannerType is the Cloud Spanner column type you can optionally specify. If this is not specified
then a compatible column type is inferred from the Java property type.

• spannerCommitTimestamp is a boolean specifying if this property corresponds to an auto-populated
commit timestamp column. Any value set in this property will be ignored when writing to Cloud
Spanner.

Embedded Objects

If an object of type B is embedded as a property of A, then the columns of B will be saved in the same
Cloud Spanner table as those of A.

If B has primary key columns, those columns will be included in the primary key of A. B can also
have embedded properties. Embedding allows reuse of columns between multiple entities, and can
be useful for implementing parent-child situations, because Cloud Spanner requires child tables to
include the key columns of their parents.

For example:

https://cloud.google.com/spanner/docs/schema-and-data-model#primary_keys
https://cloud.google.com/spanner/docs/schema-and-data-model#primary_keys

class X {
 @PrimaryKey
 String grandParentId;

 long age;
}

class A {
 @PrimaryKey
 @Embedded
 X grandParent;

 @PrimaryKey(keyOrder = 2)
 String parentId;

 String value;
}

@Table(name = "items")
class B {
 @PrimaryKey
 @Embedded
 A parent;

 @PrimaryKey(keyOrder = 2)
 String id;

 @Column(name = "child_value")
 String value;
}

Entities of B can be stored in a table defined as:

CREATE TABLE items (
 grandParentId STRING(MAX),
 parentId STRING(MAX),
 id STRING(MAX),
 value STRING(MAX),
 child_value STRING(MAX),
 age INT64
) PRIMARY KEY (grandParentId, parentId, id)

Note that embedded properties' column names must all be unique.

Relationships

Spring Data Cloud Spanner supports parent-child relationships using the Cloud Spanner parent-
child interleaved table mechanism. Cloud Spanner interleaved tables enforce the one-to-many

https://cloud.google.com/spanner/docs/schema-and-data-model#creating-interleaved-tables
https://cloud.google.com/spanner/docs/schema-and-data-model#creating-interleaved-tables

relationship and provide efficient queries and operations on entities of a single domain parent
entity. These relationships can be up to 7 levels deep. Cloud Spanner also provides automatic
cascading delete or enforces the deletion of child entities before parents.

While one-to-one and many-to-many relationships can be implemented in Cloud Spanner and
Spring Data Cloud Spanner using constructs of interleaved parent-child tables, only the parent-
child relationship is natively supported. Cloud Spanner does not support the foreign key constraint,
though the parent-child key constraint enforces a similar requirement when used with interleaved
tables.

For example, the following Java entities:

@Table(name = "Singers")
class Singer {
 @PrimaryKey
 long SingerId;

 String FirstName;

 String LastName;

 byte[] SingerInfo;

 @Interleaved
 List<Album> albums;
}

@Table(name = "Albums")
class Album {
 @PrimaryKey
 long SingerId;

 @PrimaryKey(keyOrder = 2)
 long AlbumId;

 String AlbumTitle;
}

These classes can correspond to an existing pair of interleaved tables. The @Interleaved annotation
may be applied to Collection properties and the inner type is resolved as the child entity type. The
schema needed to create them can also be generated using the SpannerSchemaUtils and executed
using the SpannerDatabaseAdminTemplate:

@Autowired
SpannerSchemaUtils schemaUtils;

@Autowired
SpannerDatabaseAdminTemplate databaseAdmin;
...

// Get the create statmenets for all tables in the table structure rooted at Singer
List<String> createStrings =
this.schemaUtils.getCreateTableDdlStringsForInterleavedHierarchy(Singer.class);

// Create the tables and also create the database if necessary
this.databaseAdmin.executeDdlStrings(createStrings, true);

The createStrings list contains table schema statements using column names and types compatible
with the provided Java type and any resolved child relationship types contained within based on
the configured custom converters.

CREATE TABLE Singers (
 SingerId INT64 NOT NULL,
 FirstName STRING(1024),
 LastName STRING(1024),
 SingerInfo BYTES(MAX),
) PRIMARY KEY (SingerId);

CREATE TABLE Albums (
 SingerId INT64 NOT NULL,
 AlbumId INT64 NOT NULL,
 AlbumTitle STRING(MAX),
) PRIMARY KEY (SingerId, AlbumId),
 INTERLEAVE IN PARENT Singers ON DELETE CASCADE;

The ON DELETE CASCADE clause indicates that Cloud Spanner will delete all Albums of a singer if the
Singer is deleted. The alternative is ON DELETE NO ACTION, where a Singer cannot be deleted until all
of its Albums have already been deleted. When using SpannerSchemaUtils to generate the schema
strings, the spring.cloud.gcp.spanner.createInterleavedTableDdlOnDeleteCascade boolean setting
determines if these schema are generated as ON DELETE CASCADE for true and ON DELETE NO ACTION for
false.

Cloud Spanner restricts these relationships to 7 child layers. A table may have multiple child tables.

On updating or inserting an object to Cloud Spanner, all of its referenced children objects are also
updated or inserted in the same request, respectively. On read, all of the interleaved child rows are
also all read.

Lazy Fetch

@Interleaved properties are retrieved eagerly by default, but can be fetched lazily for performance

in both read and write:

@Interleaved(lazy = true)
List<Album> albums;

Lazily-fetched interleaved properties are retrieved upon the first interaction with the property. If a
property marked for lazy fetching is never retrieved, then it is also skipped when saving the parent
entity.

If used inside a transaction, subsequent operations on lazily-fetched properties use the same
transaction context as that of the original parent entity.

Declarative Filtering with @Where

The @Where annotation could be applied to an entity class or to an interleaved property. This
annotation provides an SQL where clause that will be applied at the fetching of interleaved
collections or the entity itself.

Let’s say we have an Agreement with a list of Participants which could be assigned to it. We would
like to fetch a list of currently active participants. For security reasons, all records should remain in
the database forever, even if participants become inactive. That can be easily achieved with the
@Where annotation, which is demonstrated by this example:

@Table(name = "participants")
public class Participant {
 //...
 boolean active;
 //...
}

@Table(name = "agreements")
public class Agreement {
 //...
 @Interleaved
 @Where("active = true")
 List<Participant> participants;
 Person person;
 //...
}

Supported Types

Spring Data Cloud Spanner natively supports the following types for regular fields but also utilizes
custom converters (detailed in following sections) and dozens of pre-defined Spring Data custom
converters to handle other common Java types.

Natively supported types:

• com.google.cloud.ByteArray

• com.google.cloud.Date

• com.google.cloud.Timestamp

• java.lang.Boolean, boolean

• java.lang.Double, double

• java.lang.Long, long

• java.lang.Integer, int

• java.lang.String

• double[]

• long[]

• boolean[]

• java.util.Date

• java.util.Instant

• java.sql.Date

• java.time.LocalDate

• java.time.LocalDateTime

Lists

Spanner supports ARRAY types for columns. ARRAY columns are mapped to List fields in POJOS.

Example:

List<Double> curve;

The types inside the lists can be any singular property type.

Lists of Structs

Cloud Spanner queries can construct STRUCT values that appear as columns in the result. Cloud
Spanner requires STRUCT values appear in ARRAYs at the root level: SELECT ARRAY(SELECT STRUCT(1
as val1, 2 as val2)) as pair FROM Users.

Spring Data Cloud Spanner will attempt to read the column STRUCT values into a property that is
an Iterable of an entity type compatible with the schema of the column STRUCT value.

For the previous array-select example, the following property can be mapped with the constructed
ARRAY<STRUCT> column: List<TwoInts> pair; where the TwoInts type is defined:

class TwoInts {

 int val1;

 int val2;
}

https://cloud.google.com/spanner/docs/query-syntax#using-structs-with-select

Custom types

Custom converters can be used to extend the type support for user defined types.

1. Converters need to implement the org.springframework.core.convert.converter.Converter

interface in both directions.

2. The user defined type needs to be mapped to one of the basic types supported by Spanner:

◦ com.google.cloud.ByteArray

◦ com.google.cloud.Date

◦ com.google.cloud.Timestamp

◦ java.lang.Boolean, boolean

◦ java.lang.Double, double

◦ java.lang.Long, long

◦ java.lang.String

◦ double[]

◦ long[]

◦ boolean[]

◦ enum types

3. An instance of both Converters needs to be passed to a
ConverterAwareMappingSpannerEntityProcessor, which then has to be made available as a @Bean
for SpannerEntityProcessor.

For example:

We would like to have a field of type Person on our Trade POJO:

@Table(name = "trades")
public class Trade {
 //...
 Person person;
 //...
}

Where Person is a simple class:

public class Person {

 public String firstName;
 public String lastName;

}

We have to define the two converters:

 public class PersonWriteConverter implements Converter<Person, String> {

 @Override
 public String convert(Person person) {
 return person.firstName + " " + person.lastName;
 }
 }

 public class PersonReadConverter implements Converter<String, Person> {

 @Override
 public Person convert(String s) {
 Person person = new Person();
 person.firstName = s.split(" ")[0];
 person.lastName = s.split(" ")[1];
 return person;
 }
 }

That will be configured in our @Configuration file:

@Configuration
public class ConverterConfiguration {

 @Bean
 public SpannerEntityProcessor spannerEntityProcessor(SpannerMappingContext
spannerMappingContext) {
 return new ConverterAwareMappingSpannerEntityProcessor(spannerMappingContext,
 Arrays.asList(new PersonWriteConverter()),
 Arrays.asList(new PersonReadConverter()));
 }
}

Custom Converter for Struct Array Columns

If a Converter<Struct, A> is provided, then properties of type List<A> can be used in your entity
types.

19.12.3. Spanner Operations & Template

SpannerOperations and its implementation, SpannerTemplate, provides the Template pattern familiar
to Spring developers. It provides:

• Resource management

• One-stop-shop to Spanner operations with the Spring Data POJO mapping and conversion
features

• Exception conversion

Using the autoconfigure provided by our Spring Boot Starter for Spanner, your Spring application
context will contain a fully configured SpannerTemplate object that you can easily autowire in your
application:

@SpringBootApplication
public class SpannerTemplateExample {

 @Autowired
 SpannerTemplate spannerTemplate;

 public void doSomething() {
 this.spannerTemplate.delete(Trade.class, KeySet.all());
 //...
 Trade t = new Trade();
 //...
 this.spannerTemplate.insert(t);
 //...
 List<Trade> tradesByAction = spannerTemplate.findAll(Trade.class);
 //...
 }
}

The Template API provides convenience methods for:

• Reads, and by providing SpannerReadOptions and SpannerQueryOptions

◦ Stale read

◦ Read with secondary indices

◦ Read with limits and offsets

◦ Read with sorting

• Queries

• DML operations (delete, insert, update, upsert)

• Partial reads

◦ You can define a set of columns to be read into your entity

• Partial writes

◦ Persist only a few properties from your entity

• Read-only transactions

• Locking read-write transactions

SQL Query

Cloud Spanner has SQL support for running read-only queries. All the query related methods start
with query on SpannerTemplate. Using SpannerTemplate you can execute SQL queries that map to
POJOs:

https://cloud.google.com/spanner/docs/reads
https://cloud.google.com/spanner/docs/reads#execute_a_query

List<Trade> trades = this.spannerTemplate.query(Trade.class, Statement.of("SELECT *
FROM trades"));

Read

Spanner exposes a Read API for reading single row or multiple rows in a table or in a secondary
index.

Using SpannerTemplate you can execute reads, for example:

List<Trade> trades = this.spannerTemplate.readAll(Trade.class);

Main benefit of reads over queries is reading multiple rows of a certain pattern of keys is much
easier using the features of the KeySet class.

Advanced reads

Stale read

All reads and queries are strong reads by default. A strong read is a read at a current time and is
guaranteed to see all data that has been committed up until the start of this read. An exact
staleness read is read at a timestamp in the past. Cloud Spanner allows you to determine how
current the data should be when you read data. With SpannerTemplate you can specify the Timestamp
by setting it on SpannerQueryOptions or SpannerReadOptions to the appropriate read or query
methods:

Reads:

// a read with options:
SpannerReadOptions spannerReadOptions = new
SpannerReadOptions().setTimestamp(myTimestamp);
List<Trade> trades = this.spannerTemplate.readAll(Trade.class, spannerReadOptions);

Queries:

// a query with options:
SpannerQueryOptions spannerQueryOptions = new
SpannerQueryOptions().setTimestamp(myTimestamp);
List<Trade> trades = this.spannerTemplate.query(Trade.class, Statement.of("SELECT *
FROM trades"), spannerQueryOptions);

You can also read with bounded staleness by setting
.setTimestampBound(TimestampBound.ofMinReadTimestamp(myTimestamp)) on the query and read
options objects. Bounded staleness lets Cloud Spanner choose any point in time later than or equal
to the given timestampBound, but it cannot be used inside transactions.

https://cloud.google.com/spanner/docs/reads
https://github.com/GoogleCloudPlatform/google-cloud-java/blob/master/google-cloud-spanner/src/main/java/com/google/cloud/spanner/KeySet.java
https://cloud.google.com/spanner/docs/timestamp-bounds

Read from a secondary index

Using a secondary index is available for Reads via the Template API and it is also implicitly
available via SQL for Queries.

The following shows how to read rows from a table using a secondary index simply by setting index
on SpannerReadOptions:

SpannerReadOptions spannerReadOptions = new
SpannerReadOptions().setIndex("TradesByTrader");
List<Trade> trades = this.spannerTemplate.readAll(Trade.class, spannerReadOptions);

Read with offsets and limits

Limits and offsets are only supported by Queries. The following will get only the first two rows of
the query:

SpannerQueryOptions spannerQueryOptions = new
SpannerQueryOptions().setLimit(2).setOffset(3);
List<Trade> trades = this.spannerTemplate.query(Trade.class, Statement.of("SELECT *
FROM trades"), spannerQueryOptions);

Note that the above is equivalent of executing SELECT * FROM trades LIMIT 2 OFFSET 3.

Sorting

Reads by keys do not support sorting. However, queries on the Template API support sorting
through standard SQL and also via Spring Data Sort API:

List<Trade> trades = this.spannerTemplate.queryAll(Trade.class, Sort.by("action"));

If the provided sorted field name is that of a property of the domain type, then the column name
corresponding to that property will be used in the query. Otherwise, the given field name is
assumed to be the name of the column in the Cloud Spanner table. Sorting on columns of Cloud
Spanner types STRING and BYTES can be done while ignoring case:

Sort.by(Order.desc("action").ignoreCase())

Partial read

Partial read is only possible when using Queries. In case the rows returned by the query have fewer
columns than the entity that it will be mapped to, Spring Data will map the returned columns only.
This setting also applies to nested structs and their corresponding nested POJO properties.

https://cloud.google.com/spanner/docs/secondary-indexes
https://cloud.google.com/spanner/docs/secondary-indexes

List<Trade> trades = this.spannerTemplate.query(Trade.class, Statement.of("SELECT
action, symbol FROM trades"),
 new SpannerQueryOptions().setAllowMissingResultSetColumns(true));

If the setting is set to false, then an exception will be thrown if there are missing columns in the
query result.

Summary of options for Query vs Read

Feature Query supports it Read supports it

SQL yes no

Partial read yes no

Limits yes no

Offsets yes no

Secondary index yes yes

Read using index range no yes

Sorting yes no

Write / Update

The write methods of SpannerOperations accept a POJO and writes all of its properties to Spanner.
The corresponding Spanner table and entity metadata is obtained from the given object’s actual
type.

If a POJO was retrieved from Spanner and its primary key properties values were changed and
then written or updated, the operation will occur as if against a row with the new primary key
values. The row with the original primary key values will not be affected.

Insert

The insert method of SpannerOperations accepts a POJO and writes all of its properties to Spanner,
which means the operation will fail if a row with the POJO’s primary key already exists in the table.

Trade t = new Trade();
this.spannerTemplate.insert(t);

Update

The update method of SpannerOperations accepts a POJO and writes all of its properties to Spanner,
which means the operation will fail if the POJO’s primary key does not already exist in the table.

// t was retrieved from a previous operation
this.spannerTemplate.update(t);

Upsert

The upsert method of SpannerOperations accepts a POJO and writes all of its properties to Spanner
using update-or-insert.

// t was retrieved from a previous operation or it's new
this.spannerTemplate.upsert(t);

Partial Update

The update methods of SpannerOperations operate by default on all properties within the given
object, but also accept String[] and Optional<Set<String>> of column names. If the Optional of set of
column names is empty, then all columns are written to Spanner. However, if the Optional is
occupied by an empty set, then no columns will be written.

// t was retrieved from a previous operation or it's new
this.spannerTemplate.update(t, "symbol", "action");

DML

DML statements can be executed using SpannerOperations.executeDmlStatement. Inserts, updates,
and deletions can affect any number of rows and entities.

You can execute partitioned DML updates by using the executePartitionedDmlStatement method.
Partitioned DML queries have performance benefits but also have restrictions and cannot be used
inside transactions.

Transactions

SpannerOperations provides methods to run java.util.Function objects within a single transaction
while making available the read and write methods from SpannerOperations.

Read/Write Transaction

Read and write transactions are provided by SpannerOperations via the performReadWriteTransaction
method:

https://cloud.google.com/spanner/docs/dml-partitioned

@Autowired
SpannerOperations mySpannerOperations;

public String doWorkInsideTransaction() {
 return mySpannerOperations.performReadWriteTransaction(
 transActionSpannerOperations -> {
 // Work with transActionSpannerOperations here.
 // It is also a SpannerOperations object.

 return "transaction completed";
 }
);
}

The performReadWriteTransaction method accepts a Function that is provided an instance of a
SpannerOperations object. The final returned value and type of the function is determined by the
user. You can use this object just as you would a regular SpannerOperations with a few exceptions:

• Its read functionality cannot perform stale reads, because all reads and writes happen at the
single point in time of the transaction.

• It cannot perform sub-transactions via performReadWriteTransaction or
performReadOnlyTransaction.

As these read-write transactions are locking, it is recommended that you use the
performReadOnlyTransaction if your function does not perform any writes.

Read-only Transaction

The performReadOnlyTransaction method is used to perform read-only transactions using a
SpannerOperations:

@Autowired
SpannerOperations mySpannerOperations;

public String doWorkInsideTransaction() {
 return mySpannerOperations.performReadOnlyTransaction(
 transActionSpannerOperations -> {
 // Work with transActionSpannerOperations here.
 // It is also a SpannerOperations object.

 return "transaction completed";
 }
);
}

The performReadOnlyTransaction method accepts a Function that is provided an instance of a
SpannerOperations object. This method also accepts a ReadOptions object, but the only attribute used
is the timestamp used to determine the snapshot in time to perform the reads in the transaction. If

the timestamp is not set in the read options the transaction is run against the current state of the
database. The final returned value and type of the function is determined by the user. You can use
this object just as you would a regular SpannerOperations with a few exceptions:

• Its read functionality cannot perform stale reads (other than the staleness set on the entire
transaction), because all reads happen at the single point in time of the transaction.

• It cannot perform sub-transactions via performReadWriteTransaction or
performReadOnlyTransaction

• It cannot perform any write operations.

Because read-only transactions are non-locking and can be performed on points in time in the past,
these are recommended for functions that do not perform write operations.

Declarative Transactions with @Transactional Annotation

This feature requires a bean of SpannerTransactionManager, which is provided when using spring-
cloud-gcp-starter-data-spanner.

SpannerTemplate and SpannerRepository support running methods with the @Transactional

annotation as transactions. If a method annotated with @Transactional calls another method also
annotated, then both methods will work within the same transaction. performReadOnlyTransaction
and performReadWriteTransaction cannot be used in @Transactional annotated methods because
Cloud Spanner does not support transactions within transactions.

DML Statements

SpannerTemplate supports DML Statements. DML statements can also be executed in transactions via
performReadWriteTransaction or using the @Transactional annotation.

19.12.4. Repositories

Spring Data Repositories are a powerful abstraction that can save you a lot of boilerplate code.

For example:

public interface TraderRepository extends SpannerRepository<Trader, String> {
}

Spring Data generates a working implementation of the specified interface, which can be
conveniently autowired into an application.

The Trader type parameter to SpannerRepository refers to the underlying domain type. The second
type parameter, String in this case, refers to the type of the key of the domain type.

For POJOs with a composite primary key, this ID type parameter can be any descendant of Object[]
compatible with all primary key properties, any descendant of Iterable, or
com.google.cloud.spanner.Key. If the domain POJO type only has a single primary key column, then
the primary key property type can be used or the Key type.

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction-declarative
https://cloud.google.com/spanner/docs/dml-tasks:
https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#repositories

For example in case of Trades, that belong to a Trader, TradeRepository would look like this:

public interface TradeRepository extends SpannerRepository<Trade, String[]> {

}

public class MyApplication {

 @Autowired
 SpannerTemplate spannerTemplate;

 @Autowired
 StudentRepository studentRepository;

 public void demo() {

 this.tradeRepository.deleteAll();
 String traderId = "demo_trader";
 Trade t = new Trade();
 t.symbol = stock;
 t.action = action;
 t.traderId = traderId;
 t.price = 100.0;
 t.shares = 12345.6;
 this.spannerTemplate.insert(t);

 Iterable<Trade> allTrades = this.tradeRepository.findAll();

 int count = this.tradeRepository.countByAction("BUY");

 }
}

CRUD Repository

CrudRepository methods work as expected, with one thing Spanner specific: the save and saveAll
methods work as update-or-insert.

Paging and Sorting Repository

You can also use PagingAndSortingRepository with Spanner Spring Data. The sorting and pageable
findAll methods available from this interface operate on the current state of the Spanner database.
As a result, beware that the state of the database (and the results) might change when moving page
to page.

Spanner Repository

The SpannerRepository extends the PagingAndSortingRepository, but adds the read-only and the read-

write transaction functionality provided by Spanner. These transactions work very similarly to
those of SpannerOperations, but is specific to the repository’s domain type and provides repository
functions instead of template functions.

For example, this is a read-only transaction:

@Autowired
SpannerRepository myRepo;

public String doWorkInsideTransaction() {
 return myRepo.performReadOnlyTransaction(
 transactionSpannerRepo -> {
 // Work with the single-transaction transactionSpannerRepo here.
 // This is a SpannerRepository object.

 return "transaction completed";
 }
);
}

When creating custom repositories for your own domain types and query methods, you can extend
SpannerRepository to access Cloud Spanner-specific features as well as all features from
PagingAndSortingRepository and CrudRepository.

19.12.5. Query Methods

SpannerRepository supports Query Methods. Described in the following sections, these are methods
residing in your custom repository interfaces of which implementations are generated based on
their names and annotations. Query Methods can read, write, and delete entities in Cloud Spanner.
Parameters to these methods can be any Cloud Spanner data type supported directly or via custom
configured converters. Parameters can also be of type Struct or POJOs. If a POJO is given as a
parameter, it will be converted to a Struct with the same type-conversion logic as used to create
write mutations. Comparisons using Struct parameters are limited to what is available with Cloud
Spanner.

Query methods by convention

public interface TradeRepository extends SpannerRepository<Trade, String[]> {
 List<Trade> findByAction(String action);

 int countByAction(String action);

 // Named methods are powerful, but can get unwieldy
 List<Trade>
findTop3DistinctByActionAndSymbolIgnoreCaseOrTraderIdOrderBySymbolDesc(
 String action, String symbol, String traderId);
}

https://cloud.google.com/spanner/docs/data-types#limited-comparisons-for-struct
https://cloud.google.com/spanner/docs/data-types#limited-comparisons-for-struct

In the example above, the query methods in TradeRepository are generated based on the name of
the methods, using the Spring Data Query creation naming convention.

List<Trade> findByAction(String action) would translate to a SELECT * FROM trades WHERE action =
?.

The function List<Trade>
findTop3DistinctByActionAndSymbolIgnoreCaseOrTraderIdOrderBySymbolDesc(String action, String

symbol, String traderId); will be translated as the equivalent of this SQL query:

SELECT DISTINCT * FROM trades
WHERE ACTION = ? AND LOWER(SYMBOL) = LOWER(?) AND TRADER_ID = ?
ORDER BY SYMBOL DESC
LIMIT 3

The following filter options are supported:

• Equality

• Greater than or equals

• Greater than

• Less than or equals

• Less than

• Is null

• Is not null

• Is true

• Is false

• Like a string

• Not like a string

• Contains a string

• Not contains a string

• In

• Not in

Note that the phrase SymbolIgnoreCase is translated to LOWER(SYMBOL) = LOWER(?) indicating a non-
case-sensitive matching. The IgnoreCase phrase may only be appended to fields that correspond to
columns of type STRING or BYTES. The Spring Data "AllIgnoreCase" phrase appended at the end of
the method name is not supported.

The Like or NotLike naming conventions:

List<Trade> findBySymbolLike(String symbolFragment);

https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#repositories.query-methods
https://docs.spring.io/spring-data/data-commons/docs/current/reference/html#repositories.query-methods.query-creation

The param symbolFragment can contain wildcard characters for string matching such as _ and %.

The Contains and NotContains naming conventions:

List<Trade> findBySymbolContains(String symbolFragment);

The param symbolFragment is a regular expression that is checked for occurrences.

The In and NotIn keywords must be used with Iterable corresponding parameters.

Delete queries are also supported. For example, query methods such as deleteByAction or
removeByAction delete entities found by findByAction. The delete operation happens in a single
transaction.

Delete queries can have the following return types: * An integer type that is the number of entities
deleted * A collection of entities that were deleted * void

Custom SQL/DML query methods

The example above for List<Trade> fetchByActionNamedQuery(String action) does not match the
Spring Data Query creation naming convention, so we have to map a parametrized Spanner SQL
query to it.

The SQL query for the method can be mapped to repository methods in one of two ways:

• namedQueries properties file

• using the @Query annotation

The names of the tags of the SQL correspond to the @Param annotated names of the method
parameters.

Interleaved properties are loaded eagerly, unless they are annotated with @Interleaved(lazy =

true).

Custom SQL query methods can accept a single Sort or Pageable parameter that is applied on top of
the specified custom query. It is the recommended way to control the sort order of the results,
which is not guaranteed by the ORDER BY clause in the SQL query. This is due to the fact that the
user-provided query is used as a sub-query, and Cloud Spanner doesn’t preserve order in subquery
results.

You might want to use ORDER BY with LIMIT to obtain the top records, according to a specified order.
However, to ensure the correct sort order of the final result set, sort options have to be passed in
with a Pageable.

https://cloud.google.com/spanner/docs/functions-and-operators#comparison-operators
https://cloud.google.com/spanner/docs/functions-and-operators#regexp_contains
https://docs.spring.io/spring-data/data-commons/docs/current/reference/html#repositories.query-methods.query-creation

 @Query("SELECT * FROM trades")
 List<Trade> fetchTrades(Pageable pageable);

 @Query("SELECT * FROM trades ORDER BY price DESC LIMIT 1")
 Trade topTrade(Pageable pageable);

This can be used:

 List<Trade> customSortedTrades = tradeRepository.fetchTrades(PageRequest
 .of(2, 2, org.springframework.data.domain.Sort.by(Order.asc("id"))));

The results would be sorted by "id" in ascending order.

Your query method can also return non-entity types:

 @Query("SELECT COUNT(1) FROM trades WHERE action = @action")
 int countByActionQuery(String action);

 @Query("SELECT EXISTS(SELECT COUNT(1) FROM trades WHERE action = @action)")
 boolean existsByActionQuery(String action);

 @Query("SELECT action FROM trades WHERE action = @action LIMIT 1")
 String getFirstString(@Param("action") String action);

 @Query("SELECT action FROM trades WHERE action = @action")
 List<String> getFirstStringList(@Param("action") String action);

DML statements can also be executed by query methods, but the only possible return value is a long
representing the number of affected rows. The dmlStatement boolean setting must be set on @Query
to indicate that the query method is executed as a DML statement.

 @Query(value = "DELETE FROM trades WHERE action = @action", dmlStatement = true)
 long deleteByActionQuery(String action);

Query methods with named queries properties

By default, the namedQueriesLocation attribute on @EnableSpannerRepositories points to the META-
INF/spanner-named-queries.properties file. You can specify the query for a method in the properties
file by providing the SQL as the value for the "interface.method" property:

Trade.fetchByActionNamedQuery=SELECT * FROM trades WHERE trades.action = @tag0

public interface TradeRepository extends SpannerRepository<Trade, String[]> {
 // This method uses the query from the properties file instead of one generated
based on name.
 List<Trade> fetchByActionNamedQuery(@Param("tag0") String action);
}

Query methods with annotation

Using the @Query annotation:

public interface TradeRepository extends SpannerRepository<Trade, String[]> {
 @Query("SELECT * FROM trades WHERE trades.action = @tag0")
 List<Trade> fetchByActionNamedQuery(@Param("tag0") String action);
}

Table names can be used directly. For example, "trades" in the above example. Alternatively, table
names can be resolved from the @Table annotation on domain classes as well. In this case, the query
should refer to table names with fully qualified class names between : characters:
:fully.qualified.ClassName:. A full example would look like:

@Query("SELECT * FROM :com.example.Trade: WHERE trades.action = @tag0")
List<Trade> fetchByActionNamedQuery(String action);

This allows table names evaluated with SpEL to be used in custom queries.

SpEL can also be used to provide SQL parameters:

@Query("SELECT * FROM :com.example.Trade: WHERE trades.action = @tag0
 AND price > #{#priceRadius * -1} AND price < #{#priceRadius * 2}")
List<Trade> fetchByActionNamedQuery(String action, Double priceRadius);

When using the IN SQL clause, remember to use IN UNNEST(@iterableParam) to specify a single
Iterable parameter. You can also use a fixed number of singular parameters such as IN

(@stringParam1, @stringParam2).

Projections

Spring Data Spanner supports projections. You can define projection interfaces based on domain
types and add query methods that return them in your repository:

https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#projections

public interface TradeProjection {

 String getAction();

 @Value("#{target.symbol + ' ' + target.action}")
 String getSymbolAndAction();
}

public interface TradeRepository extends SpannerRepository<Trade, Key> {

 List<Trade> findByTraderId(String traderId);

 List<TradeProjection> findByAction(String action);

 @Query("SELECT action, symbol FROM trades WHERE action = @action")
 List<TradeProjection> findByQuery(String action);
}

Projections can be provided by name-convention-based query methods as well as by custom SQL
queries. If using custom SQL queries, you can further restrict the columns retrieved from Spanner
to just those required by the projection to improve performance.

Properties of projection types defined using SpEL use the fixed name target for the underlying
domain object. As a result accessing underlying properties take the form target.<property-name>.

Empty result handling in repository methods

Java java.util.Optional can be used to indicate the potential absence of a return value.

Alternatively, query methods can return the result without a wrapper. In that case the absence of a
query result is indicated by returning null. Repository methods returning collections are
guaranteed never to return null but rather the corresponding empty collection.

You can enable nullability checks. For more details please see Spring Framework’s
nullability docs.

REST Repositories

When running with Spring Boot, repositories can be exposed as REST services by simply adding this
dependency to your pom file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
</dependency>

If you prefer to configure parameters (such as path), you can use @RepositoryRestResource
annotation:

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#null-safety
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#null-safety

@RepositoryRestResource(collectionResourceRel = "trades", path = "trades")
public interface TradeRepository extends SpannerRepository<Trade, Key> {
}

For classes that have composite keys (multiple @PrimaryKey fields), only the Key type
is supported for the repository ID type.

For example, you can retrieve all Trade objects in the repository by using curl

http://<server>:<port>/trades, or any specific trade via curl

http://<server>:<port>/trades/<trader_id>,<trade_id>.

The separator between your primary key components, id and trader_id in this case, is a comma by
default, but can be configured to any string not found in your key values by extending the
SpannerKeyIdConverter class:

@Component
class MySpecialIdConverter extends SpannerKeyIdConverter {

 @Override
 protected String getUrlIdSeparator() {
 return ":";
 }
}

You can also write trades using curl -XPOST -H"Content-Type: application/json" -d@test.json

http://<server>:<port>/trades/ where the file test.json holds the JSON representation of a Trade
object.

19.12.6. Database and Schema Admin

Databases and tables inside Spanner instances can be created automatically from
SpannerPersistentEntity objects:

mailto:d@test.json

@Autowired
private SpannerSchemaUtils spannerSchemaUtils;

@Autowired
private SpannerDatabaseAdminTemplate spannerDatabaseAdminTemplate;

public void createTable(SpannerPersistentEntity entity) {
 if(!spannerDatabaseAdminTemplate.tableExists(entity.tableName()){

 // The boolean parameter indicates that the database will be created if it does
not exist.
 spannerDatabaseAdminTemplate.executeDdlStrings(Arrays.asList(
 spannerSchemaUtils.getCreateTableDDLString(entity.getType())), true);
 }
}

Schemas can be generated for entire object hierarchies with interleaved relationships and
composite keys.

19.12.7. Events

Spring Data Cloud Spanner publishes events extending the Spring Framework’s ApplicationEvent to
the context that can be received by ApplicationListener beans you register.

Type Description Contents

AfterReadEvent Published immediately after
entities are read by key from
Cloud Spanner by
SpannerTemplate

The entities loaded. The read
options and key-set originally
specified for the load operation.

AfterQueryEvent Published immediately after
entities are read by query from
Cloud Spanner by
SpannerTemplate

The entities loaded. The query
options and query statement
originally specified for the load
operation.

BeforeExecuteDmlEvent Published immediately before
DML statements are executed
by SpannerTemplate

The DML statement to execute.

AfterExecuteDmlEvent Published immediately after
DML statements are executed
by SpannerTemplate

The DML statement to execute
and the number of rows
affected by the operation as
reported by Cloud Spanner.

BeforeSaveEvent Published immediately before
upsert/update/insert operations
are executed by SpannerTemplate

The mutations to be sent to
Cloud Spanner, the entities to
be saved, and optionally the
properties in those entities to
save.

Type Description Contents

AfterSaveEvent Published immediately after
upsert/update/insert operations
are executed by SpannerTemplate

The mutations sent to Cloud
Spanner, the entities to be
saved, and optionally the
properties in those entities to
save.

BeforeDeleteEvent Published immediately before
delete operations are executed
by SpannerTemplate

The mutations to be sent to
Cloud Spanner. The target
entities, keys, or entity type
originally specified for the
delete operation.

AfterDeleteEvent Published immediately after
delete operations are executed
by SpannerTemplate

The mutations sent to Cloud
Spanner. The target entities,
keys, or entity type originally
specified for the delete
operation.

19.12.8. Auditing

Spring Data Cloud Spanner supports the @LastModifiedDate and @LastModifiedBy auditing
annotations for properties:

@Table
public class SimpleEntity {
 @PrimaryKey
 String id;

 @LastModifiedBy
 String lastUser;

 @LastModifiedDate
 DateTime lastTouched;
}

Upon insert, update, or save, these properties will be set automatically by the framework before
mutations are generated and saved to Cloud Spanner.

To take advantage of these features, add the @EnableSpannerAuditing annotation to your
configuration class and provide a bean for an AuditorAware<A> implementation where the type A is
the desired property type annotated by @LastModifiedBy:

@Configuration
@EnableSpannerAuditing
public class Config {

 @Bean
 public AuditorAware<String> auditorProvider() {
 return () -> Optional.of("YOUR_USERNAME_HERE");
 }
}

The AuditorAware interface contains a single method that supplies the value for fields annotated by
@LastModifiedBy and can be of any type. One alternative is to use Spring Security’s User type:

class SpringSecurityAuditorAware implements AuditorAware<User> {

 public Optional<User> getCurrentAuditor() {

 return Optional.ofNullable(SecurityContextHolder.getContext())
 .map(SecurityContext::getAuthentication)
 .filter(Authentication::isAuthenticated)
 .map(Authentication::getPrincipal)
 .map(User.class::cast);
 }
}

You can also set a custom provider for properties annotated @LastModifiedDate by providing a bean
for DateTimeProvider and providing the bean name to @EnableSpannerAuditing(dateTimeProviderRef =
"customDateTimeProviderBean").

19.12.9. Multi-Instance Usage

Your application can be configured to use multiple Cloud Spanner instances or databases by
providing a custom bean for DatabaseIdProvider. The default bean uses the instance ID, database
name, and project ID options you configured in application.properties.

 @Bean
 public DatabaseIdProvider databaseIdProvider() {
 // return custom connection options provider
 }

The DatabaseId given by this provider is used as the target database name and instance of each
operation Spring Data Cloud Spanner executes. By providing a custom implementation of this bean
(for example, supplying a thread-local DatabaseId), you can direct your application to use multiple
instances or databases.

Database administrative operations, such as creating tables using SpannerDatabaseAdminTemplate,
will also utilize the provided DatabaseId.

If you would like to configure every aspect of each connection (such as pool size and retry settings),
you can supply a bean for Supplier<DatabaseClient>.

19.12.10. Cloud Spanner Emulator

The Cloud SDK provides a local, in-memory emulator for Cloud Spanner, which you can use to
develop and test your application. As the emulator stores data only in memory, it will not persist
data across runs. It is intended to help you use Cloud Spanner for local development and testing,
not for production deployments.

In order to set up and start the emulator, you can follow these steps.

This command can be used to create Cloud Spanner instances:

$ gcloud spanner instances create <instance-name> --config=emulator-config
--description="<description>" --nodes=1

Once the Spanner emulator is running, ensure that the following properties are set in your
application.properties of your Spring application:

spring.cloud.gcp.spanner.emulator.enabled=true
spring.cloud.gcp.spanner.emulator-host=${EMULATOR_HOSTPORT}

19.12.11. Sample

A sample application is available.

19.13. Spring Data Cloud Datastore

This integration is fully compatible with Firestore in Datastore Mode, but not with
Firestore in Native Mode.

Spring Data is an abstraction for storing and retrieving POJOs in numerous storage technologies.
Spring Cloud GCP adds Spring Data support for Google Cloud Firestore in Datastore mode.

Maven coordinates for this module only, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-data-datastore</artifactId>
</dependency>

Gradle coordinates:

https://cloud.google.com/sdk
https://cloud.google.com/spanner/docs/emulator
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-data-spanner-sample
https://cloud.google.com/datastore/docs/
https://projects.spring.io/spring-data/
https://cloud.google.com/firestore/
getting-started.pdf#_bill_of_materials

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-data-
datastore'
}

We provide a Spring Boot Starter for Spring Data Datastore, with which you can use our
recommended auto-configuration setup. To use the starter, see the coordinates below.

Maven:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-data-datastore</artifactId>
</dependency>

Gradle:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-data-
datastore'
}

This setup takes care of bringing in the latest compatible version of Cloud Java Cloud Datastore
libraries as well.

19.13.1. Configuration

To setup Spring Data Cloud Datastore, you have to configure the following:

• Setup the connection details to Google Cloud Datastore.

Cloud Datastore settings

You can the use Spring Boot Starter for Spring Data Datastore to autoconfigure Google Cloud
Datastore in your Spring application. It contains all the necessary setup that makes it easy to
authenticate with your Google Cloud project. The following configuration options are available:

Name Description Required Default value

spring.cloud.gcp.datas
tore.enabled

Enables the Cloud
Datastore client

No true

../spring-cloud-gcp-starters/spring-cloud-gcp-starter-data-datastore
../spring-cloud-gcp-starters/spring-cloud-gcp-starter-data-datastore

spring.cloud.gcp.datas
tore.project-id

GCP project ID where
the Google Cloud
Datastore API is hosted,
if different from the
one in the Spring Cloud
GCP Core Module

No

spring.cloud.gcp.datas
tore.credentials.locat
ion

OAuth2 credentials for
authenticating with the
Google Cloud Datastore
API, if different from
the ones in the Spring
Cloud GCP Core Module

No

spring.cloud.gcp.datas
tore.credentials.encod
ed-key

Base64-encoded
OAuth2 credentials for
authenticating with the
Google Cloud Datastore
API, if different from
the ones in the Spring
Cloud GCP Core Module

No

spring.cloud.gcp.datas
tore.credentials.scope
s

OAuth2 scope for
Spring Cloud GCP Cloud
Datastore credentials

No www.googleapis.com/
auth/datastore

spring.cloud.gcp.datas
tore.namespace

The Cloud Datastore
namespace to use

No the Default namespace
of Cloud Datastore in
your GCP project

spring.cloud.gcp.datas
tore.host

The hostname:port of
the datastore service or
emulator to connect to.
Can be used to connect
to a manually started
Datastore Emulator. If
the autoconfigured
emulator is enabled,
this property will be
ignored and
localhost:<emulator_po

rt> will be used.

No

spring.cloud.gcp.datas
tore.emulator.enabled

To enable the auto
configuration to start a
local instance of the
Datastore Emulator.

No false

spring.cloud.gcp.datas
tore.emulator.port

The local port to use for
the Datastore Emulator

No 8081

https://developers.google.com/identity/protocols/googlescopes
https://www.googleapis.com/auth/datastore
https://www.googleapis.com/auth/datastore
https://cloud.google.com/datastore/docs/tools/datastore-emulator

spring.cloud.gcp.datas
tore.emulator.consiste
ncy

The consistency to use
for the Datastore
Emulator instance

No 0.9

Repository settings

Spring Data Repositories can be configured via the @EnableDatastoreRepositories annotation on
your main @Configuration class. With our Spring Boot Starter for Spring Data Cloud Datastore,
@EnableDatastoreRepositories is automatically added. It is not required to add it to any other class,
unless there is a need to override finer grain configuration parameters provided by
@EnableDatastoreRepositories.

Autoconfiguration

Our Spring Boot autoconfiguration creates the following beans available in the Spring application
context:

• an instance of DatastoreTemplate

• an instance of all user defined repositories extending CrudRepository,
PagingAndSortingRepository, and DatastoreRepository (an extension of
PagingAndSortingRepository with additional Cloud Datastore features) when repositories are
enabled

• an instance of Datastore from the Google Cloud Java Client for Datastore, for convenience and
lower level API access

Datastore Emulator Autoconfiguration

This Spring Boot autoconfiguration can also configure and start a local Datastore Emulator server if
enabled by property.

It is useful for integration testing, but not for production.

When enabled, the spring.cloud.gcp.datastore.host property will be ignored and the Datastore
autoconfiguration itself will be forced to connect to the autoconfigured local emulator instance.

It will create an instance of LocalDatastoreHelper as a bean that stores the DatastoreOptions to get
the Datastore client connection to the emulator for convenience and lower level API for local
access. The emulator will be properly stopped after the Spring application context shutdown.

19.13.2. Object Mapping

Spring Data Cloud Datastore allows you to map domain POJOs to Cloud Datastore kinds and entities
via annotations:

https://cloud.google.com/sdk/gcloud/reference/beta/emulators/datastore/start?#--consistency
https://github.com/spring-cloud/spring-cloud-gcp/blob/master/spring-cloud-gcp-data-datastore/src/main/java/org/springframework/cloud/gcp/data/datastore/repository/config/EnableDatastoreRepositories.java

@Entity(name = "traders")
public class Trader {

 @Id
 @Field(name = "trader_id")
 String traderId;

 String firstName;

 String lastName;

 @Transient
 Double temporaryNumber;
}

Spring Data Cloud Datastore will ignore any property annotated with @Transient. These properties
will not be written to or read from Cloud Datastore.

Constructors

Simple constructors are supported on POJOs. The constructor arguments can be a subset of the
persistent properties. Every constructor argument needs to have the same name and type as a
persistent property on the entity and the constructor should set the property from the given
argument. Arguments that are not directly set to properties are not supported.

@Entity(name = "traders")
public class Trader {

 @Id
 @Field(name = "trader_id")
 String traderId;

 String firstName;

 String lastName;

 @Transient
 Double temporaryNumber;

 public Trader(String traderId, String firstName) {
 this.traderId = traderId;
 this.firstName = firstName;
 }
}

Kind

The @Entity annotation can provide the name of the Cloud Datastore kind that stores instances of

the annotated class, one per row.

Keys

@Id identifies the property corresponding to the ID value.

You must annotate one of your POJO’s fields as the ID value, because every entity in Cloud
Datastore requires a single ID value:

@Entity(name = "trades")
public class Trade {
 @Id
 @Field(name = "trade_id")
 String tradeId;

 @Field(name = "trader_id")
 String traderId;

 String action;

 Double price;

 Double shares;

 String symbol;
}

Datastore can automatically allocate integer ID values. If a POJO instance with a Long ID property is
written to Cloud Datastore with null as the ID value, then Spring Data Cloud Datastore will obtain a
newly allocated ID value from Cloud Datastore and set that in the POJO for saving. Because
primitive long ID properties cannot be null and default to 0, keys will not be allocated.

Fields

All accessible properties on POJOs are automatically recognized as a Cloud Datastore field. Field
naming is generated by the PropertyNameFieldNamingStrategy by default defined on the
DatastoreMappingContext bean. The @Field annotation optionally provides a different field name
than that of the property.

Supported Types

Spring Data Cloud Datastore supports the following types for regular fields and elements of
collections:

Type Stored as

com.google.cloud.Timestamp com.google.cloud.datastore.TimestampValue

com.google.cloud.datastore.Blob com.google.cloud.datastore.BlobValue

com.google.cloud.datastore.LatLng com.google.cloud.datastore.LatLngValue

Type Stored as

java.lang.Boolean, boolean com.google.cloud.datastore.BooleanValue

java.lang.Double, double com.google.cloud.datastore.DoubleValue

java.lang.Long, long com.google.cloud.datastore.LongValue

java.lang.Integer, int com.google.cloud.datastore.LongValue

java.lang.String com.google.cloud.datastore.StringValue

com.google.cloud.datastore.Entity com.google.cloud.datastore.EntityValue

com.google.cloud.datastore.Key com.google.cloud.datastore.KeyValue

byte[] com.google.cloud.datastore.BlobValue

Java enum values com.google.cloud.datastore.StringValue

In addition, all types that can be converted to the ones listed in the table by
org.springframework.core.convert.support.DefaultConversionService are supported.

Custom types

Custom converters can be used extending the type support for user defined types.

1. Converters need to implement the org.springframework.core.convert.converter.Converter

interface in both directions.

2. The user defined type needs to be mapped to one of the basic types supported by Cloud
Datastore.

3. An instance of both Converters (read and write) needs to be passed to the
DatastoreCustomConversions constructor, which then has to be made available as a @Bean for
DatastoreCustomConversions.

For example:

We would like to have a field of type Album on our Singer POJO and want it to be stored as a string
property:

@Entity
public class Singer {

 @Id
 String singerId;

 String name;

 Album album;
}

Where Album is a simple class:

public class Album {
 String albumName;

 LocalDate date;
}

We have to define the two converters:

 //Converter to write custom Album type
 static final Converter<Album, String> ALBUM_STRING_CONVERTER =
 new Converter<Album, String>() {
 @Override
 public String convert(Album album) {
 return album.getAlbumName() + " " +
album.getDate().format(DateTimeFormatter.ISO_DATE);
 }
 };

 //Converters to read custom Album type
 static final Converter<String, Album> STRING_ALBUM_CONVERTER =
 new Converter<String, Album>() {
 @Override
 public Album convert(String s) {
 String[] parts = s.split(" ");
 return new Album(parts[0], LocalDate.parse(parts[parts.length -
1], DateTimeFormatter.ISO_DATE));
 }
 };

That will be configured in our @Configuration file:

@Configuration
public class ConverterConfiguration {
 @Bean
 public DatastoreCustomConversions datastoreCustomConversions() {
 return new DatastoreCustomConversions(
 Arrays.asList(
 ALBUM_STRING_CONVERTER,
 STRING_ALBUM_CONVERTER));
 }
}

Collections and arrays

Arrays and collections (types that implement java.util.Collection) of supported types are
supported. They are stored as com.google.cloud.datastore.ListValue. Elements are converted to
Cloud Datastore supported types individually. byte[] is an exception, it is converted to

com.google.cloud.datastore.Blob.

Custom Converter for collections

Users can provide converters from List<?> to the custom collection type. Only read converter is
necessary, the Collection API is used on the write side to convert a collection to the internal list type.

Collection converters need to implement the org.springframework.core.convert.converter.Converter
interface.

Example:

Let’s improve the Singer class from the previous example. Instead of a field of type Album, we would
like to have a field of type Set<Album>:

@Entity
public class Singer {

 @Id
 String singerId;

 String name;

 Set<Album> albums;
}

We have to define a read converter only:

static final Converter<List<?>, Set<?>> LIST_SET_CONVERTER =
 new Converter<List<?>, Set<?>>() {
 @Override
 public Set<?> convert(List<?> source) {
 return Collections.unmodifiableSet(new HashSet<>(source));
 }
 };

And add it to the list of custom converters:

@Configuration
public class ConverterConfiguration {
 @Bean
 public DatastoreCustomConversions datastoreCustomConversions() {
 return new DatastoreCustomConversions(
 Arrays.asList(
 LIST_SET_CONVERTER,
 ALBUM_STRING_CONVERTER,
 STRING_ALBUM_CONVERTER));
 }
}

Inheritance Hierarchies

Java entity types related by inheritance can be stored in the same Kind. When reading and
querying entities using DatastoreRepository or DatastoreTemplate with a superclass as the type
parameter, you can receive instances of subclasses if you annotate the superclass and its subclasses
with DiscriminatorField and DiscriminatorValue:

@Entity(name = "pets")
@DiscriminatorField(field = "pet_type")
abstract class Pet {
 @Id
 Long id;

 abstract String speak();
}

@DiscriminatorValue("cat")
class Cat extends Pet {
 @Override
 String speak() {
 return "meow";
 }
}

@DiscriminatorValue("dog")
class Dog extends Pet {
 @Override
 String speak() {
 return "woof";
 }
}

@DiscriminatorValue("pug")
class Pug extends Dog {
 @Override
 String speak() {
 return "woof woof";
 }
}

Instances of all 3 types are stored in the pets Kind. Because a single Kind is used, all classes in the
hierarchy must share the same ID property and no two instances of any type in the hierarchy can
share the same ID value.

Entity rows in Cloud Datastore store their respective types' DiscriminatorValue in a field specified
by the root superclass’s DiscriminatorField (pet_type in this case). Reads and queries using a given
type parameter will match each entity with its specific type. For example, reading a List<Pet> will
produce a list containing instances of all 3 types. However, reading a List<Dog> will produce a list
containing only Dog and Pug instances. You can include the pet_type discrimination field in your
Java entities, but its type must be convertible to a collection or array of String. Any value set in the
discrimination field will be overwritten upon write to Cloud Datastore.

19.13.3. Relationships

There are three ways to represent relationships between entities that are described in this section:

• Embedded entities stored directly in the field of the containing entity

• @Descendant annotated properties for one-to-many relationships

• @Reference annotated properties for general relationships without hierarchy

• @LazyReference similar to @Reference, but the entities are lazy-loaded when the property is
accessed. (Note that the keys of the children are retrieved when the parent entity is loaded.)

Embedded Entities

Fields whose types are also annotated with @Entity are converted to EntityValue and stored inside
the parent entity.

Here is an example of Cloud Datastore entity containing an embedded entity in JSON:

{
 "name" : "Alexander",
 "age" : 47,
 "child" : {"name" : "Philip" }
}

This corresponds to a simple pair of Java entities:

import org.springframework.cloud.gcp.data.datastore.core.mapping.Entity;
import org.springframework.data.annotation.Id;

@Entity("parents")
public class Parent {
 @Id
 String name;

 Child child;
}

@Entity
public class Child {
 String name;
}

Child entities are not stored in their own kind. They are stored in their entirety in the child field of
the parents kind.

Multiple levels of embedded entities are supported.

Embedded entities don’t need to have @Id field, it is only required for top level
entities.

Example:

Entities can hold embedded entities that are their own type. We can store trees in Cloud Datastore
using this feature:

import org.springframework.cloud.gcp.data.datastore.core.mapping.Embedded;
import org.springframework.cloud.gcp.data.datastore.core.mapping.Entity;
import org.springframework.data.annotation.Id;

@Entity
public class EmbeddableTreeNode {
 @Id
 long value;

 EmbeddableTreeNode left;

 EmbeddableTreeNode right;

 Map<String, Long> longValues;

 Map<String, List<Timestamp>> listTimestamps;

 public EmbeddableTreeNode(long value, EmbeddableTreeNode left, EmbeddableTreeNode
right) {
 this.value = value;
 this.left = left;
 this.right = right;
 }
}

Maps

Maps will be stored as embedded entities where the key values become the field names in the
embedded entity. The value types in these maps can be any regularly supported property type, and
the key values will be converted to String using the configured converters.

Also, a collection of entities can be embedded; it will be converted to ListValue on write.

Example:

Instead of a binary tree from the previous example, we would like to store a general tree (each
node can have an arbitrary number of children) in Cloud Datastore. To do that, we need to create a
field of type List<EmbeddableTreeNode>:

import org.springframework.cloud.gcp.data.datastore.core.mapping.Embedded;
import org.springframework.data.annotation.Id;

public class EmbeddableTreeNode {
 @Id
 long value;

 List<EmbeddableTreeNode> children;

 Map<String, EmbeddableTreeNode> siblingNodes;

 Map<String, Set<EmbeddableTreeNode>> subNodeGroups;

 public EmbeddableTreeNode(List<EmbeddableTreeNode> children) {
 this.children = children;
 }
}

Because Maps are stored as entities, they can further hold embedded entities:

• Singular embedded objects in the value can be stored in the values of embedded Maps.

• Collections of embedded objects in the value can also be stored as the values of embedded
Maps.

• Maps in the value are further stored as embedded entities with the same rules applied
recursively for their values.

Ancestor-Descendant Relationships

Parent-child relationships are supported via the @Descendants annotation.

Unlike embedded children, descendants are fully-formed entities residing in their own kinds. The
parent entity does not have an extra field to hold the descendant entities. Instead, the relationship
is captured in the descendants' keys, which refer to their parent entities:

import org.springframework.cloud.gcp.data.datastore.core.mapping.Descendants;
import org.springframework.cloud.gcp.data.datastore.core.mapping.Entity;
import org.springframework.data.annotation.Id;

@Entity("orders")
public class ShoppingOrder {
 @Id
 long id;

 @Descendants
 List<Item> items;
}

@Entity("purchased_item")
public class Item {
 @Id
 Key purchasedItemKey;

 String name;

 Timestamp timeAddedToOrder;
}

For example, an instance of a GQL key-literal representation for Item would also contain the parent
ShoppingOrder ID value:

Key(orders, '12345', purchased_item, 'eggs')

The GQL key-literal representation for the parent ShoppingOrder would be:

Key(orders, '12345')

The Cloud Datastore entities exist separately in their own kinds.

The ShoppingOrder:

{
 "id" : 12345
}

The two items inside that order:

{
 "purchasedItemKey" : Key(orders, '12345', purchased_item, 'eggs'),
 "name" : "eggs",
 "timeAddedToOrder" : "2014-09-27 12:30:00.45-8:00"
}

{
 "purchasedItemKey" : Key(orders, '12345', purchased_item, 'sausage'),
 "name" : "sausage",
 "timeAddedToOrder" : "2014-09-28 11:30:00.45-9:00"
}

The parent-child relationship structure of objects is stored in Cloud Datastore using Datastore’s
ancestor relationships. Because the relationships are defined by the Ancestor mechanism, there is
no extra column needed in either the parent or child entity to store this relationship. The
relationship link is part of the descendant entity’s key value. These relationships can be many levels
deep.

Properties holding child entities must be collection-like, but they can be any of the supported inter-
convertible collection-like types that are supported for regular properties such as List, arrays, Set,
etc… Child items must have Key as their ID type because Cloud Datastore stores the ancestor
relationship link inside the keys of the children.

Reading or saving an entity automatically causes all subsequent levels of children under that entity
to be read or saved, respectively. If a new child is created and added to a property annotated
@Descendants and the key property is left null, then a new key will be allocated for that child. The
ordering of the retrieved children may not be the same as the ordering in the original property that
was saved.

Child entities cannot be moved from the property of one parent to that of another unless the child’s
key property is set to null or a value that contains the new parent as an ancestor. Since Cloud
Datastore entity keys can have multiple parents, it is possible that a child entity appears in the
property of multiple parent entities. Because entity keys are immutable in Cloud Datastore, to
change the key of a child you must delete the existing one and re-save it with the new key.

Key Reference Relationships

General relationships can be stored using the @Reference annotation.

https://cloud.google.com/datastore/docs/concepts/entities#ancestor_paths

import org.springframework.data.annotation.Reference;
import org.springframework.data.annotation.Id;

@Entity
public class ShoppingOrder {
 @Id
 long id;

 @Reference
 List<Item> items;

 @Reference
 Item specialSingleItem;
}

@Entity
public class Item {
 @Id
 Key purchasedItemKey;

 String name;

 Timestamp timeAddedToOrder;
}

@Reference relationships are between fully-formed entities residing in their own kinds. The
relationship between ShoppingOrder and Item entities are stored as a Key field inside ShoppingOrder,
which are resolved to the underlying Java entity type by Spring Data Cloud Datastore:

{
 "id" : 12345,
 "specialSingleItem" : Key(item, "milk"),
 "items" : [Key(item, "eggs"), Key(item, "sausage")]
}

Reference properties can either be singular or collection-like. These properties correspond to actual
columns in the entity and Cloud Datastore Kind that hold the key values of the referenced entities.
The referenced entities are full-fledged entities of other Kinds.

Similar to the @Descendants relationships, reading or writing an entity will recursively read or write
all of the referenced entities at all levels. If referenced entities have null ID values, then they will be
saved as new entities and will have ID values allocated by Cloud Datastore. There are no
requirements for relationships between the key of an entity and the keys that entity holds as
references. The order of collection-like reference properties is not preserved when reading back
from Cloud Datastore.

19.13.4. Datastore Operations & Template

DatastoreOperations and its implementation, DatastoreTemplate, provides the Template pattern
familiar to Spring developers.

Using the auto-configuration provided by Spring Boot Starter for Datastore, your Spring application
context will contain a fully configured DatastoreTemplate object that you can autowire in your
application:

@SpringBootApplication
public class DatastoreTemplateExample {

 @Autowired
 DatastoreTemplate datastoreTemplate;

 public void doSomething() {
 this.datastoreTemplate.deleteAll(Trader.class);
 //...
 Trader t = new Trader();
 //...
 this.datastoreTemplate.save(t);
 //...
 List<Trader> traders = datastoreTemplate.findAll(Trader.class);
 //...
 }
}

The Template API provides convenience methods for:

• Write operations (saving and deleting)

• Read-write transactions

GQL Query

In addition to retrieving entities by their IDs, you can also submit queries.

 <T> Iterable<T> query(Query<? extends BaseEntity> query, Class<T> entityClass);

 <A, T> Iterable<T> query(Query<A> query, Function<A, T> entityFunc);

 Iterable<Key> queryKeys(Query<Key> query);

These methods, respectively, allow querying for: * entities mapped by a given entity class using all
the same mapping and converting features * arbitrary types produced by a given mapping function
* only the Cloud Datastore keys of the entities found by the query

Find by ID(s)

Using DatastoreTemplate you can find entities by id. For example:

Trader trader = this.datastoreTemplate.findById("trader1", Trader.class);

List<Trader> traders = this.datastoreTemplate.findAllById(Arrays.asList("trader1",
"trader2"), Trader.class);

List<Trader> allTraders = this.datastoreTemplate.findAll(Trader.class);

Cloud Datastore executes key-based reads with strong consistency, but queries with eventual
consistency. In the example above the first two reads utilize keys, while the third is executed using
a query based on the corresponding Kind of Trader.

Indexes

By default, all fields are indexed. To disable indexing on a particular field, @Unindexed annotation
can be used.

Example:

import org.springframework.cloud.gcp.data.datastore.core.mapping.Unindexed;

public class ExampleItem {
 long indexedField;

 @Unindexed
 long unindexedField;

 @Unindexed
 List<String> unindexedListField;
}

When using queries directly or via Query Methods, Cloud Datastore requires composite custom
indexes if the select statement is not SELECT * or if there is more than one filtering condition in the
WHERE clause.

Read with offsets, limits, and sorting

DatastoreRepository and custom-defined entity repositories implement the Spring Data
PagingAndSortingRepository, which supports offsets and limits using page numbers and page sizes.
Paging and sorting options are also supported in DatastoreTemplate by supplying a
DatastoreQueryOptions to findAll.

Partial read

This feature is not supported yet.

https://cloud.google.com/datastore/docs/concepts/indexes
https://cloud.google.com/datastore/docs/concepts/indexes

Write / Update

The write methods of DatastoreOperations accept a POJO and writes all of its properties to
Datastore. The required Datastore kind and entity metadata is obtained from the given object’s
actual type.

If a POJO was retrieved from Datastore and its ID value was changed and then written or updated,
the operation will occur as if against a row with the new ID value. The entity with the original ID
value will not be affected.

Trader t = new Trader();
this.datastoreTemplate.save(t);

The save method behaves as update-or-insert.

Partial Update

This feature is not supported yet.

Transactions

Read and write transactions are provided by DatastoreOperations via the performTransaction
method:

@Autowired
DatastoreOperations myDatastoreOperations;

public String doWorkInsideTransaction() {
 return myDatastoreOperations.performTransaction(
 transactionDatastoreOperations -> {
 // Work with transactionDatastoreOperations here.
 // It is also a DatastoreOperations object.

 return "transaction completed";
 }
);
}

The performTransaction method accepts a Function that is provided an instance of a
DatastoreOperations object. The final returned value and type of the function is determined by the
user. You can use this object just as you would a regular DatastoreOperations with an exception:

• It cannot perform sub-transactions.

Because of Cloud Datastore’s consistency guarantees, there are limitations to the operations and
relationships among entities used inside transactions.

https://cloud.google.com/datastore/docs/concepts/transactions#what_can_be_done_in_a_transaction

Declarative Transactions with @Transactional Annotation

This feature requires a bean of DatastoreTransactionManager, which is provided when using spring-
cloud-gcp-starter-data-datastore.

DatastoreTemplate and DatastoreRepository support running methods with the @Transactional
annotation as transactions. If a method annotated with @Transactional calls another method also
annotated, then both methods will work within the same transaction. performTransaction cannot be
used in @Transactional annotated methods because Cloud Datastore does not support transactions
within transactions.

Read-Write Support for Maps

You can work with Maps of type Map<String, ?> instead of with entity objects by directly reading
and writing them to and from Cloud Datastore.

 This is a different situation than using entity objects that contain Map properties.

The map keys are used as field names for a Datastore entity and map values are converted to
Datastore supported types. Only simple types are supported (i.e. collections are not supported).
Converters for custom value types can be added (see Custom types section).

Example:

Map<String, Long> map = new HashMap<>();
map.put("field1", 1L);
map.put("field2", 2L);
map.put("field3", 3L);

keyForMap = datastoreTemplate.createKey("kindName", "id");

//write a map
datastoreTemplate.writeMap(keyForMap, map);

//read a map
Map<String, Long> loadedMap = datastoreTemplate.findByIdAsMap(keyForMap, Long.class);

19.13.5. Repositories

Spring Data Repositories are an abstraction that can reduce boilerplate code.

For example:

public interface TraderRepository extends DatastoreRepository<Trader, String> {
}

Spring Data generates a working implementation of the specified interface, which can be autowired
into an application.

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction-declarative
https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#repositories

The Trader type parameter to DatastoreRepository refers to the underlying domain type. The second
type parameter, String in this case, refers to the type of the key of the domain type.

public class MyApplication {

 @Autowired
 TraderRepository traderRepository;

 public void demo() {

 this.traderRepository.deleteAll();
 String traderId = "demo_trader";
 Trader t = new Trader();
 t.traderId = traderId;
 this.tradeRepository.save(t);

 Iterable<Trader> allTraders = this.traderRepository.findAll();

 int count = this.traderRepository.count();
 }
}

Repositories allow you to define custom Query Methods (detailed in the following sections) for
retrieving, counting, and deleting based on filtering and paging parameters. Filtering parameters
can be of types supported by your configured custom converters.

Query methods by convention

public interface TradeRepository extends DatastoreRepository<Trade, String[]> {
 List<Trader> findByAction(String action);

 //throws an exception if no results
 Trader findOneByAction(String action);

 //because of the annotation, returns null if no results
 @Nullable
 Trader getByAction(String action);

 Optional<Trader> getOneByAction(String action);

 int countByAction(String action);

 boolean existsByAction(String action);

 List<Trade>
findTop3ByActionAndSymbolAndPriceGreaterThanAndPriceLessThanOrEqualOrderBySymbolDesc(
 String action, String symbol, double priceFloor, double priceCeiling);

 Page<TestEntity> findByAction(String action, Pageable pageable);

 Slice<TestEntity> findBySymbol(String symbol, Pageable pageable);

 List<TestEntity> findBySymbol(String symbol, Sort sort);
}

In the example above the query methods in TradeRepository are generated based on the name of
the methods using the Spring Data Query creation naming convention.

 You can refer to nested fields using Spring Data JPA Property Expressions

Cloud Datastore only supports filter components joined by AND, and the following operations:

• equals

• greater than or equals

• greater than

• less than or equals

• less than

• is null

After writing a custom repository interface specifying just the signatures of these methods,
implementations are generated for you and can be used with an auto-wired instance of the
repository. Because of Cloud Datastore’s requirement that explicitly selected fields must all appear
in a composite index together, find name-based query methods are run as SELECT *.

Delete queries are also supported. For example, query methods such as deleteByAction or
removeByAction delete entities found by findByAction. Delete queries are executed as separate read

https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#repositories.query-methods
https://docs.spring.io/spring-data/data-commons/docs/current/reference/html#repositories.query-methods.query-creation
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.query-methods.query-property-expressions

and delete operations instead of as a single transaction because Cloud Datastore cannot query in
transactions unless ancestors for queries are specified. As a result, removeBy and deleteBy name-
convention query methods cannot be used inside transactions via either performInTransaction or
@Transactional annotation.

Delete queries can have the following return types:

• An integer type that is the number of entities deleted

• A collection of entities that were deleted

• 'void'

Methods can have org.springframework.data.domain.Pageable parameter to control pagination and
sorting, or org.springframework.data.domain.Sort parameter to control sorting only. See Spring Data
documentation for details.

For returning multiple items in a repository method, we support Java collections as well as
org.springframework.data.domain.Page and org.springframework.data.domain.Slice. If a method’s
return type is org.springframework.data.domain.Page, the returned object will include current page,
total number of results and total number of pages.

Methods that return Page execute an additional query to compute total number of
pages. Methods that return Slice, on the other hand, don’t execute any additional
queries and therefore are much more efficient.

Empty result handling in repository methods

Java java.util.Optional can be used to indicate the potential absence of a return value.

Alternatively, query methods can return the result without a wrapper. In that case the absence of a
query result is indicated by returning null. Repository methods returning collections are
guaranteed never to return null but rather the corresponding empty collection.

You can enable nullability checks. For more details please see Spring Framework’s
nullability docs.

Query by example

Query by Example is an alternative querying technique. It enables dynamic query generation based
on a user-provided object. See Spring Data Documentation for details.

Unsupported features:

1. Currently, only equality queries are supported (no ignore-case matching, regexp matching, etc.).

2. Per-field matchers are not supported.

3. Embedded entities matching is not supported.

For example, if you want to find all users with the last name "Smith", you would use the following
code:

https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#repositories.query-methods
https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#repositories.query-methods
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#null-safety
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#null-safety
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#query-by-example

userRepository.findAll(
 Example.of(new User(null, null, "Smith"))

null fields are not used in the filter by default. If you want to include them, you would use the
following code:

userRepository.findAll(
 Example.of(new User(null, null, "Smith"),
ExampleMatcher.matching().withIncludeNullValues())

Custom GQL query methods

Custom GQL queries can be mapped to repository methods in one of two ways:

• namedQueries properties file

• using the @Query annotation

Query methods with annotation

Using the @Query annotation:

The names of the tags of the GQL correspond to the @Param annotated names of the method
parameters.

public interface TraderRepository extends DatastoreRepository<Trader, String> {

 @Query("SELECT * FROM traders WHERE name = @trader_name")
 List<Trader> tradersByName(@Param("trader_name") String traderName);

 @Query("SELECT * FROM test_entities_ci WHERE name = @trader_name")
 TestEntity getOneTestEntity(@Param("trader_name") String traderName);

 @Query("SELECT * FROM traders WHERE name = @trader_name")
 List<Trader> tradersByNameSort(@Param("trader_name") String traderName, Sort sort);

 @Query("SELECT * FROM traders WHERE name = @trader_name")
 Slice<Trader> tradersByNameSlice(@Param("trader_name") String traderName, Pageable
pageable);

 @Query("SELECT * FROM traders WHERE name = @trader_name")
 Page<Trader> tradersByNamePage(@Param("trader_name") String traderName, Pageable
pageable);
}

When the return type is Slice or Pageable, the result set cursor that points to the position just after
the page is preserved in the returned Slice or Page object. To take advantage of the cursor to query
for the next page or slice, use result.getPageable().next().

Page requires the total count of entities produced by the query. Therefore, the first
query will have to retrieve all of the records just to count them. Instead, we
recommend using the Slice return type, because it does not require an additional
count query.

 Slice<Trader> slice1 = tradersByNamePage("Dave", PageRequest.of(0, 5));
 Slice<Trader> slice2 = tradersByNamePage("Dave", slice1.getPageable().next());

You cannot use these Query Methods in repositories where the type parameter is a
subclass of another class annotated with DiscriminatorField.

The following parameter types are supported:

• com.google.cloud.Timestamp

• com.google.cloud.datastore.Blob

• com.google.cloud.datastore.Key

• com.google.cloud.datastore.Cursor

• java.lang.Boolean

• java.lang.Double

• java.lang.Long

• java.lang.String

• enum values. These are queried as String values.

With the exception of Cursor, array forms of each of the types are also supported.

If you would like to obtain the count of items of a query or if there are any items returned by the
query, set the count = true or exists = true properties of the @Query annotation, respectively. The
return type of the query method in these cases should be an integer type or a boolean type.

Cloud Datastore provides provides the SELECT __key__ FROM … special column for all kinds that
retrieves the Key of each row. Selecting this special __key__ column is especially useful and efficient
for count and exists queries.

You can also query for non-entity types:

@Query(value = "SELECT __key__ from test_entities_ci")
List<Key> getKeys();

@Query(value = "SELECT __key__ from test_entities_ci limit 1")
Key getKey();

In order to use @Id annotated fields in custom queries, use __key__ keyword for the field name. The
parameter type should be of Key, as in the following example.

Repository method:

@Query("select * from test_entities_ci where size = @size and __key__ = @id")
LinkedList<TestEntity> findEntities(@Param("size") long size, @Param("id") Key id);

Generate a key from id value using DatastoreTemplate.createKey method and use it as a parameter
for the repository method:

this.testEntityRepository.findEntities(1L,
datastoreTemplate.createKey(TestEntity.class, 1L))

SpEL can be used to provide GQL parameters:

@Query("SELECT * FROM |com.example.Trade| WHERE trades.action = @act
 AND price > :#{#priceRadius * -1} AND price < :#{#priceRadius * 2}")
List<Trade> fetchByActionNamedQuery(@Param("act") String action, @Param("priceRadius")
Double r);

Kind names can be directly written in the GQL annotations. Kind names can also be resolved from
the @Entity annotation on domain classes.

In this case, the query should refer to table names with fully qualified class names surrounded by |
characters: |fully.qualified.ClassName|. This is useful when SpEL expressions appear in the kind
name provided to the @Entity annotation. For example:

@Query("SELECT * FROM |com.example.Trade| WHERE trades.action = @act")
List<Trade> fetchByActionNamedQuery(@Param("act") String action);

Query methods with named queries properties

You can also specify queries with Cloud Datastore parameter tags and SpEL expressions in
properties files.

By default, the namedQueriesLocation attribute on @EnableDatastoreRepositories points to the META-
INF/datastore-named-queries.properties file. You can specify the query for a method in the
properties file by providing the GQL as the value for the "interface.method" property:

You cannot use these Query Methods in repositories where the type parameter is a
subclass of another class annotated with DiscriminatorField.

Trader.fetchByName=SELECT * FROM traders WHERE name = @tag0

public interface TraderRepository extends DatastoreRepository<Trader, String> {

 // This method uses the query from the properties file instead of one generated
based on name.
 List<Trader> fetchByName(@Param("tag0") String traderName);

}

Transactions

These transactions work very similarly to those of DatastoreOperations, but is specific to the
repository’s domain type and provides repository functions instead of template functions.

For example, this is a read-write transaction:

@Autowired
DatastoreRepository myRepo;

public String doWorkInsideTransaction() {
 return myRepo.performTransaction(
 transactionDatastoreRepo -> {
 // Work with the single-transaction transactionDatastoreRepo here.
 // This is a DatastoreRepository object.

 return "transaction completed";
 }
);
}

Projections

Spring Data Cloud Datastore supports projections. You can define projection interfaces based on
domain types and add query methods that return them in your repository:

https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#projections

public interface TradeProjection {

 String getAction();

 @Value("#{target.symbol + ' ' + target.action}")
 String getSymbolAndAction();
}

public interface TradeRepository extends DatastoreRepository<Trade, Key> {

 List<Trade> findByTraderId(String traderId);

 List<TradeProjection> findByAction(String action);

 @Query("SELECT action, symbol FROM trades WHERE action = @action")
 List<TradeProjection> findByQuery(String action);
}

Projections can be provided by name-convention-based query methods as well as by custom GQL
queries. If using custom GQL queries, you can further restrict the fields retrieved from Cloud
Datastore to just those required by the projection. However, custom select statements (those not
using SELECT *) require composite indexes containing the selected fields.

Properties of projection types defined using SpEL use the fixed name target for the underlying
domain object. As a result, accessing underlying properties take the form target.<property-name>.

REST Repositories

When running with Spring Boot, repositories can be exposed as REST services by simply adding this
dependency to your pom file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
</dependency>

If you prefer to configure parameters (such as path), you can use @RepositoryRestResource
annotation:

@RepositoryRestResource(collectionResourceRel = "trades", path = "trades")
public interface TradeRepository extends DatastoreRepository<Trade, String[]> {
}

For example, you can retrieve all Trade objects in the repository by using curl

http://<server>:<port>/trades, or any specific trade via curl

http://<server>:<port>/trades/<trader_id>.

You can also write trades using curl -XPOST -H"Content-Type: application/json" -d@test.json

http://<server>:<port>/trades/ where the file test.json holds the JSON representation of a Trade
object.

To delete trades, you can use curl -XDELETE http://<server>:<port>/trades/<trader_id>

19.13.6. Events

Spring Data Cloud Datastore publishes events extending the Spring Framework’s ApplicationEvent
to the context that can be received by ApplicationListener beans you register.

Type Description Contents

AfterFindByKeyEvent Published immediately after
read by-key operations are
executed by DatastoreTemplate

The entities read from Cloud
Datastore and the original keys
in the request.

AfterQueryEvent Published immediately after
read byquery operations are
executed by DatastoreTemplate

The entities read from Cloud
Datastore and the original
query in the request.

BeforeSaveEvent Published immediately before
save operations are executed by
DatastoreTemplate

The entities to be sent to Cloud
Datastore and the original Java
objects being saved.

AfterSaveEvent Published immediately after
save operations are executed by
DatastoreTemplate

The entities sent to Cloud
Datastore and the original Java
objects being saved.

BeforeDeleteEvent Published immediately before
delete operations are executed
by DatastoreTemplate

The keys to be sent to Cloud
Datastore. The target entities, ID
values, or entity type originally
specified for the delete
operation.

AfterDeleteEvent Published immediately after
delete operations are executed
by DatastoreTemplate

The keys sent to Cloud
Datastore. The target entities, ID
values, or entity type originally
specified for the delete
operation.

19.13.7. Auditing

Spring Data Cloud Datastore supports the @LastModifiedDate and @LastModifiedBy auditing
annotations for properties:

mailto:d@test.json

@Entity
public class SimpleEntity {
 @Id
 String id;

 @LastModifiedBy
 String lastUser;

 @LastModifiedDate
 DateTime lastTouched;
}

Upon insert, update, or save, these properties will be set automatically by the framework before
Datastore entities are generated and saved to Cloud Datastore.

To take advantage of these features, add the @EnableDatastoreAuditing annotation to your
configuration class and provide a bean for an AuditorAware<A> implementation where the type A is
the desired property type annotated by @LastModifiedBy:

@Configuration
@EnableDatastoreAuditing
public class Config {

 @Bean
 public AuditorAware<String> auditorProvider() {
 return () -> Optional.of("YOUR_USERNAME_HERE");
 }
}

The AuditorAware interface contains a single method that supplies the value for fields annotated by
@LastModifiedBy and can be of any type. One alternative is to use Spring Security’s User type:

class SpringSecurityAuditorAware implements AuditorAware<User> {

 public Optional<User> getCurrentAuditor() {

 return Optional.ofNullable(SecurityContextHolder.getContext())
 .map(SecurityContext::getAuthentication)
 .filter(Authentication::isAuthenticated)
 .map(Authentication::getPrincipal)
 .map(User.class::cast);
 }
}

You can also set a custom provider for properties annotated @LastModifiedDate by providing a bean
for DateTimeProvider and providing the bean name to @EnableDatastoreAuditing(dateTimeProviderRef
= "customDateTimeProviderBean").

19.13.8. Partitioning Data by Namespace

You can partition your data by using more than one namespace. This is the recommended method
for multi-tenancy in Cloud Datastore.

 @Bean
 public DatastoreNamespaceProvider namespaceProvider() {
 // return custom Supplier of a namespace string.
 }

The DatastoreNamespaceProvider is a synonym for Supplier<String>. By providing a custom
implementation of this bean (for example, supplying a thread-local namespace name), you can
direct your application to use multiple namespaces. Every read, write, query, and transaction you
perform will utilize the namespace provided by this supplier.

Note that your provided namespace in application.properties will be ignored if you define a
namespace provider bean.

19.13.9. Spring Boot Actuator Support

Cloud Datastore Health Indicator

If you are using Spring Boot Actuator, you can take advantage of the Cloud Datastore health
indicator called datastore. The health indicator will verify whether Cloud Datastore is up and
accessible by your application. To enable it, all you need to do is add the Spring Boot Actuator to
your project.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

19.13.10. Sample

A Simple Spring Boot Application and more advanced Sample Spring Boot Application are provided
to show how to use the Spring Data Cloud Datastore starter and template.

19.14. Spring Data Cloud Firestore

Currently some features are not supported: transactions, sorting, query by
example, projections, auditing.

Spring Data is an abstraction for storing and retrieving POJOs in numerous storage technologies.
Spring Cloud GCP adds Spring Data Reactive Repositories support for Google Cloud Firestore in
native mode, providing reactive template and repositories support. To begin using this library, add
the spring-cloud-gcp-data-firestore artifact to your project.

https://cloud.google.com/datastore/docs/concepts/multitenancy
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-data-datastore-basic-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-data-datastore-sample
https://projects.spring.io/spring-data/
https://cloud.google.com/firestore/

Maven coordinates for this module only, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-data-firestore</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-data-firestore'
}

We provide a Spring Boot Starter for Spring Data Firestore, with which you can use our
recommended auto-configuration setup. To use the starter, see the coordinates below.

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-data-firestore</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-data-
firestore'
}

19.14.1. Configuration

Properties

The Spring Boot starter for Google Cloud Firestore provides the following configuration options:

Name Description Required Default value

spring.cloud.gcp.fires
tore.enabled

Enables or disables
Firestore auto-
configuration

No true

spring.cloud.gcp.fires
tore.project-id

GCP project ID where
the Google Cloud
Firestore API is hosted,
if different from the
one in the Spring Cloud
GCP Core Module

No

getting-started.pdf#_bill_of_materials

spring.cloud.gcp.fires
tore.emulator.enabled

Enables the usage of an
emulator. If this is set
to true, then you should
set the
spring.cloud.gcp.fires

tore.host-port to the
host:port of your
locally running
emulator instance

No false

spring.cloud.gcp.fires
tore.host-port

The host and port of the
Firestore service; can
be overridden to
specify connecting to
an already-running
Firestore emulator
instance.

No firestore.googleapis.c

om:443 (the host/port of
official Firestore
service)

spring.cloud.gcp.fires
tore.credentials.locat
ion

OAuth2 credentials for
authenticating with the
Google Cloud Firestore
API, if different from
the ones in the Spring
Cloud GCP Core Module

No

spring.cloud.gcp.fires
tore.credentials.encod
ed-key

Base64-encoded
OAuth2 credentials for
authenticating with the
Google Cloud Firestore
API, if different from
the ones in the Spring
Cloud GCP Core Module

No

spring.cloud.gcp.fires
tore.credentials.scope
s

OAuth2 scope for
Spring Cloud GCP Cloud
Firestore credentials

No www.googleapis.com/
auth/datastore

Supported types

You may use the following field types when defining your persistent entities or when binding query
parameters:

• Long

• Integer

• Double

• Float

• String

• Boolean

• Character

https://firebase.google.com/docs/emulator-suite/install_and_configure
https://developers.google.com/identity/protocols/googlescopes
https://www.googleapis.com/auth/datastore
https://www.googleapis.com/auth/datastore

• Date

• Map

• List

• Enum

• com.google.cloud.Timestamp

• com.google.cloud.firestore.GeoPoint

• com.google.cloud.firestore.Blob

Reactive Repository settings

Spring Data Repositories can be configured via the @EnableReactiveFirestoreRepositories

annotation on your main @Configuration class. With our Spring Boot Starter for Spring Data Cloud
Firestore, @EnableReactiveFirestoreRepositories is automatically added. It is not required to add it
to any other class, unless there is a need to override finer grain configuration parameters provided
by @EnableReactiveFirestoreRepositories.

Autoconfiguration

Our Spring Boot autoconfiguration creates the following beans available in the Spring application
context:

• an instance of FirestoreTemplate

• instances of all user defined repositories extending FirestoreReactiveRepository (an extension
of ReactiveCrudRepository with additional Cloud Firestore features) when repositories are
enabled

• an instance of Firestore from the Google Cloud Java Client for Firestore, for convenience and
lower level API access

19.14.2. Object Mapping

Spring Data Cloud Firestore allows you to map domain POJOs to Cloud Firestore collections and
documents via annotations:

https://github.com/spring-cloud/spring-cloud-gcp/blob/master/spring-cloud-gcp-data-firestore/src/main/java/org/springframework/cloud/gcp/data/firestore/repository/config/EnableReactiveFirestoreRepositories.java
https://developers.google.com/resources/api-libraries/documentation/firestore/v1/java/latest/
https://firebase.google.com/docs/firestore/data-model#collections

import com.google.cloud.firestore.annotation.DocumentId;
import org.springframework.cloud.gcp.data.firestore.Document;

@Document(collectionName = "usersCollection")
public class User {
 /**
 * Used to test @PropertyName annotation on a field.
 */
 @PropertyName("drink")
 public String favoriteDrink;

 @DocumentId
 private String name;

 private Integer age;

 public User() {
 }

 public String getName() {
 return this.name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Integer getAge() {
 return this.age;
 }

 public void setAge(Integer age) {
 this.age = age;
 }
}

@Document(collectionName = "usersCollection") annotation configures the collection name for the
documents of this type. This annotation is optional, by default the collection name is derived from
the class name.

@DocumentId annotation marks a field to be used as document id. This annotation is required.

Internally we use Firestore client library object mapping. See the documentation
for supported annotations.

Embedded entities and lists

Spring Data Cloud Firestore supports embedded properties of custom types and lists. Given a
custom POJO definition, you can have properties of this type or lists of this type in your entities.

https://developers.google.com/android/reference/com/google/firebase/firestore/package-summary

They are stored as embedded documents (or arrays, correspondingly) in the Cloud Firestore.

Example:

@Document(collectionName = "usersCollection")
public class User {
 /**
 * Used to test @PropertyName annotation on a field.
 */
 @PropertyName("drink")
 public String favoriteDrink;

 @DocumentId
 private String name;

 private Integer age;

 private List<String> pets;

 private List<Address> addresses;

 private Address homeAddress;

 public List<String> getPets() {
 return this.pets;
 }

 public void setPets(List<String> pets) {
 this.pets = pets;
 }

 public List<Address> getAddresses() {
 return this.addresses;
 }

 public void setAddresses(List<Address> addresses) {
 this.addresses = addresses;
 }

 @PropertyName("address")
 public Address getHomeAddress() {
 return this.homeAddress;
 }

 @PropertyName("address")
 public void setHomeAddress(Address homeAddress) {
 this.homeAddress = homeAddress;
 }

 public static class Address {
 String streetAddress;

 String country;

 public Address() {
 }
 }
}

19.14.3. Reactive Repositories

Spring Data Repositories is an abstraction that can reduce boilerplate code.

For example:

public interface UserRepository extends FirestoreReactiveRepository<User> {
 Flux<User> findByAge(Integer age);

 Flux<User> findByHomeAddressCountry(String country);

 Flux<User> findByFavoriteDrink(String drink);

 Flux<User> findByAgeGreaterThanAndAgeLessThan(Integer age1, Integer age2);

 Flux<User> findByAgeGreaterThan(Integer age);

 Flux<User> findByAgeGreaterThan(Integer age, Sort sort);

 Flux<User> findByAgeGreaterThan(Integer age, Pageable pageable);

 Flux<User> findByAgeIn(List<Integer> ages);

 Flux<User> findByAgeAndPetsContains(Integer age, List<String> pets);

 Flux<User> findByPetsContains(List<String> pets);

 Flux<User> findByPetsContainsAndAgeIn(String pets, List<Integer> ages);

 Mono<Long> countByAgeIsGreaterThan(Integer age);
}

Spring Data generates a working implementation of the specified interface, which can be autowired
into an application.

The User type parameter to FirestoreReactiveRepository refers to the underlying domain type.

 You can refer to nested fields using Spring Data JPA Property Expressions

https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/reactive/ReactiveCrudRepository.html
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.query-methods.query-property-expressions

public class MyApplication {

 @Autowired
 UserRepository userRepository;

 public void writeReadDeleteTest() {
 List<User.Address> addresses = Arrays.asList(new User.Address("123 Alice st",
"US"),
 new User.Address("1 Alice ave", "US"));
 User.Address homeAddress = new User.Address("10 Alice blvd", "UK");
 User alice = new User("Alice", 29, null, addresses, homeAddress);
 User bob = new User("Bob", 60);

 this.userRepository.save(alice).block();
 this.userRepository.save(bob).block();

 assertThat(this.userRepository.count().block()).isEqualTo(2);

assertThat(this.userRepository.findAll().map(User::getName).collectList().block())
 .containsExactlyInAnyOrder("Alice", "Bob");

 User aliceLoaded = this.userRepository.findById("Alice").block();
 assertThat(aliceLoaded.getAddresses()).isEqualTo(addresses);
 assertThat(aliceLoaded.getHomeAddress()).isEqualTo(homeAddress);
 }
}

Repositories allow you to define custom Query Methods (detailed in the following sections) for
retrieving and counting based on filtering and paging parameters.

Custom queries with @Query annotation are not supported since there is no query
language in Cloud Firestore

19.14.4. Query methods by convention

public class MyApplication {
 public void partTreeRepositoryMethodTest() {
 User u1 = new User("Cloud", 22, null, null, new Address("1 First st., NYC",
"USA"));
 u1.favoriteDrink = "tea";
 User u2 = new User("Squall", 17, null, null, new Address("2 Second st.,
London", "UK"));
 u2.favoriteDrink = "wine";
 Flux<User> users = Flux.fromArray(new User[] {u1, u2});

 this.userRepository.saveAll(users).blockLast();

 assertThat(this.userRepository.count().block()).isEqualTo(2);

assertThat(this.userRepository.findByAge(22).collectList().block()).containsExactly(u1
);

assertThat(this.userRepository.findByHomeAddressCountry("USA").collectList().block()).
containsExactly(u1);

assertThat(this.userRepository.findByFavoriteDrink("wine").collectList().block()).cont
ainsExactly(u2);
 assertThat(this.userRepository.findByAgeGreaterThanAndAgeLessThan(20,
30).collectList().block())
 .containsExactly(u1);

assertThat(this.userRepository.findByAgeGreaterThan(10).collectList().block()).contain
sExactlyInAnyOrder(u1,
 u2);
 }
}

In the example above the query method implementations in UserRepository are generated based on
the name of the methods using the Spring Data Query creation naming convention.

Cloud Firestore only supports filter components joined by AND, and the following operations:

• equals

• greater than or equals

• greater than

• less than or equals

• less than

• is null

• contains (accepts a List with up to 10 elements, or a singular value)

• in (accepts a List with up to 10 elements)

https://docs.spring.io/spring-data/data-commons/docs/current/reference/html#repositories.query-methods.query-creation

If in operation is used in combination with contains operation, the argument to
contains operation has to be a singular value.

After writing a custom repository interface specifying just the signatures of these methods,
implementations are generated for you and can be used with an auto-wired instance of the
repository.

19.14.5. Transactions

Read-only and read-write transactions are provided by TransactionalOperator (see this blog post on
reactive transactions for details). In order to use it, you would need to autowire
ReactiveFirestoreTransactionManager like this:

public class MyApplication {
 @Autowired
 ReactiveFirestoreTransactionManager txManager;
}

After that you will be able to use it to create an instance of TransactionalOperator. Note that you can
switch between read-only and read-write transactions using TransactionDefinition object:

DefaultTransactionDefinition transactionDefinition = new
DefaultTransactionDefinition();
transactionDefinition.setReadOnly(false);
TransactionalOperator operator = TransactionalOperator.create(this.txManager,
transactionDefinition);

When you have an instance of TransactionalOperator, you can execute a sequence of Firestore
operations in a transaction using operator::transactional:

https://spring.io/blog/2019/05/16/reactive-transactions-with-spring

User alice = new User("Alice", 29);
User bob = new User("Bob", 60);

this.userRepository.save(alice)
 .then(this.userRepository.save(bob))
 .as(operator::transactional)
 .block();

this.userRepository.findAll()
 .flatMap(a -> {
 a.setAge(a.getAge() - 1);
 return this.userRepository.save(a);
 })
 .as(operator::transactional).collectList().block();

assertThat(this.userRepository.findAll().map(User::getAge).collectList().block())
 .containsExactlyInAnyOrder(28, 59);

Read operations in a transaction can only happen before write operations. All
write operations are applied atomically. Read documents are locked until the
transaction finishes with a commit or a rollback, which are handled by Spring
Data. If an Exception is thrown within a transaction, the rollback operation is
executed. Otherwise, the commit operation is executed.

Declarative Transactions with @Transactional Annotation

This feature requires a bean of SpannerTransactionManager, which is provided when using spring-
cloud-gcp-starter-data-firestore.

FirestoreTemplate and FirestoreReactiveRepository support running methods with the
@Transactional annotation as transactions. If a method annotated with @Transactional calls another
method also annotated, then both methods will work within the same transaction.

One way to use this feature is illustrated here. You would need to do the following:

1. Annotate your configuration class with the @EnableTransactionManagement annotation.

2. Create a service class that has methods annotated with @Transactional:

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction-declarative

class UserService {
 @Autowired
 private UserRepository userRepository;

 @Transactional
 public Mono<Void> updateUsers() {
 return this.userRepository.findAll()
 .flatMap(a -> {
 a.setAge(a.getAge() - 1);
 return this.userRepository.save(a);
 })
 .then();
 }
}

3. Make a Spring Bean provider that creates an instance of that class:

@Bean
public UserService userService() {
 return new UserService();
}

After that, you can autowire your service like so:

public class MyApplication {
 @Autowired
 UserService userService;
}

Now when you call the methods annotated with @Transactional on your service object, a
transaction will be automatically started. If an error occurs during the execution of a method
annotated with @Transactional, the transaction will be rolled back. If no error occurs, the
transaction will be committed.

19.14.6. Cloud Firestore Spring Boot Starter

If you prefer using Firestore client only, Spring Cloud GCP provides a convenience starter which
automatically configures authentication settings and client objects needed to begin using Google
Cloud Firestore in native mode.

See documentation to learn more about Cloud Firestore.

To begin using this library, add the spring-cloud-gcp-starter-firestore artifact to your project.

Maven coordinates, using Spring Cloud GCP BOM:

https://cloud.google.com/firestore/
https://cloud.google.com/firestore/
https://cloud.google.com/firestore/docs/
getting-started.pdf#_bill_of_materials

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-firestore</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-
firestore'
}

Using Cloud Firestore

The starter automatically configures and registers a Firestore bean in the Spring application
context. To start using it, simply use the @Autowired annotation.

@Autowired
Firestore firestore;

 void writeDocumentFromObject() throws ExecutionException, InterruptedException {
 // Add document data with id "joe" using a custom User class
 User data = new User("Joe",
 Arrays.asList(
 new Phone(12345, PhoneType.CELL),
 new Phone(54321, PhoneType.WORK)));

 // .get() blocks on response
 WriteResult writeResult = this.firestore.document("users/joe").set(data).get();

 LOGGER.info("Update time: " + writeResult.getUpdateTime());
 }

 User readDocumentToObject() throws ExecutionException, InterruptedException {
 ApiFuture<DocumentSnapshot> documentFuture =
 this.firestore.document("users/joe").get();

 User user = documentFuture.get().toObject(User.class);

 LOGGER.info("read: " + user);

 return user;
 }

19.14.7. Emulator Usage

The Google Cloud Firebase SDK provides a local, in-memory emulator for Cloud Firestore, which

you can use to develop and test your application.

First follow the Firebase emulator installation steps to install, configure, and run the emulator.

By default, the emulator is configured to run on port 8080; you will need to ensure
that the emulator does not run on the same port as your Spring application.

Once the Firestore emulator is running, ensure that the following properties are set in your
application.properties of your Spring application:

spring.cloud.gcp.firestore.emulator.enabled=true
spring.cloud.gcp.firestore.host-port=${EMULATOR_HOSTPORT}

From this point onward, your application will connect to your locally running emulator instance
instead of the real Firestore service.

19.14.8. Samples

Spring Cloud GCP provides Firestore sample applications to demonstrate API usage:

• Reactive Firestore Repository sample application:

• Firestore Client Library sample application

19.15. Cloud Memorystore for Redis

19.15.1. Spring Caching

Cloud Memorystore for Redis provides a fully managed in-memory data store service. Cloud
Memorystore is compatible with the Redis protocol, allowing easy integration with Spring Caching.

All you have to do is create a Cloud Memorystore instance and use its IP address in
application.properties file as spring.redis.host property value. Everything else is exactly the same
as setting up redis-backed Spring caching.

Memorystore instances and your application instances have to be located in the
same region.

In short, the following dependencies are needed:

https://firebase.google.com/docs/emulator-suite/install_and_configure
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-data-firestore-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-firestore-sample
https://cloud.google.com/memorystore/
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-caching.html

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-cache</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

And then you can use org.springframework.cache.annotation.Cacheable annotation for methods
you’d like to be cached.

@Cacheable("cache1")
public String hello(@PathVariable String name) {

}

If you are interested in a detailed how-to guide, please check Spring Boot Caching using Cloud
Memorystore codelab.

Cloud Memorystore documentation can be found here.

19.16. BigQuery
Google Cloud BigQuery is a fully managed, petabyte scale, low cost analytics data warehouse.

Spring Cloud GCP provides:

• A convenience starter which provides autoconfiguration for the BigQuery client objects with
credentials needed to interface with BigQuery.

• A Spring Integration message handler for loading data into BigQuery tables in your Spring
integration pipelines.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-bigquery-starter</artifactId>
</dependency>

Gradle coordinates:

https://codelabs.developers.google.com/codelabs/cloud-spring-cache-memorystore/
https://codelabs.developers.google.com/codelabs/cloud-spring-cache-memorystore/
https://cloud.google.com/memorystore/docs/redis/
https://cloud.google.com/bigquery
https://googleapis.dev/java/google-cloud-clients/latest/com/google/cloud/bigquery/BigQuery.html
getting-started.pdf#_bill_of_materials

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-bigquery-
starter'
}

19.16.1. Configuration

The following application properties may be configured with Spring Cloud GCP BigQuery libraries.

Name Description Required Default value

spring.cloud.gcp.bigqu
ery.datasetName

The BigQuery dataset
that the
BigQueryTemplate and
BigQueryFileMessageHan

dler is scoped to.

Yes

spring.cloud.gcp.bigqu
ery.enabled

Enables or disables
Spring Cloud GCP
BigQuery
autoconfiguration.

No true

spring.cloud.gcp.bigqu
ery.project-id

GCP project ID of the
project using BigQuery
APIs, if different from
the one in the Spring
Cloud GCP Core
Module.

No Project ID is typically
inferred from gcloud
configuration.

spring.cloud.gcp.bigqu
ery.credentials.locati
on

Credentials file location
for authenticating with
the Google Cloud
BigQuery APIs, if
different from the ones
in the Spring Cloud GCP
Core Module

No Inferred from
Application Default
Credentials, typically
set by gcloud.

BigQuery Client Object

The GcpBigQueryAutoConfiguration class configures an instance of BigQuery for you by inferring your
credentials and Project ID from the machine’s environment.

Example usage:

https://cloud.google.com/sdk/gcloud/reference/config/set
https://cloud.google.com/docs/authentication/production
https://cloud.google.com/docs/authentication/production
https://cloud.google.com/sdk/gcloud/reference/auth/application-default
https://googleapis.dev/java/google-cloud-clients/latest/com/google/cloud/bigquery/BigQuery.html

// BigQuery client object provided by our autoconfiguration.
@Autowired
BigQuery bigquery;

public void runQuery() throws InterruptedException {
 String query = "SELECT column FROM table;";
 QueryJobConfiguration queryConfig =
 QueryJobConfiguration.newBuilder(query).build();

 // Run the query using the BigQuery object
 for (FieldValueList row : bigquery.query(queryConfig).iterateAll()) {
 for (FieldValue val : row) {
 System.out.println(val);
 }
 }
}

This object is used to interface with all BigQuery services. For more information, see the BigQuery
Client Library usage examples.

BigQueryTemplate

The BigQueryTemplate class is a wrapper over the BigQuery client object and makes it easier to load
data into BigQuery tables. A BigQueryTemplate is scoped to a single dataset. The autoconfigured
BigQueryTemplate instance will use the dataset provided through the property
spring.cloud.gcp.bigquery.datasetName.

Below is a code snippet of how to load a CSV data InputStream to a BigQuery table.

// BigQuery client object provided by our autoconfiguration.
@Autowired
BigQueryTemplate bigQueryTemplate;

public void loadData(InputStream dataInputStream, String tableName) {
 ListenableFuture<Job> bigQueryJobFuture =
 bigQueryTemplate.writeDataToTable(
 tableName,
 dataFile.getInputStream(),
 FormatOptions.csv());

 // After the future is complete, the data is successfully loaded.
 Job job = bigQueryJobFuture.get();
}

19.16.2. Spring Integration

Spring Cloud GCP BigQuery also provides a Spring Integration message handler
BigQueryFileMessageHandler. This is useful for incorporating BigQuery data loading operations in a

https://cloud.google.com/bigquery/docs/reference/libraries#using_the_client_library
https://cloud.google.com/bigquery/docs/reference/libraries#using_the_client_library

Spring Integration pipeline.

Below is an example configuring a ServiceActivator bean using the BigQueryFileMessageHandler.

@Bean
public DirectChannel bigQueryWriteDataChannel() {
 return new DirectChannel();
}

@Bean
public DirectChannel bigQueryJobReplyChannel() {
 return new DirectChannel();
}

@Bean
@ServiceActivator(inputChannel = "bigQueryWriteDataChannel")
public MessageHandler messageSender(BigQueryTemplate bigQueryTemplate) {
 BigQueryFileMessageHandler messageHandler = new
BigQueryFileMessageHandler(bigQueryTemplate);
 messageHandler.setFormatOptions(FormatOptions.csv());
 messageHandler.setOutputChannel(bigQueryJobReplyChannel());
 return messageHandler;
}

BigQuery Message Handling

The BigQueryFileMessageHandler accepts the following message payload types for loading into
BigQuery: java.io.File, byte[], org.springframework.core.io.Resource, and java.io.InputStream. The
message payload will be streamed and written to the BigQuery table you specify.

By default, the BigQueryFileMessageHandler is configured to read the headers of the messages it
receives to determine how to load the data. The headers are specified by the class
BigQuerySpringMessageHeaders and summarized below.

Header Description

BigQuerySpringMessageHeaders.TABLE_NAME Specifies the BigQuery table within your dataset
to write to.

BigQuerySpringMessageHeaders.FORMAT_OPTIONS Describes the data format of your data to load
(i.e. CSV, JSON, etc.).

Alternatively, you may omit these headers and explicitly set the table name or format options by
calling setTableName(…) and setFormatOptions(…).

BigQuery Message Reply

After the BigQueryFileMessageHandler processes a message to load data to your BigQuery table, it
will respond with a Job on the reply channel. The Job object provides metadata and information
about the load file operation.

https://googleapis.dev/java/google-cloud-clients/latest/index.html?com/google/cloud/bigquery/package-summary.html

By default, the BigQueryFileMessageHandler is run in asynchronous mode, with setSync(false), and it
will reply with a ListenableFuture<Job> on the reply channel. The future is tied to the status of the
data loading job and will complete when the job completes.

If the handler is run in synchronous mode with setSync(true), then the handler will block on the
completion of the loading job and block until it is complete.

If you decide to use Spring Integration Gateways and you wish to receive
ListenableFuture<Job> as a reply object in the Gateway, you will have to call
.setAsyncExecutor(null) on your GatewayProxyFactoryBean. This is needed to
indicate that you wish to reply on the built-in async support rather than rely on
async handling of the gateway.

19.16.3. Sample

A BigQuery sample application is available.

19.17. Cloud IAP
Cloud Identity-Aware Proxy (IAP) provides a security layer over applications deployed to Google
Cloud.

The IAP starter uses Spring Security OAuth 2.0 Resource Server functionality to automatically
extract user identity from the proxy-injected x-goog-iap-jwt-assertion HTTP header.

The following claims are validated automatically:

• Issue time

• Expiration time

• Issuer

• Audience

The audience ("aud" claim) validation string is automatically determined when the application is
running on App Engine Standard or App Engine Flexible. This functionality relies on Cloud
Resource Manager API to retrieve project details, so the following setup is needed:

• Enable Cloud Resource Manager API in GCP Console.

• Make sure your application has resourcemanager.projects.get permission.

App Engine automatic audience determination can be overridden by using
spring.cloud.gcp.security.iap.audience property. It supports multiple allowable audiences by
providing a comma-delimited list.

For Compute Engine or Kubernetes Engine spring.cloud.gcp.security.iap.audience property must
be provided, as the audience string depends on the specific Backend Services setup and cannot be
inferred automatically. To determine the audience value, follow directions in IAP Verify the JWT
payload guide. If spring.cloud.gcp.security.iap.audience is not provided, the application will fail to
start the following message:

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-bigquery-sample
https://cloud.google.com/iap/
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#oauth2resourceserver
https://console.developers.google.com/apis/api/cloudresourcemanager.googleapis.com
https://cloud.google.com/iap/docs/signed-headers-howto#verify_the_jwt_payload
https://cloud.google.com/iap/docs/signed-headers-howto#verify_the_jwt_payload

No qualifying bean of type
'org.springframework.cloud.gcp.security.iap.AudienceProvider' available.

If you create a custom WebSecurityConfigurerAdapter, enable extracting user
identity by adding .oauth2ResourceServer().jwt() configuration to the HttpSecurity
object. If no custom WebSecurityConfigurerAdapter is present, nothing needs to be
done because Spring Boot will add this customization by default.

Starter Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-security-iap</artifactId>
</dependency>

Starter Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-
security-iap'
}

19.17.1. Configuration

The following properties are available.

Modifying registry, algorithm, and header properties might be useful for testing,
but the defaults should not be changed in production.

Name Description Required Default

spring.cloud.gcp.secur
ity.iap.registry

Link to JWK public key
registry.

true www.gstatic.com/iap/
verify/public_key-jwk

spring.cloud.gcp.secur
ity.iap.algorithm

Encryption algorithm
used to sign the JWK
token.

true ES256

spring.cloud.gcp.secur
ity.iap.header

Header from which to
extract the JWK key.

true x-goog-iap-jwt-
assertion

spring.cloud.gcp.secur
ity.iap.issuer

JWK issuer to verify. true cloud.google.com/iap

spring.cloud.gcp.secur
ity.iap.audience

Custom JWK audience
to verify.

false on App Engine;
true on GCE/GKE

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/config/annotation/web/configuration/WebSecurityConfigurerAdapter.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/config/annotation/web/builders/HttpSecurity.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/config/annotation/web/configuration/WebSecurityConfigurerAdapter.html
getting-started.pdf#_bill_of_materials
https://www.gstatic.com/iap/verify/public_key-jwk
https://www.gstatic.com/iap/verify/public_key-jwk
https://www.gstatic.com/iap/verify/public_key-jwk
https://www.gstatic.com/iap/verify/public_key-jwk
https://www.gstatic.com/iap/verify/public_key-jwk
https://www.gstatic.com/iap/verify/public_key-jwk
https://www.gstatic.com/iap/verify/public_key-jwk
https://cloud.google.com/iap
https://cloud.google.com/iap
https://cloud.google.com/iap

19.17.2. Sample

A sample application is available.

19.18. Cloud Vision
The Google Cloud Vision API allows users to leverage machine learning algorithms for processing
images and documents including: image classification, face detection, text extraction, optical
character recognition, and others.

Spring Cloud GCP provides:

• A convenience starter which automatically configures authentication settings and client objects
needed to begin using the Google Cloud Vision API.

• CloudVisionTemplate which simplifies interactions with the Cloud Vision API.

◦ Allows you to easily send images to the API as Spring Resources.

◦ Offers convenience methods for common operations, such as classifying content of an
image.

• DocumentOcrTemplate which offers convenient methods for running optical character recognition
(OCR) on PDF and TIFF documents.

19.18.1. Dependency Setup

To begin using this library, add the spring-cloud-gcp-starter-vision artifact to your project.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-vision</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-vision'
}

19.18.2. Configuration

The following options may be configured with Spring Cloud GCP Vision libraries.

Name Description Required Default value

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-security-iap-sample
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/docs/pdf
https://cloud.google.com/vision/docs/pdf
getting-started.pdf#_bill_of_materials

spring.cloud.gcp.visio
n.enabled

Enables or disables
Cloud Vision
autoconfiguration

No true

spring.cloud.gcp.visio
n.executors-threads-
count

Number of threads
used during document
OCR processing for
waiting on long-
running OCR
operations

No 1

spring.cloud.gcp.visio
n.json-output-batch-
size

Number of document
pages to include in each
OCR output file.

No 20

Cloud Vision OCR Dependencies

If you are interested in applying optical character recognition (OCR) on documents for your project,
you’ll need to add both spring-cloud-gcp-starter-vision and spring-cloud-gcp-starter-storage to
your dependencies. The storage starter is necessary because the Cloud Vision API will process your
documents and write OCR output files all within your Google Cloud Storage buckets.

Maven coordinates using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-vision</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-storage</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-vision'
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-storage'
}

19.18.3. Image Analysis

The CloudVisionTemplate allows you to easily analyze images; it provides the following method for
interfacing with Cloud Vision:

public AnnotateImageResponse analyzeImage(Resource imageResource, Feature.Type… featureTypes)

Parameters:

getting-started.pdf#_bill_of_materials

• Resource imageResource refers to the Spring Resource of the image object you wish to analyze.
The Google Cloud Vision documentation provides a list of the image types that they support.

• Feature.Type… featureTypes refers to a var-arg array of Cloud Vision Features to extract from
the image. A feature refers to a kind of image analysis one wishes to perform on an image, such
as label detection, OCR recognition, facial detection, etc. One may specify multiple features to
analyze within one request. A full list of Cloud Vision Features is provided in the Cloud Vision
Feature docs.

Returns:

• AnnotateImageResponse contains the results of all the feature analyses that were specified in the
request. For each feature type that you provide in the request, AnnotateImageResponse provides a
getter method to get the result of that feature analysis. For example, if you analyzed an image
using the LABEL_DETECTION feature, you would retrieve the results from the response using
annotateImageResponse.getLabelAnnotationsList().

AnnotateImageResponse is provided by the Google Cloud Vision libraries; please consult the RPC
reference or Javadoc for more details. Additionally, you may consult the Cloud Vision docs to
familiarize yourself with the concepts and features of the API.

Detect Image Labels Example

Image labeling refers to producing labels that describe the contents of an image. Below is a code
sample of how this is done using the Cloud Vision Spring Template.

@Autowired
private ResourceLoader resourceLoader;

@Autowired
private CloudVisionTemplate cloudVisionTemplate;

public void processImage() {
 Resource imageResource = this.resourceLoader.getResource("my_image.jpg");
 AnnotateImageResponse response = this.cloudVisionTemplate.analyzeImage(
 imageResource, Type.LABEL_DETECTION);
 System.out.println("Image Classification results: " +
response.getLabelAnnotationsList());
}

19.18.4. Document OCR Template

The DocumentOcrTemplate allows you to easily run optical character recognition (OCR) on your PDF
and TIFF documents stored in your Google Storage bucket.

First, you will need to create a bucket in Google Cloud Storage and upload the documents you wish
to process into the bucket.

https://cloud.google.com/vision/docs/supported-files
https://cloud.google.com/vision/docs/features
https://cloud.google.com/vision/docs/features
https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.AnnotateImageResponse
https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.AnnotateImageResponse
https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.AnnotateImageResponse
https://googleapis.github.io/googleapis/java/all/latest/apidocs/com/google/cloud/vision/v1/AnnotateImageResponse.html
https://cloud.google.com/vision/docs/
https://cloud.google.com/vision/docs/detecting-labels
https://cloud.google.com/vision/docs/pdf
https://console.cloud.google.com/storage
https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-java
https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-java

Running OCR on a Document

When OCR is run on a document, the Cloud Vision APIs will output a collection of OCR output files
in JSON which describe the text content, bounding rectangles of words and letters, and other
information about the document.

The DocumentOcrTemplate provides the following method for running OCR on a document saved in
Google Cloud Storage:

ListenableFuture<DocumentOcrResultSet> runOcrForDocument(GoogleStorageLocation document,
GoogleStorageLocation outputFilePathPrefix)

The method allows you to specify the location of the document and the output location for where
all the JSON output files will be saved in Google Cloud Storage. It returns a ListenableFuture
containing DocumentOcrResultSet which contains the OCR content of the document.

Running OCR on a document is an operation that can take between several
minutes to several hours depending on how large the document is. It is
recommended to register callbacks to the returned ListenableFuture or ignore it
and process the JSON output files at a later point in time using readOcrOutputFile
or readOcrOutputFileSet.

Running OCR Example

Below is a code snippet of how to run OCR on a document stored in a Google Storage bucket and
read the text in the first page of the document.

@Autowired
private DocumentOcrTemplate documentOcrTemplate;

public void runOcrOnDocument() {
 GoogleStorageLocation document = GoogleStorageLocation.forFile(
 "your-bucket", "test.pdf");
 GoogleStorageLocation outputLocationPrefix = GoogleStorageLocation.forFolder(
 "your-bucket", "output_folder/test.pdf/");

 ListenableFuture<DocumentOcrResultSet> result =
 this.documentOcrTemplate.runOcrForDocument(
 document, outputLocationPrefix);

 DocumentOcrResultSet ocrPages = result.get(5, TimeUnit.MINUTES);

 String page1Text = ocrPages.getPage(1).getText();
 System.out.println(page1Text);
}

Reading OCR Output Files

In some use-cases, you may need to directly read OCR output files stored in Google Cloud Storage.

DocumentOcrTemplate offers the following methods for reading and processing OCR output files:

• readOcrOutputFileSet(GoogleStorageLocation jsonOutputFilePathPrefix): Reads a collection of
OCR output files under a file path prefix and returns the parsed contents. All of the files under
the path should correspond to the same document.

• readOcrOutputFile(GoogleStorageLocation jsonFile): Reads a single OCR output file and returns
the parsed contents.

Reading OCR Output Files Example

The code snippet below describes how to read the OCR output files of a single document.

@Autowired
private DocumentOcrTemplate documentOcrTemplate;

// Parses the OCR output files corresponding to a single document in a directory
public void parseOutputFileSet() {
 GoogleStorageLocation ocrOutputPrefix = GoogleStorageLocation.forFolder(
 "your-bucket", "json_output_set/");

 DocumentOcrResultSet result =
this.documentOcrTemplate.readOcrOutputFileSet(ocrOutputPrefix);
 System.out.println("Page 2 text: " + result.getPage(2).getText());
}

// Parses a single OCR output file
public void parseSingleOutputFile() {
 GoogleStorageLocation ocrOutputFile = GoogleStorageLocation.forFile(
 "your-bucket", "json_output_set/test_output-2-to-2.json");

 DocumentOcrResultSet result =
this.documentOcrTemplate.readOcrOutputFile(ocrOutputFile);
 System.out.println("Page 2 text: " + result.getPage(2).getText());
}

19.18.5. Sample

Samples are provided to show example usages of Spring Cloud GCP with Google Cloud Vision.

• The Image Labeling Sample shows you how to use image labelling in your Spring application.
The application generates labels describing the content inside the images you specify in the
application.

• The Document OCR demo shows how you can apply OCR processing on your PDF/TIFF
documents in order to extract their text contents.

19.19. Secret Manager
Google Cloud Secret Manager is a secure and convenient method for storing API keys, passwords,

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-vision-api-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-vision-ocr-demo
https://cloud.google.com/secret-manager

certificates, and other sensitive data. A detailed summary of its features can be found in the Secret
Manager documentation.

Spring Cloud GCP provides:

• A property source which allows you to specify and load the secrets of your GCP project into
your application context as a Bootstrap Property Source.

• A SecretManagerTemplate which allows you to read, write, and update secrets in Secret Manager.

19.19.1. Dependency Setup

To begin using this library, add the spring-cloud-gcp-starter-secretmanager artifact to your project.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-secretmanager</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud', name: 'spring-cloud-gcp-starter-
secretmanager'
}

Configuration

By default, Spring Cloud GCP Secret Manager will authenticate using Application Default
Credentials. This can be overridden using the authentication properties.

All of the below settings must be specified in a bootstrap.properties (or
bootstrap.yaml) file which is the properties file used to configure settings for
bootstrap-phase Spring configuration.

Name Description Required Default value

spring.cloud.gcp.secre
tmanager.enabled

Enables the Secret
Manager bootstrap
property and template
configuration.

No true

spring.cloud.gcp.secre
tmanager.credentials.l
ocation

OAuth2 credentials for
authenticating to the
Google Cloud Secret
Manager API.

No By default, infers
credentials from
Application Default
Credentials.

https://cloud.google.com/blog/products/identity-security/introducing-google-clouds-secret-manager
https://cloud.google.com/blog/products/identity-security/introducing-google-clouds-secret-manager
https://cloud.spring.io/spring-cloud-commons/multi/multi__spring_cloud_context_application_context_services.html#_the_bootstrap_application_context
getting-started.pdf#_bill_of_materials
https://cloud.spring.io/spring-cloud-commons/multi/multi__spring_cloud_context_application_context_services.html#_the_bootstrap_application_context
https://cloud.google.com/docs/authentication/production
https://cloud.google.com/docs/authentication/production

spring.cloud.gcp.secre
tmanager.credentials.e
ncoded-key

Base64-encoded
contents of OAuth2
account private key for
authenticating to the
Google Cloud Secret
Manager API.

No By default, infers
credentials from
Application Default
Credentials.

spring.cloud.gcp.secre
tmanager.project-id

The default GCP Project
used to access Secret
Manager API for the
template and property
source.

No By default, infers the
project from
Application Default
Credentials.

19.19.2. Secret Manager Property Source

The Spring Cloud GCP integration for Google Cloud Secret Manager enables you to use Secret
Manager as a bootstrap property source.

This allows you to specify and load secrets from Google Cloud Secret Manager as properties into the
application context during the Bootstrap Phase, which refers to the initial phase when a Spring
application is being loaded.

The Secret Manager property source uses the following syntax to specify secrets:

1. Long form - specify the project ID, secret ID, and version
sm://projects/<project-id>/secrets/<secret-id>/versions/<version-id>}

2. Long form - specify project ID, secret ID, and use latest version
sm://projects/<project-id>/secrets/<secret-id>

3. Short form - specify project ID, secret ID, and version
sm://<project-id>/<secret-id>/<version-id>

4. Short form - default project; specify secret + version
#
The project is inferred from the spring.cloud.gcp.secretmanager.project-id setting
in your bootstrap.properties (see Configuration) or from application-default
credentials if
this is not set.
sm://<secret-id>/<version>

5. Shortest form - specify secret ID, use default project and latest version.
sm://<secret-id>

You can use this syntax in the following places:

1. In your application.properties or bootstrap.properties files:

https://cloud.google.com/docs/authentication/production
https://cloud.google.com/docs/authentication/production
https://cloud.google.com/docs/authentication/production
https://cloud.google.com/docs/authentication/production
https://cloud.spring.io/spring-cloud-commons/reference/html/#the-bootstrap-application-context

Example of the project-secret long-form syntax.
spring.datasource.password=${sm://projects/my-gcp-project/secrets/my-secret}

2. Access the value using the @Value annotation.

// Example of using shortest form syntax.
@Value("${sm://my-secret}")

19.19.3. Secret Manager Template

The SecretManagerTemplate class simplifies operations of creating, updating, and reading secrets.

To begin using this class, you may inject an instance of the class using @Autowired after adding the
starter dependency to your project.

@Autowired
private SecretManagerTemplate secretManagerTemplate;

Please consult SecretManagerOperations for information on what operations are available for the
Secret Manager template.

19.19.4. Sample

A Secret Manager Sample Application is provided which demonstrates basic property source
loading and usage of the template class.

19.20. Cloud Runtime Configuration API

The Google Cloud Runtime Configuration service is in Beta status, and is only
available in snapshot and milestone versions of the project. It’s also not available
in the Spring Cloud GCP BOM, unlike other modules.

Spring Cloud GCP makes it possible to use the Google Runtime Configuration API as a Spring Cloud
Config server to remotely store your application configuration data.

The Spring Cloud GCP Config support is provided via its own Spring Boot starter. It enables the use
of the Google Runtime Configuration API as a source for Spring Boot configuration properties.

Maven coordinates:

https://github.com/spring-cloud/spring-cloud-gcp/blob/master/spring-cloud-gcp-secretmanager/src/main/java/org/springframework/cloud/gcp/secretmanager/SecretManagerOperations.java
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-secretmanager-sample
https://cloud.google.com/deployment-manager/runtime-configurator/reference/rest/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-config</artifactId>
 <version>1.2.0.RC2</version>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.cloud',
 name: 'spring-cloud-gcp-starter-config',
 version: '1.2.0.RC2'
}

19.20.1. Configuration

The following parameters are configurable in Spring Cloud GCP Config:

Name Description Required Default value

spring.cloud.gcp.confi
g.enabled

Enables the Config
client

No false

spring.cloud.gcp.confi
g.name

Name of your
application

No Value of the
spring.application.nam

e property. If none,
application

spring.cloud.gcp.confi
g.profile

Active profile No Value of the
spring.profiles.active

property. If more than
a single profile, last one
is chosen

spring.cloud.gcp.confi
g.timeout-millis

Timeout in
milliseconds for
connecting to the
Google Runtime
Configuration API

No 60000

spring.cloud.gcp.confi
g.project-id

GCP project ID where
the Google Runtime
Configuration API is
hosted

No

spring.cloud.gcp.confi
g.credentials.location

OAuth2 credentials for
authenticating with the
Google Runtime
Configuration API

No

spring.cloud.gcp.confi
g.credentials.encoded-
key

Base64-encoded
OAuth2 credentials for
authenticating with the
Google Runtime
Configuration API

No

spring.cloud.gcp.confi
g.credentials.scopes

OAuth2 scope for
Spring Cloud GCP
Config credentials

No www.googleapis.com/
auth/
cloudruntimeconfig

These properties should be specified in a bootstrap.yml/bootstrap.properties file,
rather than the usual applications.yml/application.properties.

Core properties, as described in Spring Cloud GCP Core Module, do not apply to
Spring Cloud GCP Config.

19.20.2. Quick start

1. Create a configuration in the Google Runtime Configuration API that is called
${spring.application.name}_${spring.profiles.active}. In other words, if
spring.application.name is myapp and spring.profiles.active is prod, the configuration should be
called myapp_prod.

In order to do that, you should have the Google Cloud SDK installed, own a Google Cloud Project
and run the following command:

gcloud init # if this is your first Google Cloud SDK run.
gcloud beta runtime-config configs create myapp_prod
gcloud beta runtime-config configs variables set myapp.queue-size 25 --config-name
myapp_prod

2. Configure your bootstrap.properties file with your application’s configuration data:

spring.application.name=myapp
spring.profiles.active=prod

3. Add the @ConfigurationProperties annotation to a Spring-managed bean:

https://developers.google.com/identity/protocols/googlescopes
https://www.googleapis.com/auth/cloudruntimeconfig
https://www.googleapis.com/auth/cloudruntimeconfig
https://www.googleapis.com/auth/cloudruntimeconfig
https://cloud.spring.io/spring-cloud-static/spring-cloud.html#_the_bootstrap_application_context
https://cloud.spring.io/spring-cloud-static/spring-cloud.html#_the_bootstrap_application_context
https://cloud.spring.io/spring-cloud-static/spring-cloud.html#_the_bootstrap_application_context
https://cloud.google.com/sdk/

@Component
@ConfigurationProperties("myapp")
public class SampleConfig {

 private int queueSize;

 public int getQueueSize() {
 return this.queueSize;
 }

 public void setQueueSize(int queueSize) {
 this.queueSize = queueSize;
 }
}

When your Spring application starts, the queueSize field value will be set to 25 for the above
SampleConfig bean.

19.20.3. Refreshing the configuration at runtime

Spring Cloud provides support to have configuration parameters be reloadable with the POST
request to /actuator/refresh endpoint.

1. Add the Spring Boot Actuator dependency:

Maven coordinates:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

Gradle coordinates:

dependencies {
 compile group: 'org.springframework.boot', name: 'spring-boot-starter-actuator'
}

2. Add @RefreshScope to your Spring configuration class to have parameters be reloadable at
runtime.

3. Add management.endpoints.web.exposure.include=refresh to your application.properties to allow
unrestricted access to /actuator/refresh.

4. Update a property with gcloud:

https://cloud.spring.io/spring-cloud-static/docs/1.0.x/spring-cloud.html#_endpoints

$ gcloud beta runtime-config configs variables set \
 myapp.queue_size 200 \
 --config-name myapp_prod

5. Send a POST request to the refresh endpoint:

$ curl -XPOST https://myapp.host.com/actuator/refresh

19.20.4. Sample

A sample application and a codelab are available.

19.21. Cloud Foundry
Spring Cloud GCP provides support for Cloud Foundry’s GCP Service Broker. Our Pub/Sub, Cloud
Spanner, Storage, Stackdriver Trace and Cloud SQL MySQL and PostgreSQL starters are Cloud
Foundry aware and retrieve properties like project ID, credentials, etc., that are used in auto
configuration from the Cloud Foundry environment.

In order to take advantage of the Cloud Foundry support make sure the following dependency is
added:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-gcp-starter-cloudfoundry</artifactId>
</dependency>

In cases like Pub/Sub’s topic and subscription, or Storage’s bucket name, where those parameters
are not used in auto configuration, you can fetch them using the VCAP mapping provided by Spring
Boot. For example, to retrieve the provisioned Pub/Sub topic, you can use the
vcap.services.mypubsub.credentials.topic_name property from the application environment.

If the same service is bound to the same application more than once, the auto
configuration will not be able to choose among bindings and will not be activated
for that service. This includes both MySQL and PostgreSQL bindings to the same
app.

In order for the Cloud SQL integration to work in Cloud Foundry, auto-
reconfiguration must be disabled. You can do so using the cf set-env <APP>

JBP_CONFIG_SPRING_AUTO_RECONFIGURATION '{enabled: false}' command. Otherwise,
Cloud Foundry will produce a DataSource with an invalid JDBC URL (i.e.,
jdbc:mysql://null/null).

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-config-sample
https://codelabs.developers.google.com/codelabs/cloud-spring-runtime-config/index.html
https://docs.pivotal.io/partners/gcp-sb/index.html

19.21.1. User-Provided Services

User-provided services enable developers to use services that are not available in the marketplace
with their apps running on Cloud Foundry. For example, you may want to use a user-provided
service that points to a shared Google Service (like Cloud Spanner) used across your organization.

In order for Spring Cloud GCP to detect your user-provided service as a Google Cloud Service, you
must add an instance tag indicating the Google Cloud Service it uses. The tag should simply be the
Cloud Foundry name for the Google Service.

For example, if you create a user-provided service using Cloud Spanner, you might run:

$ cf create-user-provided-service user-spanner-service -t "google-spanner" ...

This allows Spring Cloud GCP to retrieve the correct service properties from Cloud Foundry and use
them in the auto configuration for your application.

A mapping of Google service names to Cloud Foundry names are provided below:

Google Cloud Service Cloud Foundry Name (add this as a tag)

Google Cloud Pub/Sub google-pubsub

Google Cloud Storage google-storage

Google Cloud Spanner google-spanner

Datastore google-datastore

Firestore google-firestore

BigQuery google-bigquery

Stackdriver Trace google-stackdriver-trace

Cloud Sql (MySQL) google-cloudsql-mysql

Cloud Sql (PostgreSQL) google-cloudsql-postgres

19.22. Kotlin Support
The latest version of the Spring Framework provides first-class support for Kotlin. For Kotlin users
of Spring, the Spring Cloud GCP libraries work out-of-the-box and are fully interoperable with
Kotlin applications.

For more information on building a Spring application in Kotlin, please consult the Spring Kotlin
documentation.

19.22.1. Prerequisites

Ensure that your Kotlin application is properly set up. Based on your build system, you will need to
include the correct Kotlin build plugin in your project:

https://docs.cloudfoundry.org/devguide/services/user-provided.html
https://docs.cloudfoundry.org/devguide/services/managing-services.html#instance-tags-create
https://cloud.google.com/pubsub
https://cloud.google.com/storage
https://cloud.google.com/spanner
https://cloud.google.com/datastore
https://cloud.google.com/firestore
https://cloud.google.com/bigquery
https://cloud.google.com/products/operations
https://cloud.google.com/sql
https://cloud.google.com/sql
https://docs.spring.io/spring/docs/current/spring-framework-reference/languages.html#kotlin
https://docs.spring.io/spring/docs/current/spring-framework-reference/languages.html#kotlin

• Kotlin Maven Plugin

• Kotlin Gradle Plugin

Depending on your application’s needs, you may need to augment your build configuration with
compiler plugins:

• Kotlin Spring Plugin: Makes your Spring configuration classes/members non-final for
convenience.

• Kotlin JPA Plugin: Enables using JPA in Kotlin applications.

Once your Kotlin project is properly configured, the Spring Cloud GCP libraries will work within
your application without any additional setup.

19.22.2. Sample

A Kotlin sample application is provided to demonstrate a working Maven setup and various Spring
Cloud GCP integrations from within Kotlin.

19.23. Configuration properties
To see the list of all GCP related configuration properties please check the Appendix page.

https://kotlinlang.org/docs/reference/using-maven.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://kotlinlang.org/docs/reference/compiler-plugins.html#spring-support
https://kotlinlang.org/docs/reference/compiler-plugins.html#jpa-support
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-kotlin-samples/spring-cloud-gcp-kotlin-app-sample
appendix.html

Chapter 20. Spring Cloud Circuit Breaker
Hoxton.SR5

20.1. Configuring Resilience4J Circuit Breakers

Starters

There are two starters for the Resilience4J implementations, one for reactive applications and one
for non-reactive applications.

• org.springframework.cloud:spring-cloud-starter-circuitbreaker-resilience4j - non-reactive
applications

• org.springframework.cloud:spring-cloud-starter-circuitbreaker-reactor-resilience4j - reactive
applications

Auto-Configuration

You can disable the Resilience4J auto-configuration by setting
spring.cloud.circuitbreaker.resilience4j.enabled to false.

Default Configuration

To provide a default configuration for all of your circuit breakers create a Customize bean that is
passed a Resilience4JCircuitBreakerFactory or ReactiveResilience4JCircuitBreakerFactory. The
configureDefault method can be used to provide a default configuration.

@Bean
public Customizer<Resilience4JCircuitBreakerFactory> defaultCustomizer() {
 return factory -> factory.configureDefault(id -> new
Resilience4JConfigBuilder(id)

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(4
)).build())
 .circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())
 .build());
}

Reactive Example

@Bean
public Customizer<ReactiveResilience4JCircuitBreakerFactory> defaultCustomizer() {
 return factory -> factory.configureDefault(id -> new
Resilience4JConfigBuilder(id)
 .circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(4
)).build()).build());
}

Specific Circuit Breaker Configuration

Similarly to providing a default configuration, you can create a Customize bean this is passed a
Resilience4JCircuitBreakerFactory or ReactiveResilience4JCircuitBreakerFactory.

@Bean
public Customizer<Resilience4JCircuitBreakerFactory> slowCustomizer() {
 return factory -> factory.configure(builder ->
builder.circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(2
)).build()), "slow");
}

In addition to configuring the circuit breaker that is created you can also customize the circuit
breaker after it has been created but before it is returned to the caller. To do this you can use the
addCircuitBreakerCustomizer method. This can be useful for adding event handlers to Resilience4J
circuit breakers.

@Bean
public Customizer<Resilience4JCircuitBreakerFactory> slowCustomizer() {
 return factory -> factory.addCircuitBreakerCustomizer(circuitBreaker ->
circuitBreaker.getEventPublisher()
 .onError(normalFluxErrorConsumer).onSuccess(normalFluxSuccessConsumer),
"normalflux");
}

Reactive Example

@Bean
public Customizer<ReactiveResilience4JCircuitBreakerFactory> slowCusomtizer() {
 return factory -> {
 factory.configure(builder -> builder

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(2
)).build())
 .circuitBreakerConfig(CircuitBreakerConfig.ofDefaults()), "slow",
"slowflux");
 factory.addCircuitBreakerCustomizer(circuitBreaker ->
circuitBreaker.getEventPublisher()

.onError(normalFluxErrorConsumer).onSuccess(normalFluxSuccessConsumer),
"normalflux");
 };
}

Collecting Metrics

Spring Cloud Circuit Breaker Resilience4j includes auto-configuration to setup metrics collection as
long as the right dependencies are on the classpath. To enable metric collection you must include
org.springframework.boot:spring-boot-starter-actuator, and io.github.resilience4j:resilience4j-
micrometer. For more information on the metrics that get produced when these dependencies are
present, see the Resilience4j documentation.

 You don’t have to include micrometer-core directly as it is brought in by spring-
boot-starter-actuator

20.2. Configuring Spring Retry Circuit Breakers

Spring Retry provides declarative retry support for Spring applications. A subset of the project
includes the ability to implement circuit breaker functionality. Spring Retry provides a circuit
breaker implementation via a combination of it’s CircuitBreakerRetryPolicy and a stateful retry. All
circuit breakers created using Spring Retry will be created using the CircuitBreakerRetryPolicy and
a DefaultRetryState. Both of these classes can be configured using SpringRetryConfigBuilder.

Default Configuration

To provide a default configuration for all of your circuit breakers create a Customize bean that is
passed a SpringRetryCircuitBreakerFactory. The configureDefault method can be used to provide a
default configuration.

https://resilience4j.readme.io/docs/micrometer
https://github.com/spring-projects/spring-retry/blob/master/src/main/java/org/springframework/retry/policy/CircuitBreakerRetryPolicy.java
https://github.com/spring-projects/spring-retry#stateful-retry
https://github.com/spring-projects/spring-retry/blob/master/src/main/java/org/springframework/retry/support/DefaultRetryState.java

@Bean
public Customizer<SpringRetryCircuitBreakerFactory> defaultCustomizer() {
 return factory -> factory.configureDefault(id -> new
SpringRetryConfigBuilder(id)
 .retryPolicy(new TimeoutRetryPolicy()).build());
}

Specific Circuit Breaker Configuration

Similarly to providing a default configuration, you can create a Customize bean this is passed a
SpringRetryCircuitBreakerFactory.

@Bean
public Customizer<SpringRetryCircuitBreakerFactory> slowCustomizer() {
 return factory -> factory.configure(builder -> builder.retryPolicy(new
SimpleRetryPolicy(1)).build(), "slow");
}

In addition to configuring the circuit breaker that is created you can also customize the circuit
breaker after it has been created but before it is returned to the caller. To do this you can use the
addRetryTemplateCustomizers method. This can be useful for adding event handlers to the
RetryTemplate.

@Bean
public Customizer<SpringRetryCircuitBreakerFactory> slowCustomizer() {
 return factory -> factory.addRetryTemplateCustomizers(retryTemplate ->
retryTemplate.registerListener(new RetryListener() {

 @Override
 public <T, E extends Throwable> boolean open(RetryContext context,
RetryCallback<T, E> callback) {
 return false;
 }

 @Override
 public <T, E extends Throwable> void close(RetryContext context,
RetryCallback<T, E> callback, Throwable throwable) {

 }

 @Override
 public <T, E extends Throwable> void onError(RetryContext context,
RetryCallback<T, E> callback, Throwable throwable) {

 }
 }));
}

20.3. Building

20.3.1. Basic Compile and Test

To build the source you will need to install JDK 1.8.

Spring Cloud uses Maven for most build-related activities, and you should be able to get off the
ground quite quickly by cloning the project you are interested in and typing

$./mvnw install

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of
./mvnw in the examples below. If you do that you also might need to add -P spring
if your local Maven settings do not contain repository declarations for spring pre-
release artifacts.

Be aware that you might need to increase the amount of memory available to
Maven by setting a MAVEN_OPTS environment variable with a value like -Xmx512m
-XX:MaxPermSize=128m. We try to cover this in the .mvn configuration, so if you find
you have to do it to make a build succeed, please raise a ticket to get the settings
added to source control.

For hints on how to build the project look in .travis.yml if there is one. There should be a "script"
and maybe "install" command. Also look at the "services" section to see if any services need to be
running locally (e.g. mongo or rabbit). Ignore the git-related bits that you might find in
"before_install" since they’re related to setting git credentials and you already have those.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

 If all else fails, build with the command from .travis.yml (usually ./mvnw install).

20.3.2. Documentation

The spring-cloud-build module has a "docs" profile, and if you switch that on it will try to build
asciidoc sources from src/main/asciidoc. As part of that process it will look for a README.adoc and
process it by loading all the includes, but not parsing or rendering it, just copying it to
${main.basedir} (defaults to $/Users/ryanjbaxter/git-repos/spring-cloud-samples/scripts, i.e. the
root of the project). If there are any changes in the README it will then show up after a Maven
build as a modified file in the correct place. Just commit it and push the change.

20.3.3. Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or
Eclipse when working with the code. We use the m2eclipse eclipse plugin for maven support. Other
IDEs and tools should also work without issue as long as they use Maven 3.3.3 or better.

Activate the Spring Maven profile

Spring Cloud projects require the 'spring' Maven profile to be activated to resolve the spring
milestone and snapshot repositories. Use your preferred IDE to set this profile to be active, or you
may experience build errors.

Importing into eclipse with m2eclipse

We recommend the m2eclipse eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

https://docs.docker.com/compose/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
https://www.springsource.com/developer/sts
https://eclipse.org
https://eclipse.org/m2e/
https://eclipse.org/m2e/

Older versions of m2e do not support Maven 3.3, so once the projects are imported
into Eclipse you will also need to tell m2eclipse to use the right profile for the
projects. If you see many different errors related to the POMs in the projects, check
that you have an up to date installation. If you can’t upgrade m2e, add the "spring"
profile to your settings.xml. Alternatively you can copy the repository settings
from the "spring" profile of the parent pom into your settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the file
menu.

20.4. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master.
If you want to contribute even something trivial please do not hesitate, but follow the guidelines
below.

20.4.1. Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the Contributor
License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to
the main repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and given the
ability to merge pull requests.

20.4.2. Code of Conduct

This project adheres to the Contributor Covenant code of conduct. By participating, you are
expected to uphold this code. Please report unacceptable behavior to spring-code-of-
conduct@pivotal.io.

20.4.3. Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import
formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project.
If using IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author

https://cla.pivotal.io/sign/spring
https://cla.pivotal.io/sign/spring
https://github.com/spring-cloud/spring-cloud-build/blob/master/docs/src/main/asciidoc/code-of-conduct.adoc
mailto:spring-code-of-conduct@pivotal.io
mailto:spring-code-of-conduct@pivotal.io
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
https://plugins.jetbrains.com/plugin/6546

tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the
project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target
branch in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing
issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue
number).

20.4.4. Checkstyle

Spring Cloud Build comes with a set of checkstyle rules. You can find them in the spring-cloud-
build-tools module. The most notable files under the module are:

spring-cloud-build-tools/

└── src
 ├── checkstyle
 │ └── checkstyle-suppressions.xml ③
 └── main
 └── resources
 ├── checkstyle-header.txt ②
 └── checkstyle.xml ①

① Default Checkstyle rules

② File header setup

③ Default suppression rules

Checkstyle configuration

Checkstyle rules are disabled by default. To add checkstyle to your project just define the
following properties and plugins.

https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

pom.xml

<properties>
<maven-checkstyle-plugin.failsOnError>true</maven-checkstyle-plugin.failsOnError> ①
 <maven-checkstyle-plugin.failsOnViolation>true
 </maven-checkstyle-plugin.failsOnViolation> ②
 <maven-checkstyle-plugin.includeTestSourceDirectory>true
 </maven-checkstyle-plugin.includeTestSourceDirectory> ③
</properties>

<build>
 <plugins>
 <plugin> ④
 <groupId>io.spring.javaformat</groupId>
 <artifactId>spring-javaformat-maven-plugin</artifactId>
 </plugin>
 <plugin> ⑤
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 </plugin>
 </plugins>

 <reporting>
 <plugins>
 <plugin> ⑤
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 </plugin>
 </plugins>
 </reporting>
</build>

① Fails the build upon Checkstyle errors

② Fails the build upon Checkstyle violations

③ Checkstyle analyzes also the test sources

④ Add the Spring Java Format plugin that will reformat your code to pass most of the Checkstyle
formatting rules

⑤ Add checkstyle plugin to your build and reporting phases

If you need to suppress some rules (e.g. line length needs to be longer), then it’s enough for you to
define a file under ${project.root}/src/checkstyle/checkstyle-suppressions.xml with your
suppressions. Example:

projectRoot/src/checkstyle/checkstyle-suppresions.xml

<?xml version="1.0"?>
<!DOCTYPE suppressions PUBLIC
 "-//Puppy Crawl//DTD Suppressions 1.1//EN"
 "https://www.puppycrawl.com/dtds/suppressions_1_1.dtd">
<suppressions>
 <suppress files=".*ConfigServerApplication\.java"
checks="HideUtilityClassConstructor"/>
 <suppress files=".*ConfigClientWatch\.java" checks="LineLengthCheck"/>
</suppressions>

It’s advisable to copy the ${spring-cloud-build.rootFolder}/.editorconfig and ${spring-cloud-
build.rootFolder}/.springformat to your project. That way, some default formatting rules will be
applied. You can do so by running this script:

$ curl https://raw.githubusercontent.com/spring-cloud/spring-cloud-
build/master/.editorconfig -o .editorconfig
$ touch .springformat

20.4.5. IDE setup

Intellij IDEA

In order to setup Intellij you should import our coding conventions, inspection profiles and set up
the checkstyle plugin. The following files can be found in the Spring Cloud Build project.

spring-cloud-build-tools/

└── src
 ├── checkstyle
 │ └── checkstyle-suppressions.xml ③
 └── main
 └── resources
 ├── checkstyle-header.txt ②
 ├── checkstyle.xml ①
 └── intellij
 ├── Intellij_Project_Defaults.xml ④
 └── Intellij_Spring_Boot_Java_Conventions.xml ⑤

① Default Checkstyle rules

② File header setup

③ Default suppression rules

④ Project defaults for Intellij that apply most of Checkstyle rules

⑤ Project style conventions for Intellij that apply most of Checkstyle rules

https://github.com/spring-cloud/spring-cloud-build/tree/master/spring-cloud-build-tools

Figure 6. Code style

Go to File → Settings → Editor → Code style. There click on the icon next to the Scheme section.
There, click on the Import Scheme value and pick the Intellij IDEA code style XML option. Import
the spring-cloud-build-

tools/src/main/resources/intellij/Intellij_Spring_Boot_Java_Conventions.xml file.

Figure 7. Inspection profiles

Go to File → Settings → Editor → Inspections. There click on the icon next to the Profile section.
There, click on the Import Profile and import the spring-cloud-build-

tools/src/main/resources/intellij/Intellij_Project_Defaults.xml file.

Checkstyle

To have Intellij work with Checkstyle, you have to install the Checkstyle plugin. It’s advisable to also
install the Assertions2Assertj to automatically convert the JUnit assertions

Go to File → Settings → Other settings → Checkstyle. There click on the + icon in the Configuration
file section. There, you’ll have to define where the checkstyle rules should be picked from. In the
image above, we’ve picked the rules from the cloned Spring Cloud Build repository. However, you
can point to the Spring Cloud Build’s GitHub repository (e.g. for the checkstyle.xml :
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/

main/resources/checkstyle.xml). We need to provide the following variables:

• checkstyle.header.file - please point it to the Spring Cloud Build’s, spring-cloud-build-

tools/src/main/resources/checkstyle-header.txt file either in your cloned repo or via the
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/

src/main/resources/checkstyle-header.txt URL.

• checkstyle.suppressions.file - default suppressions. Please point it to the Spring Cloud Build’s,
spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml file either in your cloned
repo or via the raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-

cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml URL.

• checkstyle.additional.suppressions.file - this variable corresponds to suppressions in your
local project. E.g. you’re working on spring-cloud-contract. Then point to the project-

root/src/checkstyle/checkstyle-suppressions.xml folder. Example for spring-cloud-contract

would be: /home/username/spring-cloud-contract/src/checkstyle/checkstyle-suppressions.xml.

Remember to set the Scan Scope to All sources since we apply checkstyle rules for
production and test sources.

https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml

Chapter 21. Spring Cloud Stream

21.1. A Brief History of Spring’s Data Integration
Journey
Spring’s journey on Data Integration started with Spring Integration. With its programming model,
it provided a consistent developer experience to build applications that can embrace Enterprise
Integration Patterns to connect with external systems such as, databases, message brokers, and
among others.

Fast forward to the cloud-era, where microservices have become prominent in the enterprise
setting. Spring Boot transformed the way how developers built Applications. With Spring’s
programming model and the runtime responsibilities handled by Spring Boot, it became seamless
to develop stand-alone, production-grade Spring-based microservices.

To extend this to Data Integration workloads, Spring Integration and Spring Boot were put together
into a new project. Spring Cloud Stream was born.

With Spring Cloud Stream, developers can: * Build, test, iterate, and deploy data-centric
applications in isolation. * Apply modern microservices architecture patterns, including
composition through messaging. * Decouple application responsibilities with event-centric
thinking. An event can represent something that has happened in time, to which the downstream
consumer applications can react without knowing where it originated or the producer’s identity. *
Port the business logic onto message brokers (such as RabbitMQ, Apache Kafka, Amazon Kinesis). *
Interoperate between channel-based and non-channel-based application binding scenarios to
support stateless and stateful computations by using Project Reactor’s Flux and Kafka Streams APIs.
* Rely on the framework’s automatic content-type support for common use-cases. Extending to
different data conversion types is possible.

21.2. Quick Start
You can try Spring Cloud Stream in less then 5 min even before you jump into any details by
following this three-step guide.

We show you how to create a Spring Cloud Stream application that receives messages coming from
the messaging middleware of your choice (more on this later) and logs received messages to the
console. We call it LoggingConsumer. While not very practical, it provides a good introduction to some
of the main concepts and abstractions, making it easier to digest the rest of this user guide.

The three steps are as follows:

1. Creating a Sample Application by Using Spring Initializr

2. Importing the Project into Your IDE

3. Adding a Message Handler, Building, and Running

https://projects.spring.io/spring-integration/
http://www.enterpriseintegrationpatterns.com/
http://www.enterpriseintegrationpatterns.com/
https://projects.spring.io/spring-boot/

Creating a Sample Application by Using Spring Initializr

To get started, visit the Spring Initializr. From there, you can generate our LoggingConsumer
application. To do so:

1. In the Dependencies section, start typing stream. When the “Cloud Stream” option should
appears, select it.

2. Start typing either 'kafka' or 'rabbit'.

3. Select “Kafka” or “RabbitMQ”.

Basically, you choose the messaging middleware to which your application binds. We
recommend using the one you have already installed or feel more comfortable with installing
and running. Also, as you can see from the Initilaizer screen, there are a few other options you
can choose. For example, you can choose Gradle as your build tool instead of Maven (the
default).

4. In the Artifact field, type 'logging-consumer'.

The value of the Artifact field becomes the application name. If you chose RabbitMQ for the
middleware, your Spring Initializr should now be as follows:

[spring initializr] | https://raw.github.com/spring-cloud/master/docs/src/main/asciidoc/images/spring-

https://start.spring.io

initializr.png

1. Click the Generate Project button.

Doing so downloads the zipped version of the generated project to your hard drive.

2. Unzip the file into the folder you want to use as your project directory.

We encourage you to explore the many possibilities available in the Spring
Initializr. It lets you create many different kinds of Spring applications.

Importing the Project into Your IDE

Now you can import the project into your IDE. Keep in mind that, depending on the IDE, you may
need to follow a specific import procedure. For example, depending on how the project was
generated (Maven or Gradle), you may need to follow specific import procedure (for example, in
Eclipse or STS, you need to use File → Import → Maven → Existing Maven Project).

Once imported, the project must have no errors of any kind. Also, src/main/java should contain
com.example.loggingconsumer.LoggingConsumerApplication.

Technically, at this point, you can run the application’s main class. It is already a valid Spring Boot
application. However, it does not do anything, so we want to add some code.

Adding a Message Handler, Building, and Running

Modify the com.example.loggingconsumer.LoggingConsumerApplication class to look as follows:

@SpringBootApplication
@EnableBinding(Sink.class)
public class LoggingConsumerApplication {

 public static void main(String[] args) {
 SpringApplication.run(LoggingConsumerApplication.class, args);
 }

 @StreamListener(Sink.INPUT)
 public void handle(Person person) {
 System.out.println("Received: " + person);
 }

 public static class Person {
 private String name;
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String toString() {
 return this.name;
 }
 }
}

As you can see from the preceding listing:

• We have enabled Sink binding (input-no-output) by using @EnableBinding(Sink.class). Doing so
signals to the framework to initiate binding to the messaging middleware, where it
automatically creates the destination (that is, queue, topic, and others) that are bound to the
Sink.INPUT channel.

• We have added a handler method to receive incoming messages of type Person. Doing so lets you
see one of the core features of the framework: It tries to automatically convert incoming
message payloads to type Person.

You now have a fully functional Spring Cloud Stream application that does listens for messages.
From here, for simplicity, we assume you selected RabbitMQ in step one. Assuming you have
RabbitMQ installed and running, you can start the application by running its main method in your
IDE.

You should see following output:

 --- [main] c.s.b.r.p.RabbitExchangeQueueProvisioner : declaring queue for
inbound: input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg, bound to: input
 --- [main] o.s.a.r.c.CachingConnectionFactory : Attempting to connect to:
[localhost:5672]
 --- [main] o.s.a.r.c.CachingConnectionFactory : Created new connection:
rabbitConnectionFactory#2a3a299:0/SimpleConnection@66c83fc8. . .
 . . .
 --- [main] o.s.i.a.i.AmqpInboundChannelAdapter : started
inbound.input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg
 . . .
 --- [main] c.e.l.LoggingConsumerApplication : Started
LoggingConsumerApplication in 2.531 seconds (JVM running for 2.897)

Go to the RabbitMQ management console or any other RabbitMQ client and send a message to
input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg. The anonymous.CbMIwdkJSBO1ZoPDOtHtCg part represents the
group name and is generated, so it is bound to be different in your environment. For something
more predictable, you can use an explicit group name by setting
spring.cloud.stream.bindings.input.group=hello (or whatever name you like).

The contents of the message should be a JSON representation of the Person class, as follows:

{"name":"Sam Spade"}

Then, in your console, you should see:

Received: Sam Spade

You can also build and package your application into a boot jar (by using ./mvnw clean install) and
run the built JAR by using the java -jar command.

Now you have a working (albeit very basic) Spring Cloud Stream application.

21.3. What’s New in 2.2?
Spring Cloud Stream introduces a number of new features, enhancements, and changes in addition
to the once already introduced in version 2.0

The following sections outline the most notable ones:

• New Features and Components

• Notable Enhancements

21.3.1. New Features and Components

21.3.2. Notable Enhancements

https://docs.spring.io/spring-cloud-stream/docs/Elmhurst.SR2/reference/htmlsingle/#_what_s_new_in_2_0

21.3.3. Notable Deprecations

As of version 2.2, the following items have been deprecated:

• The spring-cloud-stream-reactive module is deprecated in favor of native support via Spring
Cloud Function programming model.

21.4. Notes on migrating from 1.x to 2.x?
• Due to the improvements in content-type negotiation, the originalContentType header is not

used (ignored) since 2.x and only exists for maintaining compatibility with 1.x versions

• Introduction of @StreamRetryTemplate qualifier. While configuring custom instance of the
RetryTemplate and to avoid conflicts you must qualify the instance of such RetryTemplate with
this qualifier. See Retry Template for more details. :github-tag: master :github-repo: spring-
cloud/spring-cloud-stream :github-raw: raw.githubusercontent.com/spring-cloud/master :github-
code: github.com/spring-cloud/tree/master :toc: left :toclevels: 8 :nofooter: :sectlinks: true

https://raw.githubusercontent.com/spring-cloud/master
https://github.com/spring-cloud/tree/master

Chapter 22. Spring Cloud Stream Reference
Guide
Sabby Anandan; Marius Bogoevici; Eric Bottard; Mark Fisher; Ilayaperumal Gopinathan; Gunnar
Hillert; Mark Pollack; Patrick Peralta; Glenn Renfro; Thomas Risberg; Dave Syer; David Turanski;
Janne Valkealahti; Benjamin Klein; Vinicius Carvalho; Gary Russell; Oleg Zhurakousky; Jay Bryant;
Soby Chacko

Chapter 23. Preface

23.1. A Brief History of Spring’s Data Integration
Journey
Spring’s journey on Data Integration started with Spring Integration. With its programming model,
it provided a consistent developer experience to build applications that can embrace Enterprise
Integration Patterns to connect with external systems such as, databases, message brokers, and
among others.

Fast forward to the cloud-era, where microservices have become prominent in the enterprise
setting. Spring Boot transformed the way how developers built Applications. With Spring’s
programming model and the runtime responsibilities handled by Spring Boot, it became seamless
to develop stand-alone, production-grade Spring-based microservices.

To extend this to Data Integration workloads, Spring Integration and Spring Boot were put together
into a new project. Spring Cloud Stream was born.

With Spring Cloud Stream, developers can: * Build, test, iterate, and deploy data-centric
applications in isolation. * Apply modern microservices architecture patterns, including
composition through messaging. * Decouple application responsibilities with event-centric
thinking. An event can represent something that has happened in time, to which the downstream
consumer applications can react without knowing where it originated or the producer’s identity. *
Port the business logic onto message brokers (such as RabbitMQ, Apache Kafka, Amazon Kinesis). *
Interoperate between channel-based and non-channel-based application binding scenarios to
support stateless and stateful computations by using Project Reactor’s Flux and Kafka Streams APIs.
* Rely on the framework’s automatic content-type support for common use-cases. Extending to
different data conversion types is possible.

23.2. Quick Start
You can try Spring Cloud Stream in less then 5 min even before you jump into any details by
following this three-step guide.

We show you how to create a Spring Cloud Stream application that receives messages coming from
the messaging middleware of your choice (more on this later) and logs received messages to the
console. We call it LoggingConsumer. While not very practical, it provides a good introduction to some
of the main concepts and abstractions, making it easier to digest the rest of this user guide.

The three steps are as follows:

1. Creating a Sample Application by Using Spring Initializr

2. Importing the Project into Your IDE

3. Adding a Message Handler, Building, and Running

https://projects.spring.io/spring-integration/
http://www.enterpriseintegrationpatterns.com/
http://www.enterpriseintegrationpatterns.com/
https://projects.spring.io/spring-boot/

Creating a Sample Application by Using Spring Initializr

To get started, visit the Spring Initializr. From there, you can generate our LoggingConsumer
application. To do so:

1. In the Dependencies section, start typing stream. When the “Cloud Stream” option should
appears, select it.

2. Start typing either 'kafka' or 'rabbit'.

3. Select “Kafka” or “RabbitMQ”.

Basically, you choose the messaging middleware to which your application binds. We
recommend using the one you have already installed or feel more comfortable with installing
and running. Also, as you can see from the Initilaizer screen, there are a few other options you
can choose. For example, you can choose Gradle as your build tool instead of Maven (the
default).

4. In the Artifact field, type 'logging-consumer'.

The value of the Artifact field becomes the application name. If you chose RabbitMQ for the
middleware, your Spring Initializr should now be as follows:

[spring initializr] | https://raw.github.com/spring-cloud/master/docs/src/main/asciidoc/images/spring-

https://start.spring.io

initializr.png

1. Click the Generate Project button.

Doing so downloads the zipped version of the generated project to your hard drive.

2. Unzip the file into the folder you want to use as your project directory.

We encourage you to explore the many possibilities available in the Spring
Initializr. It lets you create many different kinds of Spring applications.

Importing the Project into Your IDE

Now you can import the project into your IDE. Keep in mind that, depending on the IDE, you may
need to follow a specific import procedure. For example, depending on how the project was
generated (Maven or Gradle), you may need to follow specific import procedure (for example, in
Eclipse or STS, you need to use File → Import → Maven → Existing Maven Project).

Once imported, the project must have no errors of any kind. Also, src/main/java should contain
com.example.loggingconsumer.LoggingConsumerApplication.

Technically, at this point, you can run the application’s main class. It is already a valid Spring Boot
application. However, it does not do anything, so we want to add some code.

Adding a Message Handler, Building, and Running

Modify the com.example.loggingconsumer.LoggingConsumerApplication class to look as follows:

@SpringBootApplication
@EnableBinding(Sink.class)
public class LoggingConsumerApplication {

 public static void main(String[] args) {
 SpringApplication.run(LoggingConsumerApplication.class, args);
 }

 @StreamListener(Sink.INPUT)
 public void handle(Person person) {
 System.out.println("Received: " + person);
 }

 public static class Person {
 private String name;
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String toString() {
 return this.name;
 }
 }
}

As you can see from the preceding listing:

• We have enabled Sink binding (input-no-output) by using @EnableBinding(Sink.class). Doing so
signals to the framework to initiate binding to the messaging middleware, where it
automatically creates the destination (that is, queue, topic, and others) that are bound to the
Sink.INPUT channel.

• We have added a handler method to receive incoming messages of type Person. Doing so lets you
see one of the core features of the framework: It tries to automatically convert incoming
message payloads to type Person.

You now have a fully functional Spring Cloud Stream application that does listens for messages.
From here, for simplicity, we assume you selected RabbitMQ in step one. Assuming you have
RabbitMQ installed and running, you can start the application by running its main method in your
IDE.

You should see following output:

 --- [main] c.s.b.r.p.RabbitExchangeQueueProvisioner : declaring queue for
inbound: input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg, bound to: input
 --- [main] o.s.a.r.c.CachingConnectionFactory : Attempting to connect to:
[localhost:5672]
 --- [main] o.s.a.r.c.CachingConnectionFactory : Created new connection:
rabbitConnectionFactory#2a3a299:0/SimpleConnection@66c83fc8. . .
 . . .
 --- [main] o.s.i.a.i.AmqpInboundChannelAdapter : started
inbound.input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg
 . . .
 --- [main] c.e.l.LoggingConsumerApplication : Started
LoggingConsumerApplication in 2.531 seconds (JVM running for 2.897)

Go to the RabbitMQ management console or any other RabbitMQ client and send a message to
input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg. The anonymous.CbMIwdkJSBO1ZoPDOtHtCg part represents the
group name and is generated, so it is bound to be different in your environment. For something
more predictable, you can use an explicit group name by setting
spring.cloud.stream.bindings.input.group=hello (or whatever name you like).

The contents of the message should be a JSON representation of the Person class, as follows:

{"name":"Sam Spade"}

Then, in your console, you should see:

Received: Sam Spade

You can also build and package your application into a boot jar (by using ./mvnw clean install) and
run the built JAR by using the java -jar command.

Now you have a working (albeit very basic) Spring Cloud Stream application.

23.3. What’s New in 2.2?
Spring Cloud Stream introduces a number of new features, enhancements, and changes in addition
to the once already introduced in version 2.0

The following sections outline the most notable ones:

• New Features and Components

• Notable Enhancements

23.3.1. New Features and Components

23.3.2. Notable Enhancements

https://docs.spring.io/spring-cloud-stream/docs/Elmhurst.SR2/reference/htmlsingle/#_what_s_new_in_2_0

23.3.3. Notable Deprecations

As of version 2.2, the following items have been deprecated:

• The spring-cloud-stream-reactive module is deprecated in favor of native support via Spring
Cloud Function programming model.

23.4. Notes on migrating from 1.x to 2.x?
• Due to the improvements in content-type negotiation, the originalContentType header is not

used (ignored) since 2.x and only exists for maintaining compatibility with 1.x versions

• Introduction of @StreamRetryTemplate qualifier. While configuring custom instance of the
RetryTemplate and to avoid conflicts you must qualify the instance of such RetryTemplate with
this qualifier. See Retry Template for more details.

This section goes into more detail about how you can work with Spring Cloud Stream. It covers
topics such as creating and running stream applications.

23.5. Introducing Spring Cloud Stream
Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications
and uses Spring Integration to provide connectivity to message brokers. It provides opinionated
configuration of middleware from several vendors, introducing the concepts of persistent publish-
subscribe semantics, consumer groups, and partitions.

You can add the @EnableBinding annotation to your application to get immediate connectivity to a
message broker, and you can add @StreamListener to a method to cause it to receive events for
stream processing. The following example shows a sink application that receives external
messages:

@SpringBootApplication
@EnableBinding(Sink.class)
public class VoteRecordingSinkApplication {

 public static void main(String[] args) {
 SpringApplication.run(VoteRecordingSinkApplication.class, args);
 }

 @StreamListener(Sink.INPUT)
 public void processVote(Vote vote) {
 votingService.recordVote(vote);
 }
}

The @EnableBinding annotation takes one or more interfaces as parameters (in this case, the
parameter is a single Sink interface). An interface declares input and output channels. Spring Cloud

Stream provides the Source, Sink, and Processor interfaces. You can also define your own interfaces.

The following listing shows the definition of the Sink interface:

public interface Sink {
 String INPUT = "input";

 @Input(Sink.INPUT)
 SubscribableChannel input();
}

The @Input annotation identifies an input channel, through which received messages enter the
application. The @Output annotation identifies an output channel, through which published
messages leave the application. The @Input and @Output annotations can take a channel name as a
parameter. If a name is not provided, the name of the annotated method is used.

Spring Cloud Stream creates an implementation of the interface for you. You can use this in the
application by autowiring it, as shown in the following example (from a test case):

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = VoteRecordingSinkApplication.class)
@WebAppConfiguration
@DirtiesContext
public class StreamApplicationTests {

 @Autowired
 private Sink sink;

 @Test
 public void contextLoads() {
 assertThat(this.sink.input()).isNotNull();
 }
}

23.6. Main Concepts
Spring Cloud Stream provides a number of abstractions and primitives that simplify the writing of
message-driven microservice applications. This section gives an overview of the following:

• Spring Cloud Stream’s application model

• The Binder Abstraction

• Persistent publish-subscribe support

• Consumer group support

• Partitioning support

• A pluggable Binder SPI

23.6.1. Application Model

A Spring Cloud Stream application consists of a middleware-neutral core. The application
communicates with the outside world through input and output channels injected into it by Spring
Cloud Stream. Channels are connected to external brokers through middleware-specific Binder
implementations.

[SCSt with binder] | https://raw.github.com/spring-cloud/master/docs/src/main/asciidoc/images/SCSt-

with-binder.png

Figure 8. Spring Cloud Stream Application

Fat JAR

Spring Cloud Stream applications can be run in stand-alone mode from your IDE for testing. To run
a Spring Cloud Stream application in production, you can create an executable (or “fat”) JAR by
using the standard Spring Boot tooling provided for Maven or Gradle. See the Spring Boot
Reference Guide for more details.

23.6.2. The Binder Abstraction

Spring Cloud Stream provides Binder implementations for Kafka and Rabbit MQ. Spring Cloud
Stream also includes a TestSupportBinder, which leaves a channel unmodified so that tests can
interact with channels directly and reliably assert on what is received. You can also use the
extensible API to write your own Binder.

Spring Cloud Stream uses Spring Boot for configuration, and the Binder abstraction makes it
possible for a Spring Cloud Stream application to be flexible in how it connects to middleware. For
example, deployers can dynamically choose, at runtime, the destinations (such as the Kafka topics
or RabbitMQ exchanges) to which channels connect. Such configuration can be provided through
external configuration properties and in any form supported by Spring Boot (including application
arguments, environment variables, and application.yml or application.properties files). In the sink
example from the Introducing Spring Cloud Stream section, setting the
spring.cloud.stream.bindings.input.destination application property to raw-sensor-data causes it
to read from the raw-sensor-data Kafka topic or from a queue bound to the raw-sensor-data
RabbitMQ exchange.

Spring Cloud Stream automatically detects and uses a binder found on the classpath. You can use
different types of middleware with the same code. To do so, include a different binder at build time.
For more complex use cases, you can also package multiple binders with your application and have
it choose the binder(and even whether to use different binders for different channels) at runtime.

23.6.3. Persistent Publish-Subscribe Support

Communication between applications follows a publish-subscribe model, where data is broadcast
through shared topics. This can be seen in the following figure, which shows a typical deployment
for a set of interacting Spring Cloud Stream applications.

[SCSt sensors] | https://raw.github.com/spring-cloud/master/docs/src/main/asciidoc/images/SCSt-

https://docs.spring.io/spring-boot/docs/current/reference/html/howto-build.html#howto-create-an-executable-jar-with-maven
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-build.html#howto-create-an-executable-jar-with-maven
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-test-support/src/main/java/org/springframework/cloud/stream/test/binder/TestSupportBinder.java

sensors.png

Figure 9. Spring Cloud Stream Publish-Subscribe

Data reported by sensors to an HTTP endpoint is sent to a common destination named raw-sensor-
data. From the destination, it is independently processed by a microservice application that
computes time-windowed averages and by another microservice application that ingests the raw
data into HDFS (Hadoop Distributed File System). In order to process the data, both applications
declare the topic as their input at runtime.

The publish-subscribe communication model reduces the complexity of both the producer and the
consumer and lets new applications be added to the topology without disruption of the existing
flow. For example, downstream from the average-calculating application, you can add an
application that calculates the highest temperature values for display and monitoring. You can then
add another application that interprets the same flow of averages for fault detection. Doing all
communication through shared topics rather than point-to-point queues reduces coupling between
microservices.

While the concept of publish-subscribe messaging is not new, Spring Cloud Stream takes the extra
step of making it an opinionated choice for its application model. By using native middleware
support, Spring Cloud Stream also simplifies use of the publish-subscribe model across different
platforms.

23.6.4. Consumer Groups

While the publish-subscribe model makes it easy to connect applications through shared topics, the
ability to scale up by creating multiple instances of a given application is equally important. When
doing so, different instances of an application are placed in a competing consumer relationship,
where only one of the instances is expected to handle a given message.

Spring Cloud Stream models this behavior through the concept of a consumer group. (Spring Cloud
Stream consumer groups are similar to and inspired by Kafka consumer groups.) Each consumer
binding can use the spring.cloud.stream.bindings.<channelName>.group property to specify a group
name. For the consumers shown in the following figure, this property would be set as
spring.cloud.stream.bindings.<channelName>.group=hdfsWrite or
spring.cloud.stream.bindings.<channelName>.group=average.

[SCSt groups] | https://raw.github.com/spring-cloud/master/docs/src/main/asciidoc/images/SCSt-

groups.png

Figure 10. Spring Cloud Stream Consumer Groups

All groups that subscribe to a given destination receive a copy of published data, but only one
member of each group receives a given message from that destination. By default, when a group is
not specified, Spring Cloud Stream assigns the application to an anonymous and independent
single-member consumer group that is in a publish-subscribe relationship with all other consumer
groups.

23.6.5. Consumer Types

Two types of consumer are supported:

• Message-driven (sometimes referred to as Asynchronous)

• Polled (sometimes referred to as Synchronous)

Prior to version 2.0, only asynchronous consumers were supported. A message is delivered as soon
as it is available and a thread is available to process it.

When you wish to control the rate at which messages are processed, you might want to use a
synchronous consumer.

Durability

Consistent with the opinionated application model of Spring Cloud Stream, consumer group
subscriptions are durable. That is, a binder implementation ensures that group subscriptions are
persistent and that, once at least one subscription for a group has been created, the group receives
messages, even if they are sent while all applications in the group are stopped.

Anonymous subscriptions are non-durable by nature. For some binder
implementations (such as RabbitMQ), it is possible to have non-durable group
subscriptions.

In general, it is preferable to always specify a consumer group when binding an application to a
given destination. When scaling up a Spring Cloud Stream application, you must specify a
consumer group for each of its input bindings. Doing so prevents the application’s instances from
receiving duplicate messages (unless that behavior is desired, which is unusual).

23.6.6. Partitioning Support

Spring Cloud Stream provides support for partitioning data between multiple instances of a given
application. In a partitioned scenario, the physical communication medium (such as the broker
topic) is viewed as being structured into multiple partitions. One or more producer application
instances send data to multiple consumer application instances and ensure that data identified by
common characteristics are processed by the same consumer instance.

Spring Cloud Stream provides a common abstraction for implementing partitioned processing use
cases in a uniform fashion. Partitioning can thus be used whether the broker itself is naturally
partitioned (for example, Kafka) or not (for example, RabbitMQ).

[SCSt partitioning] | https://raw.github.com/spring-cloud/master/docs/src/main/asciidoc/images/SCSt-

partitioning.png

Figure 11. Spring Cloud Stream Partitioning

Partitioning is a critical concept in stateful processing, where it is critical (for either performance or
consistency reasons) to ensure that all related data is processed together. For example, in the time-
windowed average calculation example, it is important that all measurements from any given
sensor are processed by the same application instance.

To set up a partitioned processing scenario, you must configure both the data-
producing and the data-consuming ends.

23.7. Programming Model
To understand the programming model, you should be familiar with the following core concepts:

• Destination Binders: Components responsible to provide integration with the external
messaging systems.

• Destination Bindings: Bridge between the external messaging systems and application
provided Producers and Consumers of messages (created by the Destination Binders).

• Message: The canonical data structure used by producers and consumers to communicate with
Destination Binders (and thus other applications via external messaging systems).

[SCSt overview] | https://raw.github.com/spring-cloud/master/docs/src/main/asciidoc/images/SCSt-

overview.png

23.7.1. Destination Binders

Destination Binders are extension components of Spring Cloud Stream responsible for providing
the necessary configuration and implementation to facilitate integration with external messaging
systems. This integration is responsible for connectivity, delegation, and routing of messages to and
from producers and consumers, data type conversion, invocation of the user code, and more.

Binders handle a lot of the boiler plate responsibilities that would otherwise fall on your shoulders.
However, to accomplish that, the binder still needs some help in the form of minimalistic yet
required set of instructions from the user, which typically come in the form of some type of
configuration.

While it is out of scope of this section to discuss all of the available binder and binding
configuration options (the rest of the manual covers them extensively), Destination Binding does
require special attention. The next section discusses it in detail.

23.7.2. Destination Bindings

As stated earlier, Destination Bindings provide a bridge between the external messaging system and
application-provided Producers and Consumers.

Applying the @EnableBinding annotation to one of the application’s configuration classes defines a
destination binding. The @EnableBinding annotation itself is meta-annotated with @Configuration
and triggers the configuration of the Spring Cloud Stream infrastructure.

The following example shows a fully configured and functioning Spring Cloud Stream application
that receives the payload of the message from the INPUT destination as a String type (see Content
Type Negotiation section), logs it to the console and sends it to the OUTPUT destination after
converting it to upper case.

@SpringBootApplication
@EnableBinding(Processor.class)
public class MyApplication {

 public static void main(String[] args) {
 SpringApplication.run(MyApplication.class, args);
 }

 @StreamListener(Processor.INPUT)
 @SendTo(Processor.OUTPUT)
 public String handle(String value) {
 System.out.println("Received: " + value);
 return value.toUpperCase();
 }
}

As you can see the @EnableBinding annotation can take one or more interface classes as parameters.

The parameters are referred to as bindings, and they contain methods representing bindable
components. These components are typically message channels (see Spring Messaging) for channel-
based binders (such as Rabbit, Kafka, and others). However other types of bindings can provide
support for the native features of the corresponding technology. For example Kafka Streams binder
(formerly known as KStream) allows native bindings directly to Kafka Streams (see Kafka Streams
for more details).

Spring Cloud Stream already provides binding interfaces for typical message exchange contracts,
which include:

• Sink: Identifies the contract for the message consumer by providing the destination from which
the message is consumed.

• Source: Identifies the contract for the message producer by providing the destination to which
the produced message is sent.

• Processor: Encapsulates both the sink and the source contracts by exposing two destinations
that allow consumption and production of messages.

public interface Sink {

 String INPUT = "input";

 @Input(Sink.INPUT)
 SubscribableChannel input();
}

public interface Source {

 String OUTPUT = "output";

 @Output(Source.OUTPUT)
 MessageChannel output();
}

public interface Processor extends Source, Sink {}

While the preceding example satisfies the majority of cases, you can also define your own contracts
by defining your own bindings interfaces and use @Input and @Output annotations to identify the
actual bindable components.

For example:

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-messaging.html
https://docs.spring.io/autorepo/docs/spring-cloud-stream-binder-kafka-docs/1.1.0.M1/reference/htmlsingle/

public interface Barista {

 @Input
 SubscribableChannel orders();

 @Output
 MessageChannel hotDrinks();

 @Output
 MessageChannel coldDrinks();
}

Using the interface shown in the preceding example as a parameter to @EnableBinding triggers the
creation of the three bound channels named orders, hotDrinks, and coldDrinks, respectively.

You can provide as many binding interfaces as you need, as arguments to the @EnableBinding
annotation, as shown in the following example:

@EnableBinding(value = { Orders.class, Payment.class })

In Spring Cloud Stream, the bindable MessageChannel components are the Spring Messaging
MessageChannel (for outbound) and its extension, SubscribableChannel, (for inbound).

Pollable Destination Binding

While the previously described bindings support event-based message consumption, sometimes
you need more control, such as rate of consumption.

Starting with version 2.0, you can now bind a pollable consumer:

The following example shows how to bind a pollable consumer:

public interface PolledBarista {

 @Input
 PollableMessageSource orders();
 . . .
}

In this case, an implementation of PollableMessageSource is bound to the orders “channel”. See
Using Polled Consumers for more details.

Customizing Channel Names

By using the @Input and @Output annotations, you can specify a customized channel name for the
channel, as shown in the following example:

public interface Barista {
 @Input("inboundOrders")
 SubscribableChannel orders();
}

In the preceding example, the created bound channel is named inboundOrders.

Normally, you need not access individual channels or bindings directly (other then configuring
them via @EnableBinding annotation). However there may be times, such as testing or other corner
cases, when you do.

Aside from generating channels for each binding and registering them as Spring beans, for each
bound interface, Spring Cloud Stream generates a bean that implements the interface. That means
you can have access to the interfaces representing the bindings or individual channels by auto-
wiring either in your application, as shown in the following two examples:

Autowire Binding interface

@Autowire
private Source source

public void sayHello(String name) {
 source.output().send(MessageBuilder.withPayload(name).build());
}

Autowire individual channel

@Autowire
private MessageChannel output;

public void sayHello(String name) {
 output.send(MessageBuilder.withPayload(name).build());
}

You can also use standard Spring’s @Qualifier annotation for cases when channel names are
customized or in multiple-channel scenarios that require specifically named channels.

The following example shows how to use the @Qualifier annotation in this way:

@Autowire
@Qualifier("myChannel")
private MessageChannel output;

23.7.3. Producing and Consuming Messages

You can write a Spring Cloud Stream application by using either Spring Integration annotations or

Spring Cloud Stream native annotation.

Spring Integration Support

Spring Cloud Stream is built on the concepts and patterns defined by Enterprise Integration
Patterns and relies in its internal implementation on an already established and popular
implementation of Enterprise Integration Patterns within the Spring portfolio of projects: Spring
Integration framework.

So its only natural for it to support the foundation, semantics, and configuration options that are
already established by Spring Integration

For example, you can attach the output channel of a Source to a MessageSource and use the familiar
@InboundChannelAdapter annotation, as follows:

@EnableBinding(Source.class)
public class TimerSource {

 @Bean
 @InboundChannelAdapter(value = Source.OUTPUT, poller = @Poller(fixedDelay = "10",
maxMessagesPerPoll = "1"))
 public MessageSource<String> timerMessageSource() {
 return () -> new GenericMessage<>("Hello Spring Cloud Stream");
 }
}

Similarly, you can use @Transformer or @ServiceActivator while providing an implementation of a
message handler method for a Processor binding contract, as shown in the following example:

@EnableBinding(Processor.class)
public class TransformProcessor {
 @Transformer(inputChannel = Processor.INPUT, outputChannel = Processor.OUTPUT)
 public Object transform(String message) {
 return message.toUpperCase();
 }
}

While this may be skipping ahead a bit, it is important to understand that, when
you consume from the same binding using @StreamListener annotation, a pub-sub
model is used. Each method annotated with @StreamListener receives its own copy
of a message, and each one has its own consumer group. However, if you consume
from the same binding by using one of the Spring Integration annotation (such as
@Aggregator, @Transformer, or @ServiceActivator), those consume in a competing
model. No individual consumer group is created for each subscription.

http://www.enterpriseintegrationpatterns.com/
http://www.enterpriseintegrationpatterns.com/
https://projects.spring.io/spring-integration/
https://projects.spring.io/spring-integration/

Using @StreamListener Annotation

Complementary to its Spring Integration support, Spring Cloud Stream provides its own
@StreamListener annotation, modeled after other Spring Messaging annotations (@MessageMapping,
@JmsListener, @RabbitListener, and others) and provides conviniences, such as content-based
routing and others.

@EnableBinding(Sink.class)
public class VoteHandler {

 @Autowired
 VotingService votingService;

 @StreamListener(Sink.INPUT)
 public void handle(Vote vote) {
 votingService.record(vote);
 }
}

As with other Spring Messaging methods, method arguments can be annotated with @Payload,
@Headers, and @Header.

For methods that return data, you must use the @SendTo annotation to specify the output binding
destination for data returned by the method, as shown in the following example:

@EnableBinding(Processor.class)
public class TransformProcessor {

 @Autowired
 VotingService votingService;

 @StreamListener(Processor.INPUT)
 @SendTo(Processor.OUTPUT)
 public VoteResult handle(Vote vote) {
 return votingService.record(vote);
 }
}

Using @StreamListener for Content-based routing

Spring Cloud Stream supports dispatching messages to multiple handler methods annotated with
@StreamListener based on conditions.

In order to be eligible to support conditional dispatching, a method must satisfy the follow
conditions:

• It must not return a value.

• It must be an individual message handling method (reactive API methods are not supported).

The condition is specified by a SpEL expression in the condition argument of the annotation and is
evaluated for each message. All the handlers that match the condition are invoked in the same
thread, and no assumption must be made about the order in which the invocations take place.

In the following example of a @StreamListener with dispatching conditions, all the messages bearing
a header type with the value bogey are dispatched to the receiveBogey method, and all the messages
bearing a header type with the value bacall are dispatched to the receiveBacall method.

@EnableBinding(Sink.class)
@EnableAutoConfiguration
public static class TestPojoWithAnnotatedArguments {

 @StreamListener(target = Sink.INPUT, condition = "headers['type']=='bogey'")
 public void receiveBogey(@Payload BogeyPojo bogeyPojo) {
 // handle the message
 }

 @StreamListener(target = Sink.INPUT, condition = "headers['type']=='bacall'")
 public void receiveBacall(@Payload BacallPojo bacallPojo) {
 // handle the message
 }
}

Content Type Negotiation in the Context of condition

It is important to understand some of the mechanics behind content-based routing using the
condition argument of @StreamListener, especially in the context of the type of the message as a
whole. It may also help if you familiarize yourself with the Content Type Negotiation before you
proceed.

Consider the following scenario:

@EnableBinding(Sink.class)
@EnableAutoConfiguration
public static class CatsAndDogs {

 @StreamListener(target = Sink.INPUT, condition =
"payload.class.simpleName=='Dog'")
 public void bark(Dog dog) {
 // handle the message
 }

 @StreamListener(target = Sink.INPUT, condition =
"payload.class.simpleName=='Cat'")
 public void purr(Cat cat) {
 // handle the message
 }
}

The preceding code is perfectly valid. It compiles and deploys without any issues, yet it never
produces the result you expect.

That is because you are testing something that does not yet exist in a state you expect. That is
because the payload of the message is not yet converted from the wire format (byte[]) to the
desired type. In other words, it has not yet gone through the type conversion process described in
the Content Type Negotiation.

So, unless you use a SPeL expression that evaluates raw data (for example, the value of the first
byte in the byte array), use message header-based expressions (such as condition =

"headers['type']=='dog'").

At the moment, dispatching through @StreamListener conditions is supported only
for channel-based binders (not for reactive programming) support.

Spring Cloud Function support

Since Spring Cloud Stream v2.1, another alternative for defining stream handlers and sources is to
use build-in support for Spring Cloud Function where they can be expressed as beans of type
java.util.function.[Supplier/Function/Consumer].

To specify which functional bean to bind to the external destination(s) exposed by the bindings, you
must provide spring.cloud.stream.function.definition property.

Here is the example of the Processor application exposing message handler as
java.util.function.Function

@SpringBootApplication
@EnableBinding(Processor.class)
public class MyFunctionBootApp {

 public static void main(String[] args) {
 SpringApplication.run(MyFunctionBootApp.class, "--
spring.cloud.stream.function.definition=toUpperCase");
 }

 @Bean
 public Function<String, String> toUpperCase() {
 return s -> s.toUpperCase();
 }
}

In the above you we simply define a bean of type java.util.function.Function called toUpperCase
and identify it as a bean to be used as message handler whose 'input' and 'output' must be bound to
the external destinations exposed by the Processor binding.

Below are the examples of simple functional applications to support Source, Processor and Sink.

Here is the example of a Source application defined as java.util.function.Supplier

https://cloud.spring.io/spring-cloud-function/

@SpringBootApplication
@EnableBinding(Source.class)
public static class SourceFromSupplier {
 public static void main(String[] args) {
 SpringApplication.run(SourceFromSupplier.class, "--
spring.cloud.stream.function.definition=date");
 }
 @Bean
 public Supplier<Date> date() {
 return () -> new Date(12345L);
 }
}

Here is the example of a Processor application defined as java.util.function.Function

@SpringBootApplication
@EnableBinding(Processor.class)
public static class ProcessorFromFunction {
 public static void main(String[] args) {
 SpringApplication.run(ProcessorFromFunction.class, "--
spring.cloud.stream.function.definition=toUpperCase");
 }
 @Bean
 public Function<String, String> toUpperCase() {
 return s -> s.toUpperCase();
 }
}

Here is the example of a Sink application defined as java.util.function.Consumer

@EnableAutoConfiguration
@EnableBinding(Sink.class)
public static class SinkFromConsumer {
 public static void main(String[] args) {
 SpringApplication.run(SinkFromConsumer.class, "--
spring.cloud.stream.function.definition=sink");
 }
 @Bean
 public Consumer<String> sink() {
 return System.out::println;
 }
}

Reactive Functions support

Since Spring Cloud Function is build on top of Project Reactor there isn’t much you need to do to
benefit from reactive programming model while implementing Supplier, Function or Consumer.

https://projectreactor.io/

For example:

@EnableAutoConfiguration
@EnableBinding(Processor.class)
public static class SinkFromConsumer {
 public static void main(String[] args) {
 SpringApplication.run(SinkFromConsumer.class, "--
spring.cloud.stream.function.definition=reactiveUpperCase");
 }
 @Bean
 public Function<Flux<String>, Flux<String>> reactiveUpperCase() {
 return flux -> flux.map(val -> val.toUpperCase());
 }
}

Functional Composition

Using this programming model you can also benefit from functional composition where you can
dynamically compose complex handlers from a set of simple functions. As an example let’s add the
following function bean to the application defined above

@Bean
public Function<String, String> wrapInQuotes() {
 return s -> "\"" + s + "\"";
}

and modify the spring.cloud.stream.function.definition property to reflect your intention to
compose a new function from both ‘toUpperCase’ and ‘wrapInQuotes’. To do that Spring Cloud
Function allows you to use | (pipe) symbol. So to finish our example our property will now look like
this:

--spring.cloud.stream.function.definition=toUpperCase|wrapInQuotes

One of the great benefits of functional composition support provided by Spring
Cloud Function is the fact that you can compose reactive and imperative functions.

For example, the above composition could be defined as such (if both functions present):

--spring.cloud.stream.function.definition=reactiveUpperCase|wrapInQuotes

Using Polled Consumers

Overview

When using polled consumers, you poll the PollableMessageSource on demand. Consider the

following example of a polled consumer:

public interface PolledConsumer {

 @Input
 PollableMessageSource destIn();

 @Output
 MessageChannel destOut();

}

Given the polled consumer in the preceding example, you might use it as follows:

@Bean
public ApplicationRunner poller(PollableMessageSource destIn, MessageChannel destOut)
{
 return args -> {
 while (someCondition()) {
 try {
 if (!destIn.poll(m -> {
 String newPayload = ((String) m.getPayload()).toUpperCase();
 destOut.send(new GenericMessage<>(newPayload));
 })) {
 Thread.sleep(1000);
 }
 }
 catch (Exception e) {
 // handle failure
 }
 }
 };
}

A less manual and more Spring-like alternative would be to configure a scheduled task bean. For
example,

@Scheduled(fixedDelay = 5_000)
public void poll() {
 System.out.println("Polling...");
 this.source.poll(m -> {
 System.out.println(m.getPayload());

 }, new ParameterizedTypeReference<Foo>() { });
}

The PollableMessageSource.poll() method takes a MessageHandler argument (often a lambda

expression, as shown here). It returns true if the message was received and successfully processed.

As with message-driven consumers, if the MessageHandler throws an exception, messages are
published to error channels, as discussed in Error Handling.

Normally, the poll() method acknowledges the message when the MessageHandler exits. If the
method exits abnormally, the message is rejected (not re-queued), but see Handling Errors. You can
override that behavior by taking responsibility for the acknowledgment, as shown in the following
example:

@Bean
public ApplicationRunner poller(PollableMessageSource dest1In, MessageChannel
dest2Out) {
 return args -> {
 while (someCondition()) {
 if (!dest1In.poll(m -> {
 StaticMessageHeaderAccessor.getAcknowledgmentCallback(m).noAutoAck();
 // e.g. hand off to another thread which can perform the ack
 // or acknowledge(Status.REQUEUE)

 })) {
 Thread.sleep(1000);
 }
 }
 };
}

 You must ack (or nack) the message at some point, to avoid resource leaks.

Some messaging systems (such as Apache Kafka) maintain a simple offset in a log.
If a delivery fails and is re-queued with
StaticMessageHeaderAccessor.getAcknowledgmentCallback(m).acknowledge(Status.REQ

UEUE);, any later successfully ack’d messages are redelivered.

There is also an overloaded poll method, for which the definition is as follows:

poll(MessageHandler handler, ParameterizedTypeReference<?> type)

The type is a conversion hint that allows the incoming message payload to be converted, as shown
in the following example:

boolean result = pollableSource.poll(received -> {
 Map<String, Foo> payload = (Map<String, Foo>) received.getPayload();
 ...

 }, new ParameterizedTypeReference<Map<String, Foo>>() {});

Handling Errors

By default, an error channel is configured for the pollable source; if the callback throws an
exception, an ErrorMessage is sent to the error channel (<destination>.<group>.errors); this error
channel is also bridged to the global Spring Integration errorChannel.

You can subscribe to either error channel with a @ServiceActivator to handle errors; without a
subscription, the error will simply be logged and the message will be acknowledged as successful. If
the error channel service activator throws an exception, the message will be rejected (by default)
and won’t be redelivered. If the service activator throws a RequeueCurrentMessageException, the
message will be requeued at the broker and will be again retrieved on a subsequent poll.

If the listener throws a RequeueCurrentMessageException directly, the message will be requeued, as
discussed above, and will not be sent to the error channels.

23.7.4. Error Handling

Errors happen, and Spring Cloud Stream provides several flexible mechanisms to handle them. The
error handling comes in two flavors:

• application: The error handling is done within the application (custom error handler).

• system: The error handling is delegated to the binder (re-queue, DL, and others). Note that the
techniques are dependent on binder implementation and the capability of the underlying
messaging middleware.

Spring Cloud Stream uses the Spring Retry library to facilitate successful message processing. See
Retry Template for more details. However, when all fails, the exceptions thrown by the message
handlers are propagated back to the binder. At that point, binder invokes custom error handler or
communicates the error back to the messaging system (re-queue, DLQ, and others).

Application Error Handling

There are two types of application-level error handling. Errors can be handled at each binding
subscription or a global handler can handle all the binding subscription errors. Let’s review the
details.

[custom vs global error channels] | https://raw.github.com/spring-

https://github.com/spring-projects/spring-retry

cloud/master/docs/src/main/asciidoc/images/custom_vs_global_error_channels.png

Figure 12. A Spring Cloud Stream Sink Application with Custom and Global Error Handlers

For each input binding, Spring Cloud Stream creates a dedicated error channel with the following
semantics <destinationName>.errors.

The <destinationName> consists of the name of the binding (such as input) and the
name of the group (such as myGroup).

Consider the following:

spring.cloud.stream.bindings.input.group=myGroup

@StreamListener(Sink.INPUT) // destination name 'input.myGroup'
public void handle(Person value) {
 throw new RuntimeException("BOOM!");
}

@ServiceActivator(inputChannel = Processor.INPUT + ".myGroup.errors") //channel name
'input.myGroup.errors'
public void error(Message<?> message) {
 System.out.println("Handling ERROR: " + message);
}

In the preceding example the destination name is input.myGroup and the dedicated error channel
name is input.myGroup.errors.

The use of @StreamListener annotation is intended specifically to define bindings
that bridge internal channels and external destinations. Given that the destination
specific error channel does NOT have an associated external destination, such
channel is a prerogative of Spring Integration (SI). This means that the handler for
such destination must be defined using one of the SI handler annotations (i.e.,
@ServiceActivator, @Transformer etc.).

If group is not specified anonymous group is used (something like
input.anonymous.2K37rb06Q6m2r51-SPIDDQ), which is not suitable for error handling
scenarious, since you don’t know what it’s going to be until the destination is
created.

Also, in the event you are binding to the existing destination such as:

spring.cloud.stream.bindings.input.destination=myFooDestination
spring.cloud.stream.bindings.input.group=myGroup

the full destination name is myFooDestination.myGroup and then the dedicated error channel name is

myFooDestination.myGroup.errors.

Back to the example…

The handle(..) method, which subscribes to the channel named input, throws an exception. Given
there is also a subscriber to the error channel input.myGroup.errors all error messages are handled
by this subscriber.

If you have multiple bindings, you may want to have a single error handler. Spring Cloud Stream
automatically provides support for a global error channel by bridging each individual error channel
to the channel named errorChannel, allowing a single subscriber to handle all errors, as shown in
the following example:

@StreamListener("errorChannel")
public void error(Message<?> message) {
 System.out.println("Handling ERROR: " + message);
}

This may be a convenient option if error handling logic is the same regardless of which handler
produced the error.

System Error Handling

System-level error handling implies that the errors are communicated back to the messaging
system and, given that not every messaging system is the same, the capabilities may differ from
binder to binder.

That said, in this section we explain the general idea behind system level error handling and use
Rabbit binder as an example. NOTE: Kafka binder provides similar support, although some
configuration properties do differ. Also, for more details and configuration options, see the
individual binder’s documentation.

If no internal error handlers are configured, the errors propagate to the binders, and the binders
subsequently propagate those errors back to the messaging system. Depending on the capabilities
of the messaging system such a system may drop the message, re-queue the message for re-
processing or send the failed message to DLQ. Both Rabbit and Kafka support these concepts.
However, other binders may not, so refer to your individual binder’s documentation for details on
supported system-level error-handling options.

Drop Failed Messages

By default, if no additional system-level configuration is provided, the messaging system drops the
failed message. While acceptable in some cases, for most cases, it is not, and we need some
recovery mechanism to avoid message loss.

DLQ - Dead Letter Queue

DLQ allows failed messages to be sent to a special destination: - Dead Letter Queue.

When configured, failed messages are sent to this destination for subsequent re-processing or

auditing and reconciliation.

For example, continuing on the previous example and to set up the DLQ with Rabbit binder, you
need to set the following property:

spring.cloud.stream.rabbit.bindings.input.consumer.auto-bind-dlq=true

Keep in mind that, in the above property, input corresponds to the name of the input destination
binding. The consumer indicates that it is a consumer property and auto-bind-dlq instructs the
binder to configure DLQ for input destination, which results in an additional Rabbit queue named
input.myGroup.dlq.

Once configured, all failed messages are routed to this queue with an error message similar to the
following:

delivery_mode: 1
headers:
x-death:
count: 1
reason: rejected
queue: input.hello
time: 1522328151
exchange:
routing-keys: input.myGroup
Payload {"name”:"Bob"}

As you can see from the above, your original message is preserved for further actions.

However, one thing you may have noticed is that there is limited information on the original issue
with the message processing. For example, you do not see a stack trace corresponding to the
original error. To get more relevant information about the original error, you must set an
additional property:

spring.cloud.stream.rabbit.bindings.input.consumer.republish-to-dlq=true

Doing so forces the internal error handler to intercept the error message and add additional
information to it before publishing it to DLQ. Once configured, you can see that the error message
contains more information relevant to the original error, as follows:

delivery_mode: 2
headers:
x-original-exchange:
x-exception-message: has an error
x-original-routingKey: input.myGroup
x-exception-stacktrace: org.springframework.messaging.MessageHandlingException: nested
exception is
 org.springframework.messaging.MessagingException: has an error,
failedMessage=GenericMessage [payload=byte[15],
 headers={amqp_receivedDeliveryMode=NON_PERSISTENT,
amqp_receivedRoutingKey=input.hello, amqp_deliveryTag=1,
 deliveryAttempt=3, amqp_consumerQueue=input.hello, amqp_redelivered=false,
id=a15231e6-3f80-677b-5ad7-d4b1e61e486e,
 amqp_consumerTag=amq.ctag-skBFapilvtZhDsn0k3ZmQg, contentType=application/json,
timestamp=1522327846136}]
 at
org.spring...integ...han...MethodInvokingMessageProcessor.processMessage(MethodInvokin
gMessageProcessor.java:107)
 at.
Payload {"name”:"Bob"}

This effectively combines application-level and system-level error handling to further assist with
downstream troubleshooting mechanics.

Re-queue Failed Messages

As mentioned earlier, the currently supported binders (Rabbit and Kafka) rely on RetryTemplate to
facilitate successful message processing. See Retry Template for details. However, for cases when
max-attempts property is set to 1, internal reprocessing of the message is disabled. At this point, you
can facilitate message re-processing (re-tries) by instructing the messaging system to re-queue the
failed message. Once re-queued, the failed message is sent back to the original handler, essentially
creating a retry loop.

This option may be feasible for cases where the nature of the error is related to some sporadic yet
short-term unavailability of some resource.

To accomplish that, you must set the following properties:

spring.cloud.stream.bindings.input.consumer.max-attempts=1
spring.cloud.stream.rabbit.bindings.input.consumer.requeue-rejected=true

In the preceding example, the max-attempts set to 1 essentially disabling internal re-tries and
requeue-rejected (short for requeue rejected messages) is set to true. Once set, the failed message is
resubmitted to the same handler and loops continuously or until the handler throws
AmqpRejectAndDontRequeueException essentially allowing you to build your own re-try logic within
the handler itself.

Retry Template

The RetryTemplate is part of the Spring Retry library. While it is out of scope of this document to
cover all of the capabilities of the RetryTemplate, we will mention the following consumer
properties that are specifically related to the RetryTemplate:

maxAttempts

The number of attempts to process the message.

Default: 3.

backOffInitialInterval

The backoff initial interval on retry.

Default 1000 milliseconds.

backOffMaxInterval

The maximum backoff interval.

Default 10000 milliseconds.

backOffMultiplier

The backoff multiplier.

Default 2.0.

defaultRetryable

Whether exceptions thrown by the listener that are not listed in the retryableExceptions are
retryable.

Default: true.

retryableExceptions

A map of Throwable class names in the key and a boolean in the value. Specify those exceptions
(and subclasses) that will or won’t be retried. Also see defaultRetriable. Example:
spring.cloud.stream.bindings.input.consumer.retryable-

exceptions.java.lang.IllegalStateException=false.

Default: empty.

While the preceding settings are sufficient for majority of the customization requirements, they
may not satisfy certain complex requirements at, which point you may want to provide your own
instance of the RetryTemplate. To do so configure it as a bean in your application configuration. The
application provided instance will override the one provided by the framework. Also, to avoid
conflicts you must qualify the instance of the RetryTemplate you want to be used by the binder as
@StreamRetryTemplate. For example,

https://github.com/spring-projects/spring-retry

@StreamRetryTemplate
public RetryTemplate myRetryTemplate() {
 return new RetryTemplate();
}

As you can see from the above example you don’t need to annotate it with @Bean since
@StreamRetryTemplate is a qualified @Bean.

If you need to be more precise with your RetryTemplate, you can specify the bean by name in your
ConsumerProperties to associate the specific retry bean per binding.

spring.cloud.stream.bindings.<foo>.consumer.retry-template-name=<your-retry-template-
bean-name>

23.8. Binders
Spring Cloud Stream provides a Binder abstraction for use in connecting to physical destinations at
the external middleware. This section provides information about the main concepts behind the
Binder SPI, its main components, and implementation-specific details.

23.8.1. Producers and Consumers

The following image shows the general relationship of producers and consumers:

[producers consumers] | https://raw.github.com/spring-

cloud/master/docs/src/main/asciidoc/images/producers-consumers.png

Figure 13. Producers and Consumers

A producer is any component that sends messages to a channel. The channel can be bound to an
external message broker with a Binder implementation for that broker. When invoking the
bindProducer() method, the first parameter is the name of the destination within the broker, the
second parameter is the local channel instance to which the producer sends messages, and the
third parameter contains properties (such as a partition key expression) to be used within the
adapter that is created for that channel.

A consumer is any component that receives messages from a channel. As with a producer, the
consumer’s channel can be bound to an external message broker. When invoking the
bindConsumer() method, the first parameter is the destination name, and a second parameter
provides the name of a logical group of consumers. Each group that is represented by consumer
bindings for a given destination receives a copy of each message that a producer sends to that
destination (that is, it follows normal publish-subscribe semantics). If there are multiple consumer
instances bound with the same group name, then messages are load-balanced across those
consumer instances so that each message sent by a producer is consumed by only a single
consumer instance within each group (that is, it follows normal queueing semantics).

23.8.2. Binder SPI

The Binder SPI consists of a number of interfaces, out-of-the box utility classes, and discovery
strategies that provide a pluggable mechanism for connecting to external middleware.

The key point of the SPI is the Binder interface, which is a strategy for connecting inputs and
outputs to external middleware. The following listing shows the definnition of the Binder interface:

public interface Binder<T, C extends ConsumerProperties, P extends ProducerProperties>
{
 Binding<T> bindConsumer(String name, String group, T inboundBindTarget, C
consumerProperties);

 Binding<T> bindProducer(String name, T outboundBindTarget, P producerProperties);
}

The interface is parameterized, offering a number of extension points:

• Input and output bind targets. As of version 1.0, only MessageChannel is supported, but this is
intended to be used as an extension point in the future.

• Extended consumer and producer properties, allowing specific Binder implementations to add
supplemental properties that can be supported in a type-safe manner.

A typical binder implementation consists of the following:

• A class that implements the Binder interface;

• A Spring @Configuration class that creates a bean of type Binder along with the middleware
connection infrastructure.

• A META-INF/spring.binders file found on the classpath containing one or more binder
definitions, as shown in the following example:

kafka:\
org.springframework.cloud.stream.binder.kafka.config.KafkaBinderConfiguration

23.8.3. Binder Detection

Spring Cloud Stream relies on implementations of the Binder SPI to perform the task of connecting
channels to message brokers. Each Binder implementation typically connects to one type of
messaging system.

Classpath Detection

By default, Spring Cloud Stream relies on Spring Boot’s auto-configuration to configure the binding
process. If a single Binder implementation is found on the classpath, Spring Cloud Stream
automatically uses it. For example, a Spring Cloud Stream project that aims to bind only to
RabbitMQ can add the following dependency:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>
</dependency>

For the specific Maven coordinates of other binder dependencies, see the documentation of that
binder implementation.

23.8.4. Multiple Binders on the Classpath

When multiple binders are present on the classpath, the application must indicate which binder is
to be used for each channel binding. Each binder configuration contains a META-INF/spring.binders
file, which is a simple properties file, as shown in the following example:

rabbit:\
org.springframework.cloud.stream.binder.rabbit.config.RabbitServiceAutoConfiguration

Similar files exist for the other provided binder implementations (such as Kafka), and custom
binder implementations are expected to provide them as well. The key represents an identifying
name for the binder implementation, whereas the value is a comma-separated list of configuration
classes that each contain one and only one bean definition of type
org.springframework.cloud.stream.binder.Binder.

Binder selection can either be performed globally, using the spring.cloud.stream.defaultBinder
property (for example, spring.cloud.stream.defaultBinder=rabbit) or individually, by configuring
the binder on each channel binding. For instance, a processor application (that has channels named
input and output for read and write respectively) that reads from Kafka and writes to RabbitMQ can

specify the following configuration:

spring.cloud.stream.bindings.input.binder=kafka
spring.cloud.stream.bindings.output.binder=rabbit

23.8.5. Connecting to Multiple Systems

By default, binders share the application’s Spring Boot auto-configuration, so that one instance of
each binder found on the classpath is created. If your application should connect to more than one
broker of the same type, you can specify multiple binder configurations, each with different
environment settings.

Turning on explicit binder configuration disables the default binder configuration
process altogether. If you do so, all binders in use must be included in the
configuration. Frameworks that intend to use Spring Cloud Stream transparently
may create binder configurations that can be referenced by name, but they do not
affect the default binder configuration. In order to do so, a binder configuration
may have its defaultCandidate flag set to false (for example,
spring.cloud.stream.binders.<configurationName>.defaultCandidate=false). This
denotes a configuration that exists independently of the default binder
configuration process.

The following example shows a typical configuration for a processor application that connects to
two RabbitMQ broker instances:

spring:
 cloud:
 stream:
 bindings:
 input:
 destination: thing1
 binder: rabbit1
 output:
 destination: thing2
 binder: rabbit2
 binders:
 rabbit1:
 type: rabbit
 environment:
 spring:
 rabbitmq:
 host: <host1>
 rabbit2:
 type: rabbit
 environment:
 spring:
 rabbitmq:
 host: <host2>

The environment property of the particular binder can also be used for any Spring
Boot property, including this spring.main.sources which can be useful for adding
additional configurations for the particular binders, e.g. overriding auto-
configured beans.

For example;

environment:
 spring:
 main:
 sources: com.acme.config.MyCustomBinderConfiguration

To activate a specific profile for the particular binder environment, you should use a
spring.profiles.active property:

environment:
 spring:
 profiles:
 active: myBinderProfile

23.8.6. Binding visualization and control

Since version 2.0, Spring Cloud Stream supports visualization and control of the Bindings through
Actuator endpoints.

Starting with version 2.0 actuator and web are optional, you must first add one of the web
dependencies as well as add the actuator dependency manually. The following example shows how
to add the dependency for the Web framework:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

The following example shows how to add the dependency for the WebFlux framework:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

You can add the Actuator dependency as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

To run Spring Cloud Stream 2.0 apps in Cloud Foundry, you must add spring-boot-
starter-web and spring-boot-starter-actuator to the classpath. Otherwise, the
application will not start due to health check failures.

You must also enable the bindings actuator endpoints by setting the following property:
--management.endpoints.web.exposure.include=bindings.

Once those prerequisites are satisfied. you should see the following in the logs when application
start:

: Mapped "{[/actuator/bindings/{name}],methods=[POST]. . .
: Mapped "{[/actuator/bindings],methods=[GET]. . .
: Mapped "{[/actuator/bindings/{name}],methods=[GET]. . .

To visualize the current bindings, access the following URL: <host>:<port>/actuator/bindings

Alternative, to see a single binding, access one of the URLs similar to the following: <code><a
href="http://<host>:<port>/actuator/bindings/<bindingName>"

http://<host>:<port>/actuator/bindings
http://<host>:<port>/actuator/bindings
http://<host>:<port>/actuator/bindings
http://<host>:<port>/actuator/bindings
http://<host>:<port>/actuator/bindings

class="bare"><host>:<port>/actuator/bindings/<bindingName>;</code>

You can also stop, start, pause, and resume individual bindings by posting to the same URL while
providing a state argument as JSON, as shown in the following examples:

curl -d '{"state":"STOPPED"}' -H "Content-Type: application/json" -X POST
http://<host>:<port>/actuator/bindings/myBindingName
curl -d '{"state":"STARTED"}' -H "Content-Type: application/json" -X POST
http://<host>:<port>/actuator/bindings/myBindingName
curl -d '{"state":"PAUSED"}' -H "Content-Type: application/json" -X POST
http://<host>:<port>/actuator/bindings/myBindingName
curl -d '{"state":"RESUMED"}' -H "Content-Type: application/json" -X POST
http://<host>:<port>/actuator/bindings/myBindingName

PAUSED and RESUMED work only when the corresponding binder and its underlying
technology supports it. Otherwise, you see the warning message in the logs.
Currently, only Kafka binder supports the PAUSED and RESUMED states.

23.8.7. Binder Configuration Properties

The following properties are available when customizing binder configurations. These properties
exposed via org.springframework.cloud.stream.config.BinderProperties

They must be prefixed with spring.cloud.stream.binders.<configurationName>.

type

The binder type. It typically references one of the binders found on the classpath — in particular,
a key in a META-INF/spring.binders file.

By default, it has the same value as the configuration name.

inheritEnvironment

Whether the configuration inherits the environment of the application itself.

Default: true.

environment

Root for a set of properties that can be used to customize the environment of the binder. When
this property is set, the context in which the binder is being created is not a child of the
application context. This setting allows for complete separation between the binder components
and the application components.

Default: empty.

defaultCandidate

Whether the binder configuration is a candidate for being considered a default binder or can be
used only when explicitly referenced. This setting allows adding binder configurations without
interfering with the default processing.

Default: true.

23.9. Configuration Options
Spring Cloud Stream supports general configuration options as well as configuration for bindings
and binders. Some binders let additional binding properties support middleware-specific features.

Configuration options can be provided to Spring Cloud Stream applications through any
mechanism supported by Spring Boot. This includes application arguments, environment variables,
and YAML or .properties files.

23.9.1. Binding Service Properties

These properties are exposed via
org.springframework.cloud.stream.config.BindingServiceProperties

spring.cloud.stream.instanceCount

The number of deployed instances of an application. Must be set for partitioning on the
producer side. Must be set on the consumer side when using RabbitMQ and with Kafka if
autoRebalanceEnabled=false.

Default: 1.

spring.cloud.stream.instanceIndex

The instance index of the application: A number from 0 to instanceCount - 1. Used for
partitioning with RabbitMQ and with Kafka if autoRebalanceEnabled=false. Automatically set in
Cloud Foundry to match the application’s instance index.

spring.cloud.stream.dynamicDestinations

A list of destinations that can be bound dynamically (for example, in a dynamic routing
scenario). If set, only listed destinations can be bound.

Default: empty (letting any destination be bound).

spring.cloud.stream.defaultBinder

The default binder to use, if multiple binders are configured. See Multiple Binders on the
Classpath.

Default: empty.

spring.cloud.stream.overrideCloudConnectors

This property is only applicable when the cloud profile is active and Spring Cloud Connectors are
provided with the application. If the property is false (the default), the binder detects a suitable
bound service (for example, a RabbitMQ service bound in Cloud Foundry for the RabbitMQ
binder) and uses it for creating connections (usually through Spring Cloud Connectors). When
set to true, this property instructs binders to completely ignore the bound services and rely on
Spring Boot properties (for example, relying on the spring.rabbitmq.* properties provided in the
environment for the RabbitMQ binder). The typical usage of this property is to be nested in a
customized environment when connecting to multiple systems.

Default: false.

spring.cloud.stream.bindingRetryInterval

The interval (in seconds) between retrying binding creation when, for example, the binder does
not support late binding and the broker (for example, Apache Kafka) is down. Set it to zero to
treat such conditions as fatal, preventing the application from starting.

Default: 30

23.9.2. Binding Properties

Binding properties are supplied by using the format of
spring.cloud.stream.bindings.<channelName>.<property>=<value>. The <channelName> represents the
name of the channel being configured (for example, output for a Source).

To avoid repetition, Spring Cloud Stream supports setting values for all channels, in the format of
spring.cloud.stream.default.<property>=<value>.

When it comes to avoiding repetitions for extended binding properties, this format should be used -
spring.cloud.stream.<binder-type>.default.<producer|consumer>.<property>=<value>.

In what follows, we indicate where we have omitted the
spring.cloud.stream.bindings.<channelName>. prefix and focus just on the property name, with the
understanding that the prefix ise included at runtime.

Common Binding Properties

These properties are exposed via org.springframework.cloud.stream.config.BindingProperties

The following binding properties are available for both input and output bindings and must be
prefixed with spring.cloud.stream.bindings.<channelName>. (for example,
spring.cloud.stream.bindings.input.destination=ticktock).

Default values can be set by using the spring.cloud.stream.default prefix (for
example`spring.cloud.stream.default.contentType=application/json`).

destination

The target destination of a channel on the bound middleware (for example, the RabbitMQ
exchange or Kafka topic). If the channel is bound as a consumer, it could be bound to multiple
destinations, and the destination names can be specified as comma-separated String values. If
not set, the channel name is used instead. The default value of this property cannot be
overridden.

group

The consumer group of the channel. Applies only to inbound bindings. See Consumer Groups.

Default: null (indicating an anonymous consumer).

contentType

The content type of the channel. See “Content Type Negotiation”.

Default: application/json.

binder

The binder used by this binding. See “Multiple Binders on the Classpath” for details.

Default: null (the default binder is used, if it exists).

Consumer Properties

These properties are exposed via org.springframework.cloud.stream.binder.ConsumerProperties

The following binding properties are available for input bindings only and must be prefixed with
spring.cloud.stream.bindings.<channelName>.consumer. (for example,
spring.cloud.stream.bindings.input.consumer.concurrency=3).

Default values can be set by using the spring.cloud.stream.default.consumer prefix (for example,
spring.cloud.stream.default.consumer.headerMode=none).

autoStartup

Signals if this consumer needs to be started automatically

Default: true.

concurrency

The concurrency of the inbound consumer.

Default: 1.

partitioned

Whether the consumer receives data from a partitioned producer.

Default: false.

headerMode

When set to none, disables header parsing on input. Effective only for messaging middleware
that does not support message headers natively and requires header embedding. This option is
useful when consuming data from non-Spring Cloud Stream applications when native headers
are not supported. When set to headers, it uses the middleware’s native header mechanism.
When set to embeddedHeaders, it embeds headers into the message payload.

Default: depends on the binder implementation.

maxAttempts

If processing fails, the number of attempts to process the message (including the first). Set to 1 to
disable retry.

Default: 3.

backOffInitialInterval

The backoff initial interval on retry.

Default: 1000.

backOffMaxInterval

The maximum backoff interval.

Default: 10000.

backOffMultiplier

The backoff multiplier.

Default: 2.0.

defaultRetryable

Whether exceptions thrown by the listener that are not listed in the retryableExceptions are
retryable.

Default: true.

instanceIndex

When set to a value greater than equal to zero, it allows customizing the instance index of this
consumer (if different from spring.cloud.stream.instanceIndex). When set to a negative value, it
defaults to spring.cloud.stream.instanceIndex. See “Instance Index and Instance Count” for more
information.

Default: -1.

instanceCount

When set to a value greater than equal to zero, it allows customizing the instance count of this
consumer (if different from spring.cloud.stream.instanceCount). When set to a negative value, it
defaults to spring.cloud.stream.instanceCount. See “Instance Index and Instance Count” for more
information.

Default: -1.

retryableExceptions

A map of Throwable class names in the key and a boolean in the value. Specify those exceptions
(and subclasses) that will or won’t be retried. Also see defaultRetriable. Example:
spring.cloud.stream.bindings.input.consumer.retryable-

exceptions.java.lang.IllegalStateException=false.

Default: empty.

useNativeDecoding

When set to true, the inbound message is deserialized directly by the client library, which must
be configured correspondingly (for example, setting an appropriate Kafka producer value
deserializer). When this configuration is being used, the inbound message unmarshalling is not
based on the contentType of the binding. When native decoding is used, it is the responsibility of
the producer to use an appropriate encoder (for example, the Kafka producer value serializer) to
serialize the outbound message. Also, when native encoding and decoding is used, the
headerMode=embeddedHeaders property is ignored and headers are not embedded in the message.

See the producer property useNativeEncoding.

Default: false.

Advanced Consumer Configuration

For advanced configuration of the underlying message listener container for message-driven
consumers, add a single ListenerContainerCustomizer bean to the application context. It will be
invoked after the above properties have been applied and can be used to set additional properties.
Similarly, for polled consumers, add a MessageSourceCustomizer bean.

The following is an example for the RabbitMQ binder:

@Bean
public ListenerContainerCustomizer<AbstractMessageListenerContainer>
containerCustomizer() {
 return (container, dest, group) -> container.setAdviceChain(advice1, advice2);
}

@Bean
public MessageSourceCustomizer<AmqpMessageSource> sourceCustomizer() {
 return (source, dest, group) ->
source.setPropertiesConverter(customPropertiesConverter);
}

Producer Properties

These properties are exposed via org.springframework.cloud.stream.binder.ProducerProperties

The following binding properties are available for output bindings only and must be prefixed with
spring.cloud.stream.bindings.<channelName>.producer. (for example,
spring.cloud.stream.bindings.input.producer.partitionKeyExpression=payload.id).

Default values can be set by using the prefix spring.cloud.stream.default.producer (for example,
spring.cloud.stream.default.producer.partitionKeyExpression=payload.id).

autoStartup

Signals if this consumer needs to be started automatically

Default: true.

partitionKeyExpression

A SpEL expression that determines how to partition outbound data. If set, or if
partitionKeyExtractorClass is set, outbound data on this channel is partitioned. partitionCount
must be set to a value greater than 1 to be effective. Mutually exclusive with
partitionKeyExtractorClass. See “Partitioning Support”.

Default: null.

partitionKeyExtractorClass

A PartitionKeyExtractorStrategy implementation. If set, or if partitionKeyExpression is set,
outbound data on this channel is partitioned. partitionCount must be set to a value greater than
1 to be effective. Mutually exclusive with partitionKeyExpression. See “Partitioning Support”.

Default: null.

partitionSelectorClass

A PartitionSelectorStrategy implementation. Mutually exclusive with
partitionSelectorExpression. If neither is set, the partition is selected as the hashCode(key) %
partitionCount, where key is computed through either partitionKeyExpression or
partitionKeyExtractorClass.

Default: null.

partitionSelectorExpression

A SpEL expression for customizing partition selection. Mutually exclusive with
partitionSelectorClass. If neither is set, the partition is selected as the hashCode(key) %

partitionCount, where key is computed through either partitionKeyExpression or
partitionKeyExtractorClass.

Default: null.

partitionCount

The number of target partitions for the data, if partitioning is enabled. Must be set to a value
greater than 1 if the producer is partitioned. On Kafka, it is interpreted as a hint. The larger of
this and the partition count of the target topic is used instead.

Default: 1.

requiredGroups

A comma-separated list of groups to which the producer must ensure message delivery even if
they start after it has been created (for example, by pre-creating durable queues in RabbitMQ).

headerMode

When set to none, it disables header embedding on output. It is effective only for messaging
middleware that does not support message headers natively and requires header embedding.
This option is useful when producing data for non-Spring Cloud Stream applications when
native headers are not supported. When set to headers, it uses the middleware’s native header
mechanism. When set to embeddedHeaders, it embeds headers into the message payload.

Default: Depends on the binder implementation.

useNativeEncoding

When set to true, the outbound message is serialized directly by the client library, which must be
configured correspondingly (for example, setting an appropriate Kafka producer value
serializer). When this configuration is being used, the outbound message marshalling is not
based on the contentType of the binding. When native encoding is used, it is the responsibility of
the consumer to use an appropriate decoder (for example, the Kafka consumer value de-

serializer) to deserialize the inbound message. Also, when native encoding and decoding is used,
the headerMode=embeddedHeaders property is ignored and headers are not embedded in the
message. See the consumer property useNativeDecoding.

Default: false.

errorChannelEnabled

When set to true, if the binder supports asynchroous send results, send failures are sent to an
error channel for the destination. See Error Handling for more information.

Default: false.

23.9.3. Using Dynamically Bound Destinations

Besides the channels defined by using @EnableBinding, Spring Cloud Stream lets applications send
messages to dynamically bound destinations. This is useful, for example, when the target
destination needs to be determined at runtime. Applications can do so by using the
BinderAwareChannelResolver bean, registered automatically by the @EnableBinding annotation.

The 'spring.cloud.stream.dynamicDestinations' property can be used for restricting the dynamic
destination names to a known set (whitelisting). If this property is not set, any destination can be
bound dynamically.

The BinderAwareChannelResolver can be used directly, as shown in the following example of a REST
controller using a path variable to decide the target channel:

@EnableBinding
@Controller
public class SourceWithDynamicDestination {

 @Autowired
 private BinderAwareChannelResolver resolver;

 @RequestMapping(path = "/{target}", method = POST, consumes = "*/*")
 @ResponseStatus(HttpStatus.ACCEPTED)
 public void handleRequest(@RequestBody String body, @PathVariable("target")
target,
 @RequestHeader(HttpHeaders.CONTENT_TYPE) Object contentType) {
 sendMessage(body, target, contentType);
 }

 private void sendMessage(String body, String target, Object contentType) {
 resolver.resolveDestination(target).send(MessageBuilder.createMessage(body,
 new
MessageHeaders(Collections.singletonMap(MessageHeaders.CONTENT_TYPE, contentType))));
 }
}

Now consider what happens when we start the application on the default port (8080) and make the

following requests with CURL:

curl -H "Content-Type: application/json" -X POST -d "customer-1"
http://localhost:8080/customers

curl -H "Content-Type: application/json" -X POST -d "order-1"
http://localhost:8080/orders

The destinations, 'customers' and 'orders', are created in the broker (in the exchange for Rabbit or
in the topic for Kafka) with names of 'customers' and 'orders', and the data is published to the
appropriate destinations.

The BinderAwareChannelResolver is a general-purpose Spring Integration DestinationResolver and
can be injected in other components — for example, in a router using a SpEL expression based on
the target field of an incoming JSON message. The following example includes a router that reads
SpEL expressions:

@EnableBinding
@Controller
public class SourceWithDynamicDestination {

 @Autowired
 private BinderAwareChannelResolver resolver;

 @RequestMapping(path = "/", method = POST, consumes = "application/json")
 @ResponseStatus(HttpStatus.ACCEPTED)
 public void handleRequest(@RequestBody String body,
@RequestHeader(HttpHeaders.CONTENT_TYPE) Object contentType) {
 sendMessage(body, contentType);
 }

 private void sendMessage(Object body, Object contentType) {
 routerChannel().send(MessageBuilder.createMessage(body,
 new
MessageHeaders(Collections.singletonMap(MessageHeaders.CONTENT_TYPE, contentType))));
 }

 @Bean(name = "routerChannel")
 public MessageChannel routerChannel() {
 return new DirectChannel();
 }

 @Bean
 @ServiceActivator(inputChannel = "routerChannel")
 public ExpressionEvaluatingRouter router() {
 ExpressionEvaluatingRouter router =
 new ExpressionEvaluatingRouter(new
SpelExpressionParser().parseExpression("payload.target"));
 router.setDefaultOutputChannelName("default-output");
 router.setChannelResolver(resolver);
 return router;
 }
}

The Router Sink Application uses this technique to create the destinations on-demand.

If the channel names are known in advance, you can configure the producer properties as with any
other destination. Alternatively, if you register a NewDestinationBindingCallback<> bean, it is
invoked just before the binding is created. The callback takes the generic type of the extended
producer properties used by the binder. It has one method:

void configure(String channelName, MessageChannel channel, ProducerProperties
producerProperties,
 T extendedProducerProperties);

https://github.com/spring-cloud-stream-app-starters/router

The following example shows how to use the RabbitMQ binder:

@Bean
public NewDestinationBindingCallback<RabbitProducerProperties> dynamicConfigurer() {
 return (name, channel, props, extended) -> {
 props.setRequiredGroups("bindThisQueue");
 extended.setQueueNameGroupOnly(true);
 extended.setAutoBindDlq(true);
 extended.setDeadLetterQueueName("myDLQ");
 };
}

If you need to support dynamic destinations with multiple binder types, use Object
for the generic type and cast the extended argument as needed.

23.10. Content Type Negotiation
Data transformation is one of the core features of any message-driven microservice architecture.
Given that, in Spring Cloud Stream, such data is represented as a Spring Message, a message may
have to be transformed to a desired shape or size before reaching its destination. This is required
for two reasons:

1. To convert the contents of the incoming message to match the signature of the application-
provided handler.

2. To convert the contents of the outgoing message to the wire format.

The wire format is typically byte[] (that is true for the Kafka and Rabbit binders), but it is governed
by the binder implementation.

In Spring Cloud Stream, message transformation is accomplished with an
org.springframework.messaging.converter.MessageConverter.

As a supplement to the details to follow, you may also want to read the following
blog post.

23.10.1. Mechanics

To better understand the mechanics and the necessity behind content-type negotiation, we take a
look at a very simple use case by using the following message handler as an example:

@StreamListener(Processor.INPUT)
@SendTo(Processor.OUTPUT)
public String handle(Person person) {..}

https://spring.io/blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation

For simplicity, we assume that this is the only handler in the application (we
assume there is no internal pipeline).

The handler shown in the preceding example expects a Person object as an argument and produces
a String type as an output. In order for the framework to succeed in passing the incoming Message
as an argument to this handler, it has to somehow transform the payload of the Message type from
the wire format to a Person type. In other words, the framework must locate and apply the
appropriate MessageConverter. To accomplish that, the framework needs some instructions from the
user. One of these instructions is already provided by the signature of the handler method itself
(Person type). Consequently, in theory, that should be (and, in some cases, is) enough. However, for
the majority of use cases, in order to select the appropriate MessageConverter, the framework needs
an additional piece of information. That missing piece is contentType.

Spring Cloud Stream provides three mechanisms to define contentType (in order of precedence):

1. HEADER: The contentType can be communicated through the Message itself. By providing a
contentType header, you declare the content type to use to locate and apply the appropriate
MessageConverter.

2. BINDING: The contentType can be set per destination binding by setting the
spring.cloud.stream.bindings.input.content-type property.

The input segment in the property name corresponds to the actual name of the
destination (which is “input” in our case). This approach lets you declare, on a
per-binding basis, the content type to use to locate and apply the appropriate
MessageConverter.

3. DEFAULT: If contentType is not present in the Message header or the binding, the default
application/json content type is used to locate and apply the appropriate MessageConverter.

As mentioned earlier, the preceding list also demonstrates the order of precedence in case of a tie.
For example, a header-provided content type takes precedence over any other content type. The
same applies for a content type set on a per-binding basis, which essentially lets you override the
default content type. However, it also provides a sensible default (which was determined from
community feedback).

Another reason for making application/json the default stems from the interoperability
requirements driven by distributed microservices architectures, where producer and consumer not
only run in different JVMs but can also run on different non-JVM platforms.

When the non-void handler method returns, if the the return value is already a Message, that
Message becomes the payload. However, when the return value is not a Message, the new Message is
constructed with the return value as the payload while inheriting headers from the input Message
minus the headers defined or filtered by
SpringIntegrationProperties.messageHandlerNotPropagatedHeaders. By default, there is only one
header set there: contentType. This means that the new Message does not have contentType header
set, thus ensuring that the contentType can evolve. You can always opt out of returning a Message
from the handler method where you can inject any header you wish.

If there is an internal pipeline, the Message is sent to the next handler by going through the same
process of conversion. However, if there is no internal pipeline or you have reached the end of it,
the Message is sent back to the output destination.

Content Type versus Argument Type

As mentioned earlier, for the framework to select the appropriate MessageConverter, it requires
argument type and, optionally, content type information. The logic for selecting the appropriate
MessageConverter resides with the argument resolvers (HandlerMethodArgumentResolvers), which
trigger right before the invocation of the user-defined handler method (which is when the actual
argument type is known to the framework). If the argument type does not match the type of the
current payload, the framework delegates to the stack of the pre-configured MessageConverters to
see if any one of them can convert the payload. As you can see, the Object fromMessage(Message<?>
message, Class<?> targetClass); operation of the MessageConverter takes targetClass as one of its
arguments. The framework also ensures that the provided Message always contains a contentType
header. When no contentType header was already present, it injects either the per-binding
contentType header or the default contentType header. The combination of contentType argument
type is the mechanism by which framework determines if message can be converted to a target
type. If no appropriate MessageConverter is found, an exception is thrown, which you can handle by
adding a custom MessageConverter (see “User-defined Message Converters”).

But what if the payload type matches the target type declared by the handler method? In this case,
there is nothing to convert, and the payload is passed unmodified. While this sounds pretty
straightforward and logical, keep in mind handler methods that take a Message<?> or Object as an
argument. By declaring the target type to be Object (which is an instanceof everything in Java), you
essentially forfeit the conversion process.

Do not expect Message to be converted into some other type based only on the
contentType. Remember that the contentType is complementary to the target type. If
you wish, you can provide a hint, which MessageConverter may or may not take into
consideration.

Message Converters

MessageConverters define two methods:

Object fromMessage(Message<?> message, Class<?> targetClass);

Message<?> toMessage(Object payload, @Nullable MessageHeaders headers);

It is important to understand the contract of these methods and their usage, specifically in the
context of Spring Cloud Stream.

The fromMessage method converts an incoming Message to an argument type. The payload of the
Message could be any type, and it is up to the actual implementation of the MessageConverter to
support multiple types. For example, some JSON converter may support the payload type as byte[],
String, and others. This is important when the application contains an internal pipeline (that is,
input → handler1 → handler2 →. . . → output) and the output of the upstream handler results in a

Message which may not be in the initial wire format.

However, the toMessage method has a more strict contract and must always convert Message to the
wire format: byte[].

So, for all intents and purposes (and especially when implementing your own converter) you
regard the two methods as having the following signatures:

Object fromMessage(Message<?> message, Class<?> targetClass);

Message<byte[]> toMessage(Object payload, @Nullable MessageHeaders headers);

23.10.2. Provided MessageConverters

As mentioned earlier, the framework already provides a stack of MessageConverters to handle most
common use cases. The following list describes the provided MessageConverters, in order of
precedence (the first MessageConverter that works is used):

1. ApplicationJsonMessageMarshallingConverter: Variation of the
org.springframework.messaging.converter.MappingJackson2MessageConverter. Supports
conversion of the payload of the Message to/from POJO for cases when contentType is
application/json (DEFAULT).

2. TupleJsonMessageConverter: DEPRECATED Supports conversion of the payload of the Message
to/from org.springframework.tuple.Tuple.

3. ByteArrayMessageConverter: Supports conversion of the payload of the Message from byte[] to
byte[] for cases when contentType is application/octet-stream. It is essentially a pass through
and exists primarily for backward compatibility.

4. ObjectStringMessageConverter: Supports conversion of any type to a String when contentType is
text/plain. It invokes Object’s toString() method or, if the payload is byte[], a new
String(byte[]).

5. JavaSerializationMessageConverter: DEPRECATED Supports conversion based on java
serialization when contentType is application/x-java-serialized-object.

6. KryoMessageConverter: DEPRECATED Supports conversion based on Kryo serialization when
contentType is application/x-java-object.

7. JsonUnmarshallingConverter: Similar to the ApplicationJsonMessageMarshallingConverter. It
supports conversion of any type when contentType is application/x-java-object. It expects the
actual type information to be embedded in the contentType as an attribute (for example,
application/x-java-object;type=foo.bar.Cat).

When no appropriate converter is found, the framework throws an exception. When that happens,
you should check your code and configuration and ensure you did not miss anything (that is,
ensure that you provided a contentType by using a binding or a header). However, most likely, you
found some uncommon case (such as a custom contentType perhaps) and the current stack of
provided MessageConverters does not know how to convert. If that is the case, you can add custom
MessageConverter. See User-defined Message Converters.

23.10.3. User-defined Message Converters

Spring Cloud Stream exposes a mechanism to define and register additional MessageConverters. To
use it, implement org.springframework.messaging.converter.MessageConverter, configure it as a
@Bean, and annotate it with @StreamMessageConverter. It is then apended to the existing stack of
`MessageConverter`s.

It is important to understand that custom MessageConverter implementations are
added to the head of the existing stack. Consequently, custom MessageConverter
implementations take precedence over the existing ones, which lets you override
as well as add to the existing converters.

The following example shows how to create a message converter bean to support a new content
type called application/bar:

@EnableBinding(Sink.class)
@SpringBootApplication
public static class SinkApplication {

 ...

 @Bean
 @StreamMessageConverter
 public MessageConverter customMessageConverter() {
 return new MyCustomMessageConverter();
 }
}

public class MyCustomMessageConverter extends AbstractMessageConverter {

 public MyCustomMessageConverter() {
 super(new MimeType("application", "bar"));
 }

 @Override
 protected boolean supports(Class<?> clazz) {
 return (Bar.class.equals(clazz));
 }

 @Override
 protected Object convertFromInternal(Message<?> message, Class<?> targetClass,
Object conversionHint) {
 Object payload = message.getPayload();
 return (payload instanceof Bar ? payload : new Bar((byte[]) payload));
 }
}

Spring Cloud Stream also provides support for Avro-based converters and schema evolution. See
“Schema Evolution Support” for details.

23.11. Schema Evolution Support
Spring Cloud Stream provides support for schema evolution so that the data can be evolved over
time and still work with older or newer producers and consumers and vice versa. Most
serialization models, especially the ones that aim for portability across different platforms and
languages, rely on a schema that describes how the data is serialized in the binary payload. In
order to serialize the data and then to interpret it, both the sending and receiving sides must have
access to a schema that describes the binary format. In certain cases, the schema can be inferred
from the payload type on serialization or from the target type on deserialization. However, many
applications benefit from having access to an explicit schema that describes the binary data format.
A schema registry lets you store schema information in a textual format (typically JSON) and makes
that information accessible to various applications that need it to receive and send data in binary
format. A schema is referenceable as a tuple consisting of:

• A subject that is the logical name of the schema

• The schema version

• The schema format, which describes the binary format of the data

This following sections goes through the details of various components involved in schema
evolution process.

23.11.1. Schema Registry Client

The client-side abstraction for interacting with schema registry servers is the SchemaRegistryClient
interface, which has the following structure:

public interface SchemaRegistryClient {

 SchemaRegistrationResponse register(String subject, String format, String schema);

 String fetch(SchemaReference schemaReference);

 String fetch(Integer id);

}

Spring Cloud Stream provides out-of-the-box implementations for interacting with its own schema
server and for interacting with the Confluent Schema Registry.

A client for the Spring Cloud Stream schema registry can be configured by using the
@EnableSchemaRegistryClient, as follows:

 @EnableBinding(Sink.class)
 @SpringBootApplication
 @EnableSchemaRegistryClient
 public static class AvroSinkApplication {
 ...
 }

The default converter is optimized to cache not only the schemas from the remote
server but also the parse() and toString() methods, which are quite expensive.
Because of this, it uses a DefaultSchemaRegistryClient that does not cache
responses. If you intend to change the default behavior, you can use the client
directly on your code and override it to the desired outcome. To do so, you have to
add the property spring.cloud.stream.schemaRegistryClient.cached=true to your
application properties.

Schema Registry Client Properties

The Schema Registry Client supports the following properties:

spring.cloud.stream.schemaRegistryClient.endpoint

The location of the schema-server. When setting this, use a full URL, including protocol (http or
https) , port, and context path.

Default
localhost:8990/

spring.cloud.stream.schemaRegistryClient.cached

Whether the client should cache schema server responses. Normally set to false, as the caching
happens in the message converter. Clients using the schema registry client should set this to
true.

Default
false

23.11.2. Avro Schema Registry Client Message Converters

For applications that have a SchemaRegistryClient bean registered with the application context,
Spring Cloud Stream auto configures an Apache Avro message converter for schema management.
This eases schema evolution, as applications that receive messages can get easy access to a writer
schema that can be reconciled with their own reader schema.

For outbound messages, if the content type of the channel is set to application/*+avro, the
MessageConverter is activated, as shown in the following example:

spring.cloud.stream.bindings.output.contentType=application/*+avro

During the outbound conversion, the message converter tries to infer the schema of each outbound

http://localhost:8990/

messages (based on its type) and register it to a subject (based on the payload type) by using the
SchemaRegistryClient. If an identical schema is already found, then a reference to it is retrieved. If
not, the schema is registered, and a new version number is provided. The message is sent with a
contentType header by using the following scheme:
application/[prefix].[subject].v[version]+avro, where prefix is configurable and subject is
deduced from the payload type.

For example, a message of the type User might be sent as a binary payload with a content type of
application/vnd.user.v2+avro, where user is the subject and 2 is the version number.

When receiving messages, the converter infers the schema reference from the header of the
incoming message and tries to retrieve it. The schema is used as the writer schema in the
deserialization process.

Avro Schema Registry Message Converter Properties

If you have enabled Avro based schema registry client by setting
spring.cloud.stream.bindings.output.contentType=application/*+avro, you can customize the
behavior of the registration by setting the following properties.

spring.cloud.stream.schema.avro.dynamicSchemaGenerationEnabled

Enable if you want the converter to use reflection to infer a Schema from a POJO.

Default: false

spring.cloud.stream.schema.avro.readerSchema

Avro compares schema versions by looking at a writer schema (origin payload) and a reader
schema (your application payload). See the Avro documentation for more information. If set, this
overrides any lookups at the schema server and uses the local schema as the reader schema.
Default: null

spring.cloud.stream.schema.avro.schemaLocations

Registers any .avsc files listed in this property with the Schema Server.

Default: empty

spring.cloud.stream.schema.avro.prefix

The prefix to be used on the Content-Type header.

Default: vnd

23.11.3. Apache Avro Message Converters

Spring Cloud Stream provides support for schema-based message converters through its spring-
cloud-stream-schema module. Currently, the only serialization format supported out of the box for
schema-based message converters is Apache Avro, with more formats to be added in future
versions.

The spring-cloud-stream-schema module contains two types of message converters that can be used
for Apache Avro serialization:

https://avro.apache.org/docs/1.7.6/spec.html

• Converters that use the class information of the serialized or deserialized objects or a schema
with a location known at startup.

• Converters that use a schema registry. They locate the schemas at runtime and dynamically
register new schemas as domain objects evolve.

23.11.4. Converters with Schema Support

The AvroSchemaMessageConverter supports serializing and deserializing messages either by using a
predefined schema or by using the schema information available in the class (either reflectively or
contained in the SpecificRecord). If you provide a custom converter, then the default
AvroSchemaMessageConverter bean is not created. The following example shows a custom
converter:

To use custom converters, you can simply add it to the application context, optionally specifying
one or more MimeTypes with which to associate it. The default MimeType is application/avro.

If the target type of the conversion is a GenericRecord, a schema must be set.

The following example shows how to configure a converter in a sink application by registering the
Apache Avro MessageConverter without a predefined schema. In this example, note that the mime
type value is avro/bytes, not the default application/avro.

@EnableBinding(Sink.class)
@SpringBootApplication
public static class SinkApplication {

 ...

 @Bean
 public MessageConverter userMessageConverter() {
 return new AvroSchemaMessageConverter(MimeType.valueOf("avro/bytes"));
 }
}

Conversely, the following application registers a converter with a predefined schema (found on the
classpath):

@EnableBinding(Sink.class)
@SpringBootApplication
public static class SinkApplication {

 ...

 @Bean
 public MessageConverter userMessageConverter() {
 AvroSchemaMessageConverter converter = new
AvroSchemaMessageConverter(MimeType.valueOf("avro/bytes"));
 converter.setSchemaLocation(new ClassPathResource("schemas/User.avro"));
 return converter;
 }
}

23.11.5. Schema Registry Server

Spring Cloud Stream provides a schema registry server implementation. To use it, you can add the
spring-cloud-stream-schema-server artifact to your project and use the @EnableSchemaRegistryServer
annotation, which adds the schema registry server REST controller to your application. This
annotation is intended to be used with Spring Boot web applications, and the listening port of the
server is controlled by the server.port property. The spring.cloud.stream.schema.server.path
property can be used to control the root path of the schema server (especially when it is embedded
in other applications). The spring.cloud.stream.schema.server.allowSchemaDeletion boolean
property enables the deletion of a schema. By default, this is disabled.

The schema registry server uses a relational database to store the schemas. By default, it uses an
embedded database. You can customize the schema storage by using the Spring Boot SQL database
and JDBC configuration options.

The following example shows a Spring Boot application that enables the schema registry:

@SpringBootApplication
@EnableSchemaRegistryServer
public class SchemaRegistryServerApplication {
 public static void main(String[] args) {
 SpringApplication.run(SchemaRegistryServerApplication.class, args);
 }
}

Schema Registry Server API

The Schema Registry Server API consists of the following operations:

• POST / — see “Registering a New Schema”

• 'GET /{subject}/{format}/{version}' — see “Retrieving an Existing Schema by Subject, Format,
and Version”

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#boot-features-sql
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#boot-features-sql

• GET /{subject}/{format} — see “Retrieving an Existing Schema by Subject and Format”

• GET /schemas/{id} — see “Retrieving an Existing Schema by ID”

• DELETE /{subject}/{format}/{version} — see “Deleting a Schema by Subject, Format, and
Version”

• DELETE /schemas/{id} — see “Deleting a Schema by ID”

• DELETE /{subject} — see “Deleting a Schema by Subject”

Registering a New Schema

To register a new schema, send a POST request to the / endpoint.

The / accepts a JSON payload with the following fields:

• subject: The schema subject

• format: The schema format

• definition: The schema definition

Its response is a schema object in JSON, with the following fields:

• id: The schema ID

• subject: The schema subject

• format: The schema format

• version: The schema version

• definition: The schema definition

Retrieving an Existing Schema by Subject, Format, and Version

To retrieve an existing schema by subject, format, and version, send GET request to the
/{subject}/{format}/{version} endpoint.

Its response is a schema object in JSON, with the following fields:

• id: The schema ID

• subject: The schema subject

• format: The schema format

• version: The schema version

• definition: The schema definition

Retrieving an Existing Schema by Subject and Format

To retrieve an existing schema by subject and format, send a GET request to the /subject/format
endpoint.

Its response is a list of schemas with each schema object in JSON, with the following fields:

• id: The schema ID

• subject: The schema subject

• format: The schema format

• version: The schema version

• definition: The schema definition

Retrieving an Existing Schema by ID

To retrieve a schema by its ID, send a GET request to the /schemas/{id} endpoint.

Its response is a schema object in JSON, with the following fields:

• id: The schema ID

• subject: The schema subject

• format: The schema format

• version: The schema version

• definition: The schema definition

Deleting a Schema by Subject, Format, and Version

To delete a schema identified by its subject, format, and version, send a DELETE request to the
/{subject}/{format}/{version} endpoint.

Deleting a Schema by ID

To delete a schema by its ID, send a DELETE request to the /schemas/{id} endpoint.

Deleting a Schema by Subject

DELETE /{subject}

Delete existing schemas by their subject.

This note applies to users of Spring Cloud Stream 1.1.0.RELEASE only. Spring Cloud
Stream 1.1.0.RELEASE used the table name, schema, for storing Schema objects.
Schema is a keyword in a number of database implementations. To avoid any
conflicts in the future, starting with 1.1.1.RELEASE, we have opted for the name
SCHEMA_REPOSITORY for the storage table. Any Spring Cloud Stream 1.1.0.RELEASE
users who upgrade should migrate their existing schemas to the new table before
upgrading.

Using Confluent’s Schema Registry

The default configuration creates a DefaultSchemaRegistryClient bean. If you want to use the
Confluent schema registry, you need to create a bean of type ConfluentSchemaRegistryClient, which
supersedes the one configured by default by the framework. The following example shows how to
create such a bean:

@Bean
public SchemaRegistryClient
schemaRegistryClient(@Value("${spring.cloud.stream.schemaRegistryClient.endpoint}")
String endpoint){
 ConfluentSchemaRegistryClient client = new ConfluentSchemaRegistryClient();
 client.setEndpoint(endpoint);
 return client;
}

The ConfluentSchemaRegistryClient is tested against Confluent platform version
4.0.0.

23.11.6. Schema Registration and Resolution

To better understand how Spring Cloud Stream registers and resolves new schemas and its use of
Avro schema comparison features, we provide two separate subsections:

• “Schema Registration Process (Serialization)”

• “Schema Resolution Process (Deserialization)”

Schema Registration Process (Serialization)

The first part of the registration process is extracting a schema from the payload that is being sent
over a channel. Avro types such as SpecificRecord or GenericRecord already contain a schema,
which can be retrieved immediately from the instance. In the case of POJOs, a schema is inferred if
the spring.cloud.stream.schema.avro.dynamicSchemaGenerationEnabled property is set to true (the
default).

[schema resolution] | https://raw.github.com/spring-

cloud/master/docs/src/main/asciidoc/images/schema_resolution.png

Figure 14. Schema Writer Resolution Process

Ones a schema is obtained, the converter loads its metadata (version) from the remote server. First,
it queries a local cache. If no result is found, it submits the data to the server, which replies with
versioning information. The converter always caches the results to avoid the overhead of querying
the Schema Server for every new message that needs to be serialized.

[registration] | https://raw.github.com/spring-

cloud/master/docs/src/main/asciidoc/images/registration.png

Figure 15. Schema Registration Process

With the schema version information, the converter sets the contentType header of the message to
carry the version information — for example: application/vnd.user.v1+avro.

Schema Resolution Process (Deserialization)

When reading messages that contain version information (that is, a contentType header with a
scheme like the one described under “Schema Registration Process (Serialization)”), the converter
queries the Schema server to fetch the writer schema of the message. Once it has found the correct
schema of the incoming message, it retrieves the reader schema and, by using Avro’s schema
resolution support, reads it into the reader definition (setting defaults and any missing properties).

[schema reading] | https://raw.github.com/spring-

cloud/master/docs/src/main/asciidoc/images/schema_reading.png

Figure 16. Schema Reading Resolution Process

You should understand the difference between a writer schema (the application
that wrote the message) and a reader schema (the receiving application). We
suggest taking a moment to read the Avro terminology and understand the
process. Spring Cloud Stream always fetches the writer schema to determine how
to read a message. If you want to get Avro’s schema evolution support working,
you need to make sure that a readerSchema was properly set for your application.

23.12. Inter-Application Communication
Spring Cloud Stream enables communication between applications. Inter-application
communication is a complex issue spanning several concerns, as described in the following topics:

• “Connecting Multiple Application Instances”

• “Instance Index and Instance Count”

• “Partitioning”

23.12.1. Connecting Multiple Application Instances

While Spring Cloud Stream makes it easy for individual Spring Boot applications to connect to
messaging systems, the typical scenario for Spring Cloud Stream is the creation of multi-application
pipelines, where microservice applications send data to each other. You can achieve this scenario
by correlating the input and output destinations of “adjacent” applications.

Suppose a design calls for the Time Source application to send data to the Log Sink application. You
could use a common destination named ticktock for bindings within both applications.

Time Source (that has the channel name output) would set the following property:

spring.cloud.stream.bindings.output.destination=ticktock

Log Sink (that has the channel name input) would set the following property:

spring.cloud.stream.bindings.input.destination=ticktock

23.12.2. Instance Index and Instance Count

When scaling up Spring Cloud Stream applications, each instance can receive information about
how many other instances of the same application exist and what its own instance index is. Spring
Cloud Stream does this through the spring.cloud.stream.instanceCount and
spring.cloud.stream.instanceIndex properties. For example, if there are three instances of a HDFS
sink application, all three instances have spring.cloud.stream.instanceCount set to 3, and the
individual applications have spring.cloud.stream.instanceIndex set to 0, 1, and 2, respectively.

https://avro.apache.org/docs/1.7.6/spec.html

When Spring Cloud Stream applications are deployed through Spring Cloud Data Flow, these
properties are configured automatically; when Spring Cloud Stream applications are launched
independently, these properties must be set correctly. By default, spring.cloud.stream.instanceCount
is 1, and spring.cloud.stream.instanceIndex is 0.

In a scaled-up scenario, correct configuration of these two properties is important for addressing
partitioning behavior (see below) in general, and the two properties are always required by certain
binders (for example, the Kafka binder) in order to ensure that data are split correctly across
multiple consumer instances.

23.12.3. Partitioning

Partitioning in Spring Cloud Stream consists of two tasks:

• “Configuring Output Bindings for Partitioning”

• “Configuring Input Bindings for Partitioning”

Configuring Output Bindings for Partitioning

You can configure an output binding to send partitioned data by setting one and only one of its
partitionKeyExpression or partitionKeyExtractorName properties, as well as its partitionCount

property.

For example, the following is a valid and typical configuration:

spring.cloud.stream.bindings.output.producer.partitionKeyExpression=payload.id
spring.cloud.stream.bindings.output.producer.partitionCount=5

Based on that example configuration, data is sent to the target partition by using the following logic.

A partition key’s value is calculated for each message sent to a partitioned output channel based on
the partitionKeyExpression. The partitionKeyExpression is a SpEL expression that is evaluated
against the outbound message for extracting the partitioning key.

If a SpEL expression is not sufficient for your needs, you can instead calculate the partition key
value by providing an implementation of
org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy and configuring it as a
bean (by using the @Bean annotation). If you have more then one bean of type
org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy available in the
Application Context, you can further filter it by specifying its name with the
partitionKeyExtractorName property, as shown in the following example:

--spring.cloud.stream.bindings.output.producer.partitionKeyExtractorName=customPartiti
onKeyExtractor
--spring.cloud.stream.bindings.output.producer.partitionCount=5
. . .
@Bean
public CustomPartitionKeyExtractorClass customPartitionKeyExtractor() {
 return new CustomPartitionKeyExtractorClass();
}

In previous versions of Spring Cloud Stream, you could specify the implementation
of org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy by
setting the
spring.cloud.stream.bindings.output.producer.partitionKeyExtractorClass

property. Since version 2.0, this property is deprecated, and support for it will be
removed in a future version.

Once the message key is calculated, the partition selection process determines the target partition
as a value between 0 and partitionCount - 1. The default calculation, applicable in most scenarios,
is based on the following formula: key.hashCode() % partitionCount. This can be customized on the
binding, either by setting a SpEL expression to be evaluated against the 'key' (through the
partitionSelectorExpression property) or by configuring an implementation of
org.springframework.cloud.stream.binder.PartitionSelectorStrategy as a bean (by using the @Bean
annotation). Similar to the PartitionKeyExtractorStrategy, you can further filter it by using the
spring.cloud.stream.bindings.output.producer.partitionSelectorName property when more than
one bean of this type is available in the Application Context, as shown in the following example:

--spring.cloud.stream.bindings.output.producer.partitionSelectorName=customPartitionSe
lector
. . .
@Bean
public CustomPartitionSelectorClass customPartitionSelector() {
 return new CustomPartitionSelectorClass();
}

In previous versions of Spring Cloud Stream you could specify the implementation
of org.springframework.cloud.stream.binder.PartitionSelectorStrategy by setting
the spring.cloud.stream.bindings.output.producer.partitionSelectorClass

property. Since version 2.0, this property is deprecated and support for it will be
removed in a future version.

Configuring Input Bindings for Partitioning

An input binding (with the channel name input) is configured to receive partitioned data by setting
its partitioned property, as well as the instanceIndex and instanceCount properties on the
application itself, as shown in the following example:

spring.cloud.stream.bindings.input.consumer.partitioned=true
spring.cloud.stream.instanceIndex=3
spring.cloud.stream.instanceCount=5

The instanceCount value represents the total number of application instances between which the
data should be partitioned. The instanceIndex must be a unique value across the multiple instances,
with a value between 0 and instanceCount - 1. The instance index helps each application instance
to identify the unique partition(s) from which it receives data. It is required by binders using
technology that does not support partitioning natively. For example, with RabbitMQ, there is a
queue for each partition, with the queue name containing the instance index. With Kafka, if
autoRebalanceEnabled is true (default), Kafka takes care of distributing partitions across instances,
and these properties are not required. If autoRebalanceEnabled is set to false, the instanceCount and
instanceIndex are used by the binder to determine which partition(s) the instance subscribes to
(you must have at least as many partitions as there are instances). The binder allocates the
partitions instead of Kafka. This might be useful if you want messages for a particular partition to
always go to the same instance. When a binder configuration requires them, it is important to set
both values correctly in order to ensure that all of the data is consumed and that the application
instances receive mutually exclusive datasets.

While a scenario in which using multiple instances for partitioned data processing may be complex
to set up in a standalone case, Spring Cloud Dataflow can simplify the process significantly by
populating both the input and output values correctly and by letting you rely on the runtime
infrastructure to provide information about the instance index and instance count.

23.13. Testing
Spring Cloud Stream provides support for testing your microservice applications without
connecting to a messaging system. You can do that by using the TestSupportBinder provided by the
spring-cloud-stream-test-support library, which can be added as a test dependency to the
application, as shown in the following example:

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-test-support</artifactId>
 <scope>test</scope>
 </dependency>

The TestSupportBinder uses the Spring Boot autoconfiguration mechanism to
supersede the other binders found on the classpath. Therefore, when adding a
binder as a dependency, you must make sure that the test scope is being used.

The TestSupportBinder lets you interact with the bound channels and inspect any messages sent and
received by the application.

For outbound message channels, the TestSupportBinder registers a single subscriber and retains the
messages emitted by the application in a MessageCollector. They can be retrieved during tests and

have assertions made against them.

You can also send messages to inbound message channels so that the consumer application can
consume the messages. The following example shows how to test both input and output channels
on a processor:

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment= SpringBootTest.WebEnvironment.RANDOM_PORT)
public class ExampleTest {

 @Autowired
 private Processor processor;

 @Autowired
 private MessageCollector messageCollector;

 @Test
 @SuppressWarnings("unchecked")
 public void testWiring() {
 Message<String> message = new GenericMessage<>("hello");
 processor.input().send(message);
 Message<String> received = (Message<String>)
messageCollector.forChannel(processor.output()).poll();
 assertThat(received.getPayload(), equalTo("hello world"));
 }

 @SpringBootApplication
 @EnableBinding(Processor.class)
 public static class MyProcessor {

 @Autowired
 private Processor channels;

 @Transformer(inputChannel = Processor.INPUT, outputChannel = Processor.OUTPUT)
 public String transform(String in) {
 return in + " world";
 }
 }
}

In the preceding example, we create an application that has an input channel and an output
channel, both bound through the Processor interface. The bound interface is injected into the test so
that we can have access to both channels. We send a message on the input channel, and we use the
MessageCollector provided by Spring Cloud Stream’s test support to capture that the message has
been sent to the output channel as a result. Once we have received the message, we can validate
that the component functions correctly.

23.13.1. Disabling the Test Binder Autoconfiguration

The intent behind the test binder superseding all the other binders on the classpath is to make it
easy to test your applications without making changes to your production dependencies. In some
cases (for example, integration tests) it is useful to use the actual production binders instead, and
that requires disabling the test binder autoconfiguration. To do so, you can exclude the
org.springframework.cloud.stream.test.binder.TestSupportBinderAutoConfiguration class by using
one of the Spring Boot autoconfiguration exclusion mechanisms, as shown in the following
example:

 @SpringBootApplication(exclude = TestSupportBinderAutoConfiguration.class)
 @EnableBinding(Processor.class)
 public static class MyProcessor {

 @Transformer(inputChannel = Processor.INPUT, outputChannel = Processor.OUTPUT)
 public String transform(String in) {
 return in + " world";
 }
 }

When autoconfiguration is disabled, the test binder is available on the classpath, and its
defaultCandidate property is set to false so that it does not interfere with the regular user
configuration. It can be referenced under the name, test, as shown in the following example:

spring.cloud.stream.defaultBinder=test

23.13.2. Spring Integration Test Binder

Current test binder was specifically designed to facilitate unit testing of the actual messaging
components and thus bypasses some of the core functionality of the binder API. While such light-
weight approach is sufficient for a lot of cases, it usually requires additional integration testing with
real binders (e.g., Rabbit, Kafka etc).

To begin bridging the gap between unit and integration testing we’ve developed a new test binder
which uses Spring Integration framework as an in-JVM Message Broker essentially giving you the
best of both worlds - a real binder without the networking.

To enable Spring Integration Test Binder all you need is:

• Add required dependencies

• Remove the dependency for spring-cloud-stream-test-support

Add required dependencies

Below is the example of the required Maven POM entries which could be easily retrofitted into
Gradle.

https://spring.io/projects/spring-integration

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream</artifactId>
 <version>${spring.cloud.strea.version}</version>
 <type>test-jar</type>
 <scope>test</scope>
 <classifier>test-binder</classifier>
</dependency>
. . .
<plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <executions>
 <execution>
 <configuration>
 <includes>
 <include>**/integration/*</include>
 </includes>
 <classifier>test-binder</classifier>
 </configuration>
 <goals>
 <goal>test-jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
</plugins>

Remove the dependency for spring-cloud-stream-test-support

To avoid conflicts with the existing test binder you must eremove the following entry

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-test-support</artifactId>
 <scope>test</scope>
</dependency>

Now you can test your microservice as a simple unit test

@SpringBootApplication
@EnableBinding(Processor.class)
public class DemoTestBinderApplication {

 public static void main(String[] args) {
 SpringApplication.run(DemoTestBinderApplication.class, args);
 }

 @StreamListener(Processor.INPUT)
 @SendTo(Processor.OUTPUT)
 public String echo(String value) {
 return value;
 }
}

. . .

@Test
public void sampleTest() {
 ApplicationContext context = new SpringApplicationBuilder(
 TestChannelBinderConfiguration.class,
 DemoTestBinderApplication.class)
 .web(WebApplicationType.NONE).run();
 InputDestination source = context.getBean(InputDestination.class);
 OutputDestination target = context.getBean(OutputDestination.class);
 source.send(new GenericMessage<byte[]>("hello".getBytes()));
 System.out.println("Result: " + new String(target.receive().getPayload()));
}

In the above you simply create an ApplicationContext with your configuration (your application)
while additionally supplying TestChannelBinderConfiguration provided by the framework. Then you
access InputDestination and OutputDestination beans to send/receive messages. In the context of
this binder InputDestination and OutputDestination emulate remote destinations such as Rabbit
exchange/queue or Kafka topic.

In the future we plan to simplify the API.

In its current state Spring Integration Test Binder only supports the three bindings
provided by the framework (Source, Processor, Sink) specifically to promote light-
weight microservices architectures rather then general purpose messaging
applications.

Spring Integration Test Binder and PollableMessageSource

Spring Integration Test Binder also allows you to write tests when working with
PollableMessageSource (see Using Polled Consumers for more details).

The important thing that needs to be understood though is that polling is not event-driven, and that
PollableMessageSource is a strategy which exposes operation to produce (poll for) a Message

(singular). How often you poll or how many threads you use or where you’re polling from (message
queue or file system) is entirely up to you; In other words it is your responsibility to configure
Poller or Threads or the actual source of Message. Luckily Spring has plenty of abstractions to
configure exactly that.

Let’s look at the example:

@Test
public void samplePollingTest() {
 ApplicationContext context = new
SpringApplicationBuilder(SamplePolledConfiguration.class)
 .web(WebApplicationType.NONE)
 .run("--spring.jmx.enabled=false");
 OutputDestination destination = context.getBean(OutputDestination.class);
 System.out.println("Message 1: " + new
String(destination.receive().getPayload()));
 System.out.println("Message 2: " + new
String(destination.receive().getPayload()));
 System.out.println("Message 3: " + new
String(destination.receive().getPayload()));
}

@EnableBinding(SamplePolledConfiguration.PolledConsumer.class)
@Import(TestChannelBinderConfiguration.class)
@EnableAutoConfiguration
public static class SamplePolledConfiguration {
 @Bean
 public ApplicationRunner poller(PollableMessageSource polledMessageSource,
MessageChannel output, TaskExecutor taskScheduler) {
 return args -> {
 taskScheduler.execute(() -> {
 for (int i = 0; i < 3; i++) {
 try {
 if (!polledMessageSource.poll(m -> {
 String newPayload = ((String)
m.getPayload()).toUpperCase();
 output.send(new GenericMessage<>(newPayload));
 })) {
 Thread.sleep(2000);
 }
 }
 catch (Exception e) {
 // handle failure
 }
 }
 });
 };
 }

 public static interface PolledConsumer extends Source {
 @Input
 PollableMessageSource pollableSource();
 }
}

The above (very rudimentary) example will produce 3 messages in 2 second intervals sending them
to the output destination of Source which this binder sends to OutputDestination where we retrieve

them (for any assertions). Currently it prints the following:

Message 1: POLLED DATA
Message 2: POLLED DATA
Message 3: POLLED DATA

As you can see the data is the same. That is because this binder defines a default implementation of
the actual MessageSource - the source from which the Messages are polled using poll() operation.
While sufficient for most testing scenarios, there are cases where you may want to define your own
MessageSource. To do so simply configure a bean of type MessageSource in your test configuration
providing your own implementation of Message sourcing.

Here is the example:

@Bean
public MessageSource<?> source() {
 return () -> new GenericMessage<>("My Own Data " + UUID.randomUUID());
}

rendering the following output;

Message 1: MY OWN DATA 1C180A91-E79F-494F-ABF4-BA3F993710DA
Message 2: MY OWN DATA D8F3A477-5547-41B4-9434-E69DA7616FEE
Message 3: MY OWN DATA 20BF2E64-7FF4-4CB6-A823-4053D30B5C74

DO NOT name this bean messageSource as it is going to be in conflict with the bean
of the same name (different type) provided by Spring Boot for unrelated reasons.

23.14. Health Indicator
Spring Cloud Stream provides a health indicator for binders. It is registered under the name binders
and can be enabled or disabled by setting the management.health.binders.enabled property.

To enable health check you first need to enable both "web" and "actuator" by including its
dependencies (see [spring-cloud-stream-preface-actuator-web-dependencies])

If management.health.binders.enabled is not set explicitly by the application, then
management.health.defaults.enabled is matched as true and the binder health indicators are
enabled. If you want to disable health indicator completely, then you have to set
management.health.binders.enabled to false.

You can use Spring Boot actuator health endpoint to access the health indicator - /actuator/health.
By default, you will only receive the top level application status when you hit the above endpoint.
In order to receive the full details from the binder specific health indicators, you need to include
the property management.endpoint.health.show-details with the value ALWAYS in your application.

Health indicators are binder-specific and certain binder implementations may not necessarily
provide a health indicator.

If you want to completely disable all health indicators available out of the box and instead provide
your own health indicators, you can do so by setting property management.health.binders.enabled to
false and then provide your own HealthIndicator beans in your application. In this case, the health
indicator infrastructure from Spring Boot will still pick up these custom beans. Even if you are not
disabling the binder health indicators, you can still enhance the health checks by providing your
own HealthIndicator beans in addition to the out of the box health checks.

When you have multiple binders in the same application, health indicators are enabled by default
unless the application turns them off by setting management.health.binders.enabled to false. In this
case, if the user wants to disable health check for a subset of the binders, then that should be done
by setting management.health.binders.enabled to false in the multi binder configurations’s
environment. See Connecting to Multiple Systems for details on how environment specific
properties can be provided.

If there are multiple binders present in the classpath but not all of them are used in the application,
this may cause some issues in the context of health indicators. There may be implementation
specific details as to how the health checks are performed. For example, a Kafka binder may decide
the status as DOWN if there are no destinations registered by the binder. For this reason, if you
include a binder in the classpath, it is advised to use that binder by providing at least one binding
(for E.g. through EnableBinding). If you don’t have any bindings to provide for this binder, then that
is an indication that you don’t need to include that binder in the classpath.

Lets take a concrete situation. Imagine you have both Kafka and Kafka Streams binders present in
the classpath, but only use the Kafka Streams binder in the application code, i.e. only provide
bindings using the Kafka Streams binder. Since Kafka binder is not used and it has specific checks
to see if any destinations are registered, the binder health heck will fail. The top level application
health check status will be reported as DOWN. In this situation, you can simply remove the
dependency for kafka binder from your application since you are not using it.

23.15. Metrics Emitter
Spring Boot Actuator provides dependency management and auto-configuration for Micrometer, an
application metrics facade that supports numerous monitoring systems.

Spring Cloud Stream provides support for emitting any available micrometer-based metrics to a
binding destination, allowing for periodic collection of metric data from stream applications
without relying on polling individual endpoints.

Metrics Emitter is activated by defining the
spring.cloud.stream.bindings.applicationMetrics.destination property, which specifies the name
of the binding destination used by the current binder to publish metric messages.

For example:

spring.cloud.stream.bindings.applicationMetrics.destination=myMetricDestination

https://micrometer.io/
https://docs.spring.io/spring-boot/docs/2.0.0.RELEASE/reference/htmlsingle/#production-ready-metrics

The preceding example instructs the binder to bind to myMetricDestination (that is, Rabbit
exchange, Kafka topic, and others).

The following properties can be used for customizing the emission of metrics:

spring.cloud.stream.metrics.key

The name of the metric being emitted. Should be a unique value per application.

Default:
${spring.application.name:${vcap.application.name:${spring.config.name:application}}}

spring.cloud.stream.metrics.properties

Allows white listing application properties that are added to the metrics payload

Default: null.

spring.cloud.stream.metrics.meter-filter

Pattern to control the 'meters' one wants to capture. For example, specifying
spring.integration.* captures metric information for meters whose name starts with
spring.integration.

Default: all 'meters' are captured.

spring.cloud.stream.metrics.schedule-interval

Interval to control the rate of publishing metric data.

Default: 1 min

Consider the following:

java -jar time-source.jar \
 --spring.cloud.stream.bindings.applicationMetrics.destination=someMetrics \
 --spring.cloud.stream.metrics.properties=spring.application** \
 --spring.cloud.stream.metrics.meter-filter=spring.integration.*

The following example shows the payload of the data published to the binding destination as a
result of the preceding command:

{
 "name": "application",
 "createdTime": "2018-03-23T14:48:12.700Z",
 "properties": {
 },
 "metrics": [
 {
 "id": {
 "name": "spring.integration.send",
 "tags": [
 {
 "key": "exception",
 "value": "none"
 },
 {
 "key": "name",
 "value": "input"
 },
 {
 "key": "result",
 "value": "success"
 },
 {
 "key": "type",
 "value": "channel"
 }
],
 "type": "TIMER",
 "description": "Send processing time",
 "baseUnit": "milliseconds"
 },
 "timestamp": "2018-03-23T14:48:12.697Z",
 "sum": 130.340546,
 "count": 6,
 "mean": 21.72342433333333,
 "upper": 116.176299,
 "total": 130.340546
 }
]
}

Given that the format of the Metric message has slightly changed after migrating to
Micrometer, the published message will also have a STREAM_CLOUD_STREAM_VERSION
header set to 2.x to help distinguish between Metric messages from the older
versions of the Spring Cloud Stream.

23.16. Samples
For Spring Cloud Stream samples, see the spring-cloud-stream-samples repository on GitHub.

23.16.1. Deploying Stream Applications on CloudFoundry

On CloudFoundry, services are usually exposed through a special environment variable called
VCAP_SERVICES.

When configuring your binder connections, you can use the values from an environment variable
as explained on the dataflow Cloud Foundry Server docs.

23.17. Binder Implementations
The following is the list of available binder implementations

• RabbitMQ

• Apache Kafka

• Amazon Kinesis

• Google PubSub (partner maintained)

• Solace PubSub+ (partner maintained)

• Azure Event Hubs (partner maintained)

https://github.com/spring-cloud/spring-cloud-stream-samples
https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES
http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started-ups
https://cloud.spring.io/spring-cloud-stream-binder-rabbit/
https://cloud.spring.io/spring-cloud-stream-binder-kafka/
https://github.com/spring-cloud/spring-cloud-stream-binder-aws-kinesis
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-pubsub-stream-binder
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-pubsub-stream-binder
https://github.com/SolaceProducts/spring-cloud-stream-binder-solace
https://github.com/SolaceProducts/spring-cloud-stream-binder-solace
https://github.com/Microsoft/spring-cloud-azure/tree/master/spring-cloud-azure-eventhub-stream-binder
https://github.com/Microsoft/spring-cloud-azure/tree/master/spring-cloud-azure-eventhub-stream-binder

Chapter 24. Binder Implementations

24.1. Apache Kafka Binder
This guide describes the Apache Kafka implementation of the Spring Cloud Stream Binder. It
contains information about its design, usage, and configuration options, as well as information on
how the Stream Cloud Stream concepts map onto Apache Kafka specific constructs. In addition, this
guide explains the Kafka Streams binding capabilities of Spring Cloud Stream.

Apache Kafka Binder

Usage

To use Apache Kafka binder, you need to add spring-cloud-stream-binder-kafka as a dependency to
your Spring Cloud Stream application, as shown in the following example for Maven:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-kafka</artifactId>
</dependency>

Alternatively, you can also use the Spring Cloud Stream Kafka Starter, as shown in the following
example for Maven:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-kafka</artifactId>
</dependency>

Overview

The following image shows a simplified diagram of how the Apache Kafka binder operates:

[kafka binder] | https://raw.github.com/spring-cloud/master/docs/src/main/asciidoc/images/kafka-

binder.png

Figure 17. Kafka Binder

The Apache Kafka Binder implementation maps each destination to an Apache Kafka topic. The
consumer group maps directly to the same Apache Kafka concept. Partitioning also maps directly to
Apache Kafka partitions as well.

The binder currently uses the Apache Kafka kafka-clients version 2.3.1. This client can
communicate with older brokers (see the Kafka documentation), but certain features may not be
available. For example, with versions earlier than 0.11.x.x, native headers are not supported. Also,
0.11.x.x does not support the autoAddPartitions property.

Configuration Options

This section contains the configuration options used by the Apache Kafka binder.

For common configuration options and properties pertaining to binder, see the core
documentation.

Kafka Binder Properties

spring.cloud.stream.kafka.binder.brokers

A list of brokers to which the Kafka binder connects.

Default: localhost.

spring.cloud.stream.kafka.binder.defaultBrokerPort

brokers allows hosts specified with or without port information (for example, host1,host2:port2).
This sets the default port when no port is configured in the broker list.

Default: 9092.

spring.cloud.stream.kafka.binder.configuration

Key/Value map of client properties (both producers and consumer) passed to all clients created
by the binder. Due to the fact that these properties are used by both producers and consumers,
usage should be restricted to common properties — for example, security settings. Unknown
Kafka producer or consumer properties provided through this configuration are filtered out and
not allowed to propagate. Properties here supersede any properties set in boot.

Default: Empty map.

spring.cloud.stream.kafka.binder.consumerProperties

Key/Value map of arbitrary Kafka client consumer properties. In addition to support known
Kafka consumer properties, unknown consumer properties are allowed here as well. Properties
here supersede any properties set in boot and in the configuration property above.

Default: Empty map.

spring.cloud.stream.kafka.binder.headers

The list of custom headers that are transported by the binder. Only required when

communicating with older applications (⇐ 1.3.x) with a kafka-clients version < 0.11.0.0. Newer
versions support headers natively.

Default: empty.

spring.cloud.stream.kafka.binder.healthTimeout

The time to wait to get partition information, in seconds. Health reports as down if this timer
expires.

Default: 10.

spring.cloud.stream.kafka.binder.requiredAcks

The number of required acks on the broker. See the Kafka documentation for the producer acks
property.

Default: 1.

spring.cloud.stream.kafka.binder.minPartitionCount

Effective only if autoCreateTopics or autoAddPartitions is set. The global minimum number of
partitions that the binder configures on topics on which it produces or consumes data. It can be
superseded by the partitionCount setting of the producer or by the value of instanceCount *
concurrency settings of the producer (if either is larger).

Default: 1.

spring.cloud.stream.kafka.binder.producerProperties

Key/Value map of arbitrary Kafka client producer properties. In addition to support known
Kafka producer properties, unknown producer properties are allowed here as well. Properties
here supersede any properties set in boot and in the configuration property above.

Default: Empty map.

spring.cloud.stream.kafka.binder.replicationFactor

The replication factor of auto-created topics if autoCreateTopics is active. Can be overridden on
each binding.

Default: 1.

spring.cloud.stream.kafka.binder.autoCreateTopics

If set to true, the binder creates new topics automatically. If set to false, the binder relies on the
topics being already configured. In the latter case, if the topics do not exist, the binder fails to
start.

This setting is independent of the auto.create.topics.enable setting of the
broker and does not influence it. If the server is set to auto-create topics, they
may be created as part of the metadata retrieval request, with default broker
settings.

Default: true.

spring.cloud.stream.kafka.binder.autoAddPartitions

If set to true, the binder creates new partitions if required. If set to false, the binder relies on the
partition size of the topic being already configured. If the partition count of the target topic is
smaller than the expected value, the binder fails to start.

Default: false.

spring.cloud.stream.kafka.binder.transaction.transactionIdPrefix

Enables transactions in the binder. See transaction.id in the Kafka documentation and
Transactions in the spring-kafka documentation. When transactions are enabled, individual
producer properties are ignored and all producers use the
spring.cloud.stream.kafka.binder.transaction.producer.* properties.

Default null (no transactions)

spring.cloud.stream.kafka.binder.transaction.producer.*

Global producer properties for producers in a transactional binder. See
spring.cloud.stream.kafka.binder.transaction.transactionIdPrefix and Kafka Producer
Properties and the general producer properties supported by all binders.

Default: See individual producer properties.

spring.cloud.stream.kafka.binder.headerMapperBeanName

The bean name of a KafkaHeaderMapper used for mapping spring-messaging headers to and from
Kafka headers. Use this, for example, if you wish to customize the trusted packages in a
BinderHeaderMapper bean that uses JSON deserialization for the headers. If this custom
BinderHeaderMapper bean is not made available to the binder using this property, then the binder
will look for a header mapper bean with the name kafkaBinderHeaderMapper that is of type
BinderHeaderMapper before falling back to a default BinderHeaderMapper created by the binder.

Default: none.

Kafka Consumer Properties

To avoid repetition, Spring Cloud Stream supports setting values for all channels,
in the format of spring.cloud.stream.kafka.default.consumer.<property>=<value>.

The following properties are available for Kafka consumers only and must be prefixed with
spring.cloud.stream.kafka.bindings.<channelName>.consumer..

admin.configuration

Since version 2.1.1, this property is deprecated in favor of topic.properties, and support for it
will be removed in a future version.

admin.replicas-assignment

Since version 2.1.1, this property is deprecated in favor of topic.replicas-assignment, and
support for it will be removed in a future version.

https://docs.spring.io/spring-kafka/reference/html/_reference.html#transactions

admin.replication-factor

Since version 2.1.1, this property is deprecated in favor of topic.replication-factor, and support
for it will be removed in a future version.

autoRebalanceEnabled

When true, topic partitions is automatically rebalanced between the members of a consumer
group. When false, each consumer is assigned a fixed set of partitions based on
spring.cloud.stream.instanceCount and spring.cloud.stream.instanceIndex. This requires both
the spring.cloud.stream.instanceCount and spring.cloud.stream.instanceIndex properties to be
set appropriately on each launched instance. The value of the spring.cloud.stream.instanceCount
property must typically be greater than 1 in this case.

Default: true.

ackEachRecord

When autoCommitOffset is true, this setting dictates whether to commit the offset after each
record is processed. By default, offsets are committed after all records in the batch of records
returned by consumer.poll() have been processed. The number of records returned by a poll can
be controlled with the max.poll.records Kafka property, which is set through the consumer
configuration property. Setting this to true may cause a degradation in performance, but doing
so reduces the likelihood of redelivered records when a failure occurs. Also, see the binder
requiredAcks property, which also affects the performance of committing offsets.

Default: false.

autoCommitOffset

Whether to autocommit offsets when a message has been processed. If set to false, a header
with the key kafka_acknowledgment of the type org.springframework.kafka.support.Acknowledgment
header is present in the inbound message. Applications may use this header for acknowledging
messages. See the examples section for details. When this property is set to false, Kafka binder
sets the ack mode to
org.springframework.kafka.listener.AbstractMessageListenerContainer.AckMode.MANUAL and the
application is responsible for acknowledging records. Also see ackEachRecord.

Default: true.

autoCommitOnError

Effective only if autoCommitOffset is set to true. If set to false, it suppresses auto-commits for
messages that result in errors and commits only for successful messages. It allows a stream to
automatically replay from the last successfully processed message, in case of persistent failures.
If set to true, it always auto-commits (if auto-commit is enabled). If not set (the default), it
effectively has the same value as enableDlq, auto-committing erroneous messages if they are sent
to a DLQ and not committing them otherwise.

Default: not set.

resetOffsets

Whether to reset offsets on the consumer to the value provided by startOffset. Must be false if a
KafkaRebalanceListener is provided; see Using a KafkaRebalanceListener.

Default: false.

startOffset

The starting offset for new groups. Allowed values: earliest and latest. If the consumer group is
set explicitly for the consumer 'binding' (through
spring.cloud.stream.bindings.<channelName>.group), 'startOffset' is set to earliest. Otherwise, it is
set to latest for the anonymous consumer group. Also see resetOffsets (earlier in this list).

Default: null (equivalent to earliest).

enableDlq

When set to true, it enables DLQ behavior for the consumer. By default, messages that result in
errors are forwarded to a topic named error.<destination>.<group>. The DLQ topic name can be
configurable by setting the dlqName property. This provides an alternative option to the more
common Kafka replay scenario for the case when the number of errors is relatively small and
replaying the entire original topic may be too cumbersome. See Dead-Letter Topic Processing
processing for more information. Starting with version 2.0, messages sent to the DLQ topic are
enhanced with the following headers: x-original-topic, x-exception-message, and x-exception-
stacktrace as byte[]. By default, a failed record is sent to the same partition number in the DLQ
topic as the original record. See Dead-Letter Topic Partition Selection for how to change that
behavior. Not allowed when destinationIsPattern is true.

Default: false.

dlqPartitions

When enableDlq is true, and this property is not set, a dead letter topic with the same number of
partitions as the primary topic(s) is created. Usually, dead-letter records are sent to the same
partition in the dead-letter topic as the original record. This behavior can be changed; see Dead-
Letter Topic Partition Selection. If this property is set to 1 and there is no DqlPartitionFunction
bean, all dead-letter records will be written to partition 0. If this property is greater than 1, you
MUST provide a DlqPartitionFunction bean. Note that the actual partition count is affected by
the binder’s minPartitionCount property.

Default: none

configuration

Map with a key/value pair containing generic Kafka consumer properties. In addition to having
Kafka consumer properties, other configuration properties can be passed here. For example
some properties needed by the application such as
spring.cloud.stream.kafka.bindings.input.consumer.configuration.foo=bar.

Default: Empty map.

dlqName

The name of the DLQ topic to receive the error messages.

Default: null (If not specified, messages that result in errors are forwarded to a topic named
error.<destination>.<group>).

dlqProducerProperties

Using this, DLQ-specific producer properties can be set. All the properties available through
kafka producer properties can be set through this property. When native decoding is enabled on
the consumer (i.e., useNativeDecoding: true) , the application must provide corresponding
key/value serializers for DLQ. This must be provided in the form of
dlqProducerProperties.configuration.key.serializer and
dlqProducerProperties.configuration.value.serializer.

Default: Default Kafka producer properties.

standardHeaders

Indicates which standard headers are populated by the inbound channel adapter. Allowed
values: none, id, timestamp, or both. Useful if using native deserialization and the first component
to receive a message needs an id (such as an aggregator that is configured to use a JDBC message
store).

Default: none

converterBeanName

The name of a bean that implements RecordMessageConverter. Used in the inbound channel
adapter to replace the default MessagingMessageConverter.

Default: null

idleEventInterval

The interval, in milliseconds, between events indicating that no messages have recently been
received. Use an ApplicationListener<ListenerContainerIdleEvent> to receive these events. See
Example: Pausing and Resuming the Consumer for a usage example.

Default: 30000

destinationIsPattern

When true, the destination is treated as a regular expression Pattern used to match topic names
by the broker. When true, topics are not provisioned, and enableDlq is not allowed, because the
binder does not know the topic names during the provisioning phase. Note, the time taken to
detect new topics that match the pattern is controlled by the consumer property
metadata.max.age.ms, which (at the time of writing) defaults to 300,000ms (5 minutes). This can be
configured using the configuration property above.

Default: false

topic.properties

A Map of Kafka topic properties used when provisioning new topics — for example,
spring.cloud.stream.kafka.bindings.input.consumer.topic.properties.message.format.version=0.
9.0.0

Default: none.

topic.replicas-assignment

A Map<Integer, List<Integer>> of replica assignments, with the key being the partition and the

value being the assignments. Used when provisioning new topics. See the NewTopic Javadocs in
the kafka-clients jar.

Default: none.

topic.replication-factor

The replication factor to use when provisioning topics. Overrides the binder-wide setting.
Ignored if replicas-assignments is present.

Default: none (the binder-wide default of 1 is used).

pollTimeout

Timeout used for polling in pollable consumers.

Default: 5 seconds.

Consuming Batches

Starting with version 3.0, when spring.cloud.stream.binding.<name>.consumer.batch-mode is set to
true, all of the records received by polling the Kafka Consumer will be presented as a List<?> to the
listener method. Otherwise, the method will be called with one record at a time. The size of the
batch is controlled by Kafka consumer properties max.poll.records, min.fetch.bytes,
fetch.max.wait.ms; refer to the Kafka documentation for more information.

Bear in mind that batch mode is not supported with @StreamListener - it only works with the newer
functional programming model.

Retry within the binder is not supported when using batch mode, so maxAttempts
will be overridden to 1. You can configure a SeekToCurrentBatchErrorHandler (using
a ListenerContainerCustomizer) to achieve similar functionality to retry in the
binder. You can also use a manual AckMode and call Ackowledgment.nack(index,
sleep) to commit the offsets for a partial batch and have the remaining records
redelivered. Refer to the Spring for Apache Kafka documentation for more
information about these techniques.

Kafka Producer Properties

To avoid repetition, Spring Cloud Stream supports setting values for all channels,
in the format of spring.cloud.stream.kafka.default.producer.<property>=<value>.

The following properties are available for Kafka producers only and must be prefixed with
spring.cloud.stream.kafka.bindings.<channelName>.producer..

admin.configuration

Since version 2.1.1, this property is deprecated in favor of topic.properties, and support for it
will be removed in a future version.

admin.replicas-assignment

Since version 2.1.1, this property is deprecated in favor of topic.replicas-assignment, and

https://docs.spring.io/spring-kafka/docs/2.3.0.BUILD-SNAPSHOT/reference/html/#committing-offsets

support for it will be removed in a future version.

admin.replication-factor

Since version 2.1.1, this property is deprecated in favor of topic.replication-factor, and support
for it will be removed in a future version.

bufferSize

Upper limit, in bytes, of how much data the Kafka producer attempts to batch before sending.

Default: 16384.

sync

Whether the producer is synchronous.

Default: false.

sendTimeoutExpression

A SpEL expression evaluated against the outgoing message used to evaluate the time to wait for
ack when synchronous publish is enabled — for example, headers['mySendTimeout']. The value of
the timeout is in milliseconds. With versions before 3.0, the payload could not be used unless
native encoding was being used because, by the time this expression was evaluated, the payload
was already in the form of a byte[]. Now, the expression is evaluated before the payload is
converted.

Default: none.

batchTimeout

How long the producer waits to allow more messages to accumulate in the same batch before
sending the messages. (Normally, the producer does not wait at all and simply sends all the
messages that accumulated while the previous send was in progress.) A non-zero value may
increase throughput at the expense of latency.

Default: 0.

messageKeyExpression

A SpEL expression evaluated against the outgoing message used to populate the key of the
produced Kafka message — for example, headers['myKey']. With versions before 3.0, the payload
could not be used unless native encoding was being used because, by the time this expression
was evaluated, the payload was already in the form of a byte[]. Now, the expression is evaluated
before the payload is converted.

Default: none.

headerPatterns

A comma-delimited list of simple patterns to match Spring messaging headers to be mapped to
the Kafka Headers in the ProducerRecord. Patterns can begin or end with the wildcard character
(asterisk). Patterns can be negated by prefixing with !. Matching stops after the first match
(positive or negative). For example !ask,as* will pass ash but not ask. id and timestamp are never
mapped.

Default: * (all headers - except the id and timestamp)

configuration

Map with a key/value pair containing generic Kafka producer properties.

Default: Empty map.

topic.properties

A Map of Kafka topic properties used when provisioning new topics — for example,
spring.cloud.stream.kafka.bindings.output.producer.topic.properties.message.format.version=0
.9.0.0

topic.replicas-assignment

A Map<Integer, List<Integer>> of replica assignments, with the key being the partition and the
value being the assignments. Used when provisioning new topics. See the NewTopic Javadocs in
the kafka-clients jar.

Default: none.

topic.replication-factor

The replication factor to use when provisioning topics. Overrides the binder-wide setting.
Ignored if replicas-assignments is present.

Default: none (the binder-wide default of 1 is used).

useTopicHeader

Set to true to override the default binding destination (topic name) with the value of the
KafkaHeaders.TOPIC message header in the outbound message. If the header is not present, the
default binding destination is used. Default: false.

recordMetadataChannel

The bean name of a MessageChannel to which successful send results should be sent; the bean
must exist in the application context. The message sent to the channel is the sent message (after
conversion, if any) with an additional header KafkaHeaders.RECORD_METADATA. The header contains
a RecordMetadata object provided by the Kafka client; it includes the partition and offset where
the record was written in the topic.

ResultMetadata meta = sendResultMsg.getHeaders().get(KafkaHeaders.RECORD_METADATA,
RecordMetadata.class)

Failed sends go the producer error channel (if configured); see Error Channels. Default: null

+

The Kafka binder uses the partitionCount setting of the producer as a hint to create
a topic with the given partition count (in conjunction with the minPartitionCount,
the maximum of the two being the value being used). Exercise caution when
configuring both minPartitionCount for a binder and partitionCount for an
application, as the larger value is used. If a topic already exists with a smaller
partition count and autoAddPartitions is disabled (the default), the binder fails to
start. If a topic already exists with a smaller partition count and autoAddPartitions
is enabled, new partitions are added. If a topic already exists with a larger number
of partitions than the maximum of (minPartitionCount or partitionCount), the
existing partition count is used.

compression

Set the compression.type producer property. Supported values are none, gzip, snappy and lz4. If
you override the kafka-clients jar to 2.1.0 (or later), as discussed in the Spring for Apache Kafka
documentation, and wish to use zstd compression, use
spring.cloud.stream.kafka.bindings.<binding-

name>.producer.configuration.compression.type=zstd.

Default: none.

closeTimeout

Timeout in number of seconds to wait for when closing the producer.

Default: 30

Usage examples

In this section, we show the use of the preceding properties for specific scenarios.

Example: Setting autoCommitOffset to false and Relying on Manual Acking

This example illustrates how one may manually acknowledge offsets in a consumer application.

This example requires that spring.cloud.stream.kafka.bindings.input.consumer.autoCommitOffset be
set to false. Use the corresponding input channel name for your example.

https://docs.spring.io/spring-kafka/docs/2.2.x/reference/html/deps-for-21x.html
https://docs.spring.io/spring-kafka/docs/2.2.x/reference/html/deps-for-21x.html

@SpringBootApplication
@EnableBinding(Sink.class)
public class ManuallyAcknowdledgingConsumer {

 public static void main(String[] args) {
 SpringApplication.run(ManuallyAcknowdledgingConsumer.class, args);
 }

 @StreamListener(Sink.INPUT)
 public void process(Message<?> message) {
 Acknowledgment acknowledgment =
message.getHeaders().get(KafkaHeaders.ACKNOWLEDGMENT, Acknowledgment.class);
 if (acknowledgment != null) {
 System.out.println("Acknowledgment provided");
 acknowledgment.acknowledge();
 }
 }
}

Example: Security Configuration

Apache Kafka 0.9 supports secure connections between client and brokers. To take advantage of
this feature, follow the guidelines in the Apache Kafka Documentation as well as the Kafka 0.9
security guidelines from the Confluent documentation. Use the
spring.cloud.stream.kafka.binder.configuration option to set security properties for all clients
created by the binder.

For example, to set security.protocol to SASL_SSL, set the following property:

spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_SSL

All the other security properties can be set in a similar manner.

When using Kerberos, follow the instructions in the reference documentation for creating and
referencing the JAAS configuration.

Spring Cloud Stream supports passing JAAS configuration information to the application by using a
JAAS configuration file and using Spring Boot properties.

Using JAAS Configuration Files

The JAAS and (optionally) krb5 file locations can be set for Spring Cloud Stream applications by
using system properties. The following example shows how to launch a Spring Cloud Stream
application with SASL and Kerberos by using a JAAS configuration file:

https://kafka.apache.org/090/documentation.html#security_configclients
https://docs.confluent.io/2.0.0/kafka/security.html
https://kafka.apache.org/090/documentation.html#security_sasl_clientconfig

 java -Djava.security.auth.login.config=/path.to/kafka_client_jaas.conf -jar log.jar \
 --spring.cloud.stream.kafka.binder.brokers=secure.server:9092 \
 --spring.cloud.stream.bindings.input.destination=stream.ticktock \
 --spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_PLAINTEXT

Using Spring Boot Properties

As an alternative to having a JAAS configuration file, Spring Cloud Stream provides a mechanism
for setting up the JAAS configuration for Spring Cloud Stream applications by using Spring Boot
properties.

The following properties can be used to configure the login context of the Kafka client:

spring.cloud.stream.kafka.binder.jaas.loginModule

The login module name. Not necessary to be set in normal cases.

Default: com.sun.security.auth.module.Krb5LoginModule.

spring.cloud.stream.kafka.binder.jaas.controlFlag

The control flag of the login module.

Default: required.

spring.cloud.stream.kafka.binder.jaas.options

Map with a key/value pair containing the login module options.

Default: Empty map.

The following example shows how to launch a Spring Cloud Stream application with SASL and
Kerberos by using Spring Boot configuration properties:

 java --spring.cloud.stream.kafka.binder.brokers=secure.server:9092 \
 --spring.cloud.stream.bindings.input.destination=stream.ticktock \
 --spring.cloud.stream.kafka.binder.autoCreateTopics=false \
 --spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_PLAINTEXT \
 --spring.cloud.stream.kafka.binder.jaas.options.useKeyTab=true \
 --spring.cloud.stream.kafka.binder.jaas.options.storeKey=true \

--spring.cloud.stream.kafka.binder.jaas.options.keyTab=/etc/security/keytabs/kafka_cli
ent.keytab \
 --spring.cloud.stream.kafka.binder.jaas.options.principal=kafka-client
-1@EXAMPLE.COM

The preceding example represents the equivalent of the following JAAS file:

KafkaClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 storeKey=true
 keyTab="/etc/security/keytabs/kafka_client.keytab"
 principal="kafka-client-1@EXAMPLE.COM";
};

If the topics required already exist on the broker or will be created by an administrator,
autocreation can be turned off and only client JAAS properties need to be sent.

Do not mix JAAS configuration files and Spring Boot properties in the same
application. If the -Djava.security.auth.login.config system property is already
present, Spring Cloud Stream ignores the Spring Boot properties.

Be careful when using the autoCreateTopics and autoAddPartitions with Kerberos.
Usually, applications may use principals that do not have administrative rights in
Kafka and Zookeeper. Consequently, relying on Spring Cloud Stream to
create/modify topics may fail. In secure environments, we strongly recommend
creating topics and managing ACLs administratively by using Kafka tooling.

Example: Pausing and Resuming the Consumer

If you wish to suspend consumption but not cause a partition rebalance, you can pause and resume
the consumer. This is facilitated by adding the Consumer as a parameter to your @StreamListener. To
resume, you need an ApplicationListener for ListenerContainerIdleEvent instances. The frequency
at which events are published is controlled by the idleEventInterval property. Since the consumer
is not thread-safe, you must call these methods on the calling thread.

The following simple application shows how to pause and resume:

@SpringBootApplication
@EnableBinding(Sink.class)
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @StreamListener(Sink.INPUT)
 public void in(String in, @Header(KafkaHeaders.CONSUMER) Consumer<?, ?> consumer)
{
 System.out.println(in);
 consumer.pause(Collections.singleton(new TopicPartition("myTopic", 0)));
 }

 @Bean
 public ApplicationListener<ListenerContainerIdleEvent> idleListener() {
 return event -> {
 System.out.println(event);
 if (event.getConsumer().paused().size() > 0) {
 event.getConsumer().resume(event.getConsumer().paused());
 }
 };
 }

}

Transactional Binder

Enable transactions by setting spring.cloud.stream.kafka.binder.transaction.transactionIdPrefix
to a non-empty value, e.g. tx-. When used in a processor application, the consumer starts the
transaction; any records sent on the consumer thread participate in the same transaction. When
the listener exits normally, the listener container will send the offset to the transaction and commit
it. A common producer factory is used for all producer bindings configured using
spring.cloud.stream.kafka.binder.transaction.producer.* properties; individual binding Kafka
producer properties are ignored.

Normal binder retries (and dead lettering) are not supported with transactions
because the retries will run in the original transaction, which may be rolled back
and any published records will be rolled back too. When retries are enabled (the
common property maxAttempts is greater than zero) the retry properties are used to
configure a DefaultAfterRollbackProcessor to enable retries at the container level.
Similarly, instead of publishing dead-letter records within the transaction, this
functionality is moved to the listener container, again via the
DefaultAfterRollbackProcessor which runs after the main transaction has rolled
back.

If you wish to use transactions in a source application, or from some arbitrary thread for producer-

only transaction (e.g. @Scheduled method), you must get a reference to the transactional producer
factory and define a KafkaTransactionManager bean using it.

@Bean
public PlatformTransactionManager transactionManager(BinderFactory binders) {
 ProducerFactory<byte[], byte[]> pf = ((KafkaMessageChannelBinder)
binders.getBinder(null,
 MessageChannel.class)).getTransactionalProducerFactory();
 return new KafkaTransactionManager<>(pf);
}

Notice that we get a reference to the binder using the BinderFactory; use null in the first argument
when there is only one binder configured. If more than one binder is configured, use the binder
name to get the reference. Once we have a reference to the binder, we can obtain a reference to the
ProducerFactory and create a transaction manager.

Then you would use normal Spring transaction support, e.g. TransactionTemplate or @Transactional,
for example:

public static class Sender {

 @Transactional
 public void doInTransaction(MessageChannel output, List<String> stuffToSend) {
 stuffToSend.forEach(stuff -> output.send(new GenericMessage<>(stuff)));
 }

}

If you wish to synchronize producer-only transactions with those from some other transaction
manager, use a ChainedTransactionManager.

Error Channels

Starting with version 1.3, the binder unconditionally sends exceptions to an error channel for each
consumer destination and can also be configured to send async producer send failures to an error
channel. See Error Handling for more information.

The payload of the ErrorMessage for a send failure is a KafkaSendFailureException with properties:

• failedMessage: The Spring Messaging Message<?> that failed to be sent.

• record: The raw ProducerRecord that was created from the failedMessage

There is no automatic handling of producer exceptions (such as sending to a Dead-Letter queue).
You can consume these exceptions with your own Spring Integration flow.

Kafka Metrics

Kafka binder module exposes the following metrics:

spring.cloud.stream.binder.kafka.offset: This metric indicates how many messages have not been
yet consumed from a given binder’s topic by a given consumer group. The metrics provided are
based on the Mircometer metrics library. The metric contains the consumer group information,
topic and the actual lag in committed offset from the latest offset on the topic. This metric is
particularly useful for providing auto-scaling feedback to a PaaS platform.

Tombstone Records (null record values)

When using compacted topics, a record with a null value (also called a tombstone record)
represents the deletion of a key. To receive such messages in a @StreamListener method, the
parameter must be marked as not required to receive a null value argument.

@StreamListener(Sink.INPUT)
public void in(@Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) byte[] key,
 @Payload(required = false) Customer customer) {
 // customer is null if a tombstone record
 ...
}

Using a KafkaRebalanceListener

Applications may wish to seek topics/partitions to arbitrary offsets when the partitions are initially
assigned, or perform other operations on the consumer. Starting with version 2.1, if you provide a
single KafkaRebalanceListener bean in the application context, it will be wired into all Kafka
consumer bindings.

public interface KafkaBindingRebalanceListener {

 /**
 * Invoked by the container before any pending offsets are committed.
 * @param bindingName the name of the binding.
 * @param consumer the consumer.
 * @param partitions the partitions.
 */
 default void onPartitionsRevokedBeforeCommit(String bindingName, Consumer<?,
?> consumer,
 Collection<TopicPartition> partitions) {

 }

 /**
 * Invoked by the container after any pending offsets are committed.
 * @param bindingName the name of the binding.
 * @param consumer the consumer.
 * @param partitions the partitions.
 */
 default void onPartitionsRevokedAfterCommit(String bindingName, Consumer<?, ?>
consumer, Collection<TopicPartition> partitions) {

 }

 /**
 * Invoked when partitions are initially assigned or after a rebalance.
 * Applications might only want to perform seek operations on an initial
assignment.
 * @param bindingName the name of the binding.
 * @param consumer the consumer.
 * @param partitions the partitions.
 * @param initial true if this is the initial assignment.
 */
 default void onPartitionsAssigned(String bindingName, Consumer<?, ?> consumer,
Collection<TopicPartition> partitions,
 boolean initial) {

 }

}

You cannot set the resetOffsets consumer property to true when you provide a rebalance listener.

Dead-Letter Topic Processing

Dead-Letter Topic Partition Selection

By default, records are published to the Dead-Letter topic using the same partition as the original
record. This means the Dead-Letter topic must have at least as many partitions as the original
record.

To change this behavior, add a DlqPartitionFunction implementation as a @Bean to the application
context. Only one such bean can be present. The function is provided with the consumer group, the
failed ConsumerRecord and the exception. For example, if you always want to route to partition 0, you
might use:

@Bean
public DlqPartitionFunction partitionFunction() {
 return (group, record, ex) -> 0;
}

If you set a consumer binding’s dlqPartitions property to 1 (and the binder’s
minPartitionCount is equal to 1), there is no need to supply a DlqPartitionFunction;
the framework will always use partition 0. If you set a consumer binding’s
dlqPartitions property to a value greater than 1 (or the binder’s minPartitionCount
is greater than 1), you must provide a DlqPartitionFunction bean, even if the
partition count is the same as the original topic’s.

Handling Records in a Dead-Letter Topic

Because the framework cannot anticipate how users would want to dispose of dead-lettered
messages, it does not provide any standard mechanism to handle them. If the reason for the dead-
lettering is transient, you may wish to route the messages back to the original topic. However, if the
problem is a permanent issue, that could cause an infinite loop. The sample Spring Boot application
within this topic is an example of how to route those messages back to the original topic, but it
moves them to a “parking lot” topic after three attempts. The application is another spring-cloud-
stream application that reads from the dead-letter topic. It terminates when no messages are
received for 5 seconds.

The examples assume the original destination is so8400out and the consumer group is so8400.

There are a couple of strategies to consider:

• Consider running the rerouting only when the main application is not running. Otherwise, the
retries for transient errors are used up very quickly.

• Alternatively, use a two-stage approach: Use this application to route to a third topic and
another to route from there back to the main topic.

The following code listings show the sample application:

application.properties

spring.cloud.stream.bindings.input.group=so8400replay
spring.cloud.stream.bindings.input.destination=error.so8400out.so8400

spring.cloud.stream.bindings.output.destination=so8400out

spring.cloud.stream.bindings.parkingLot.destination=so8400in.parkingLot

spring.cloud.stream.kafka.binder.configuration.auto.offset.reset=earliest

spring.cloud.stream.kafka.binder.headers=x-retries

Application

@SpringBootApplication
@EnableBinding(TwoOutputProcessor.class)
public class ReRouteDlqKApplication implements CommandLineRunner {

 private static final String X_RETRIES_HEADER = "x-retries";

 public static void main(String[] args) {
 SpringApplication.run(ReRouteDlqKApplication.class, args).close();
 }

 private final AtomicInteger processed = new AtomicInteger();

 @Autowired
 private MessageChannel parkingLot;

 @StreamListener(Processor.INPUT)
 @SendTo(Processor.OUTPUT)
 public Message<?> reRoute(Message<?> failed) {
 processed.incrementAndGet();
 Integer retries = failed.getHeaders().get(X_RETRIES_HEADER, Integer.class);
 if (retries == null) {
 System.out.println("First retry for " + failed);
 return MessageBuilder.fromMessage(failed)
 .setHeader(X_RETRIES_HEADER, new Integer(1))
 .setHeader(BinderHeaders.PARTITION_OVERRIDE,

failed.getHeaders().get(KafkaHeaders.RECEIVED_PARTITION_ID))
 .build();
 }
 else if (retries.intValue() < 3) {
 System.out.println("Another retry for " + failed);
 return MessageBuilder.fromMessage(failed)
 .setHeader(X_RETRIES_HEADER, new Integer(retries.intValue() + 1))
 .setHeader(BinderHeaders.PARTITION_OVERRIDE,

failed.getHeaders().get(KafkaHeaders.RECEIVED_PARTITION_ID))
 .build();
 }
 else {
 System.out.println("Retries exhausted for " + failed);
 parkingLot.send(MessageBuilder.fromMessage(failed)
 .setHeader(BinderHeaders.PARTITION_OVERRIDE,

failed.getHeaders().get(KafkaHeaders.RECEIVED_PARTITION_ID))
 .build());
 }
 return null;
 }

 @Override
 public void run(String... args) throws Exception {
 while (true) {
 int count = this.processed.get();
 Thread.sleep(5000);
 if (count == this.processed.get()) {
 System.out.println("Idle, terminating");
 return;
 }
 }
 }

 public interface TwoOutputProcessor extends Processor {

 @Output("parkingLot")
 MessageChannel parkingLot();

 }

}

Partitioning with the Kafka Binder

Apache Kafka supports topic partitioning natively.

Sometimes it is advantageous to send data to specific partitions — for example, when you want to
strictly order message processing (all messages for a particular customer should go to the same
partition).

The following example shows how to configure the producer and consumer side:

@SpringBootApplication
@EnableBinding(Source.class)
public class KafkaPartitionProducerApplication {

 private static final Random RANDOM = new Random(System.currentTimeMillis());

 private static final String[] data = new String[] {
 "foo1", "bar1", "qux1",
 "foo2", "bar2", "qux2",
 "foo3", "bar3", "qux3",
 "foo4", "bar4", "qux4",
 };

 public static void main(String[] args) {
 new SpringApplicationBuilder(KafkaPartitionProducerApplication.class)
 .web(false)
 .run(args);
 }

 @InboundChannelAdapter(channel = Source.OUTPUT, poller = @Poller(fixedRate =
"5000"))
 public Message<?> generate() {
 String value = data[RANDOM.nextInt(data.length)];
 System.out.println("Sending: " + value);
 return MessageBuilder.withPayload(value)
 .setHeader("partitionKey", value)
 .build();
 }

}

application.yml

spring:
 cloud:
 stream:
 bindings:
 output:
 destination: partitioned.topic
 producer:
 partition-key-expression: headers['partitionKey']
 partition-count: 12

The topic must be provisioned to have enough partitions to achieve the desired
concurrency for all consumer groups. The above configuration supports up to 12
consumer instances (6 if their concurrency is 2, 4 if their concurrency is 3, and so
on). It is generally best to “over-provision” the partitions to allow for future
increases in consumers or concurrency.

The preceding configuration uses the default partitioning (key.hashCode() %

partitionCount). This may or may not provide a suitably balanced algorithm,
depending on the key values. You can override this default by using the
partitionSelectorExpression or partitionSelectorClass properties.

Since partitions are natively handled by Kafka, no special configuration is needed on the consumer
side. Kafka allocates partitions across the instances.

The following Spring Boot application listens to a Kafka stream and prints (to the console) the
partition ID to which each message goes:

@SpringBootApplication
@EnableBinding(Sink.class)
public class KafkaPartitionConsumerApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(KafkaPartitionConsumerApplication.class)
 .web(false)
 .run(args);
 }

 @StreamListener(Sink.INPUT)
 public void listen(@Payload String in, @Header(KafkaHeaders.RECEIVED_PARTITION_ID)
int partition) {
 System.out.println(in + " received from partition " + partition);
 }

}

application.yml

spring:
 cloud:
 stream:
 bindings:
 input:
 destination: partitioned.topic
 group: myGroup

You can add instances as needed. Kafka rebalances the partition allocations. If the instance count
(or instance count * concurrency) exceeds the number of partitions, some consumers are idle.

24.2. Apache Kafka Streams Binder

24.2.1. Kafka Streams Binder

Usage

For using the Kafka Streams binder, you just need to add it to your Spring Cloud Stream application,
using the following maven coordinates:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-kafka-streams</artifactId>
</dependency>

A quick way to bootstrap a new project for Kafka Streams binder is to use Spring Initializr and then
select "Cloud Streams" and "Spring for Kafka Streams" as shown below

[spring initializr kafka streams] | https://raw.github.com/spring-

http://start.spring.io

cloud/master/docs/src/main/asciidoc/images/spring-initializr-kafka-streams.png

Overview

Spring Cloud Stream includes a binder implementation designed explicitly for Apache Kafka
Streams binding. With this native integration, a Spring Cloud Stream "processor" application can
directly use the Apache Kafka Streams APIs in the core business logic.

Kafka Streams binder implementation builds on the foundations provided by the Spring for Apache
Kafka project.

Kafka Streams binder provides binding capabilities for the three major types in Kafka Streams -
KStream, KTable and GlobalKTable.

Kafka Streams applications typically follow a model in which the records are read from an inbound
topic, apply business logic, and then write the transformed records to an outbound topic.
Alternatively, a Processor application with no outbound destination can be defined as well.

In the following sections, we are going to look at the details of Spring Cloud Stream’s integration
with Kafka Streams.

Programming Model

When using the programming model provided by Kafka Streams binder, both the high-level
Streams DSL and a mix of both the higher level and the lower level Processor-API can be used as
options. When mixing both higher and lower level API’s, this is usually achieved by invoking
transform or process API methods on KStream.

Functional Style

Starting with Spring Cloud Stream 3.0.0, Kafka Streams binder allows the applications to be
designed and developed using the functional programming style that is available in Java 8. This
means that the applications can be concisely represented as a lambda expression of types
java.util.function.Function or java.util.function.Consumer.

Let’s take a very basic example.

@SpringBootApplication
public class SimpleConsumerApplication {

 @Bean
 public java.util.function.Consumer<KStream<Object, String>> process() {

 return input ->
 input.foreach((key, value) -> {
 System.out.println("Key: " + key + " Value: " + value);
 });
 }
}

https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/developer-guide
https://docs.spring.io/spring-kafka/reference/html/#kafka-streams
https://docs.spring.io/spring-kafka/reference/html/#kafka-streams
https://docs.confluent.io/current/streams/developer-guide/dsl-api.html
https://docs.confluent.io/current/streams/developer-guide/processor-api.html

Albeit simple, this is a complete standalone Spring Boot application that is leveraging Kafka
Streams for stream processing. This is a consumer application with no outbound binding and only a
single inbound binding. The application consumes data and it simply logs the information from the
KStream key and value on the standard output. The application contains the SpringBootApplication
annotation and a method that is marked as Bean. The bean method is of type
java.util.function.Consumer which is parameterized with KStream. Then in the implementation, we
are returning a Consumer object that is essentially a lambda expression. Inside the lambda
expression, the code for processing the data is provided.

In this application, there is a single input binding that is of type KStream. The binder creates this
binding for the application with a name process-in-0, i.e. the name of the function bean name
followed by a dash character (-) and the literal in followed by another dash and then the ordinal
position of the parameter. You use this binding name to set other properties such as destination. For
example, spring.cloud.stream.bindings.process-in-0.destination=my-topic.

If the destination property is not set on the binding, a topic is created with the
same name as the binding (if there are sufficient privileges for the application) or
that topic is expected to be already available.

Once built as a uber-jar (e.g., kstream-consumer-app.jar), you can run the above example like the
following.

java -jar kstream-consumer-app.jar --spring.cloud.stream.bindings.process-in
-0.destination=my-topic

Here is another example, where it is a full processor with both input and output bindings. This is
the classic word-count example in which the application receives data from a topic, the number of
occurrences for each word is then computed in a tumbling time-window.

@SpringBootApplication
public class WordCountProcessorApplication {

 @Bean
 public Function<KStream<Object, String>, KStream<?, WordCount>> process() {

 return input -> input
 .flatMapValues(value ->
Arrays.asList(value.toLowerCase().split("\\W+")))
 .map((key, value) -> new KeyValue<>(value, value))
 .groupByKey(Serialized.with(Serdes.String(), Serdes.String()))
 .windowedBy(TimeWindows.of(5000))
 .count(Materialized.as("word-counts-state-store"))
 .toStream()
 .map((key, value) -> new KeyValue<>(key.key(), new
WordCount(key.key(), value,
 new Date(key.window().start()), new
Date(key.window().end()))));
 }

 public static void main(String[] args) {
 SpringApplication.run(WordCountProcessorApplication.class, args);
 }
}

Here again, this is a complete Spring Boot application. The difference here from the first application
is that the bean method is of type java.util.function.Function. The first parameterized type for the
Function is for the input KStream and the second one is for the output. In the method body, a lambda
expression is provided that is of type Function and as implementation, the actual business logic is
given. Similar to the previously discussed Consumer based application, the input binding here is
named as process-in-0 by default. For the output, the binding name is automatically also set to
process-out-0.

Once built as an uber-jar (e.g., wordcount-processor.jar), you can run the above example like the
following.

java -jar wordcount-processor.jar --spring.cloud.stream.bindings.process-in
-0.destination=words --spring.cloud.stream.bindings.process-out-0.destination=counts

This application will consume messages from the Kafka topic words and the computed results are
published to an output topic counts.

Spring Cloud Stream will ensure that the messages from both the incoming and outgoing topics are
automatically bound as KStream objects. As a developer, you can exclusively focus on the business
aspects of the code, i.e. writing the logic required in the processor. Setting up Kafka Streams specific
configuration required by the Kafka Streams infrastructure is automatically handled by the
framework.

The two examples we saw above have a single KStream input binding. In both cases, the bindings
received the records from a single topic. If you want to multiplex multiple topics into a single
KStream binding, you can provide comma separated Kafka topics as destinations below.

spring.cloud.stream.bindings.process-in-0.destination=topic-1,topic-2,topic-3

In addition, you can also provide topic patterns as destinations if you want to match topics against
a regular exression.

spring.cloud.stream.bindings.process-in-0.destination=input.*

Multiple Input Bindings

Many non-trivial Kafka Streams applications often consume data from more than one topic through
multiple bindings. For instance, one topic is consumed as Kstream and another as KTable or
GlobalKTable. There are many reasons why an application might want to receive data as a table
type. Think of a use-case where the underlying topic is populated through a change data capture
(CDC) mechanism from a database or perhaps the application only cares about the latest updates
for downstream processing. If the application specifies that the data needs to be bound as KTable or
GlobalKTable, then Kafka Streams binder will properly bind the destination to a KTable or
GlobalKTable and make them available for the application to operate upon. We will look at a few
different scenarios how multiple input bindings are handled in the Kafka Streams binder.

BiFunction in Kafka Streams Binder

Here is an example where we have two inputs and an output. In this case, the application can
leverage on java.util.function.BiFunction.

@Bean
public BiFunction<KStream<String, Long>, KTable<String, String>, KStream<String,
Long>> process() {
 return (userClicksStream, userRegionsTable) -> (userClicksStream
 .leftJoin(userRegionsTable, (clicks, region) -> new
RegionWithClicks(region == null ?
 "UNKNOWN" : region, clicks),
 Joined.with(Serdes.String(), Serdes.Long(), null))
 .map((user, regionWithClicks) -> new
KeyValue<>(regionWithClicks.getRegion(),
 regionWithClicks.getClicks()))
 .groupByKey(Grouped.with(Serdes.String(), Serdes.Long()))
 .reduce(Long::sum)
 .toStream());
}

Here again, the basic theme is the same as in the previous examples, but here we have two inputs.
Java’s BiFunction support is used to bind the inputs to the desired destinations. The default binding
names generated by the binder for the inputs are process-in-0 and process-in-1 respectively. The
default output binding is process-out-0. In this example, the first parameter of BiFunction is bound
as a KStream for the first input and the second parameter is bound as a KTable for the second input.

BiConsumer in Kafka Streams Binder

If there are two inputs, but no outputs, in that case we can use java.util.function.BiConsumer as
shown below.

@Bean
public BiConsumer<KStream<String, Long>, KTable<String, String>> process() {
 return (userClicksStream, userRegionsTable) -> {}
}

Beyond two inputs

What if you have more than two inputs? There are situations in which you need more than two
inputs. In that case, the binder allows you to chain partial functions. In functional programming
jargon, this technique is generally known as currying. With the functional programming support
added as part of Java 8, Java now enables you to write curried functions. Spring Cloud Stream
Kafka Streams binder can make use of this feature to enable multiple input bindings.

Let’s see an example.

@Bean
public Function<KStream<Long, Order>,
 Function<GlobalKTable<Long, Customer>,
 Function<GlobalKTable<Long, Product>, KStream<Long, EnrichedOrder>>>>
enrichOrder() {

 return orders -> (
 customers -> (
 products -> (
 orders.join(customers,
 (orderId, order) -> order.getCustomerId(),
 (order, customer) -> new CustomerOrder(customer,
order))
 .join(products,
 (orderId, customerOrder) -> customerOrder
 .productId(),
 (customerOrder, product) -> {
 EnrichedOrder enrichedOrder = new
EnrichedOrder();
 enrichedOrder.setProduct(product);

enrichedOrder.setCustomer(customerOrder.customer);

enrichedOrder.setOrder(customerOrder.order);
 return enrichedOrder;
 })
)
)
);
}

Let’s look at the details of the binding model presented above. In this model, we have 3 partially
applied functions on the inbound. Let’s call them as f(x), f(y) and f(z). If we expand these
functions in the sense of true mathematical functions, it will look like these: f(x) → (fy) → f(z)

→ KStream<Long, EnrichedOrder>. The x variable stands for KStream<Long, Order>, the y variable
stands for GlobalKTable<Long, Customer> and the z variable stands for GlobalKTable<Long, Product>.
The first function f(x) has the first input binding of the application (KStream<Long, Order>) and its
output is the function, f(y). The function f(y) has the second input binding for the application
(GlobalKTable<Long, Customer>) and its output is yet another function, f(z). The input for the
function f(z) is the third input for the application (GlobalKTable<Long, Product>) and its output is
KStream<Long, EnrichedOrder> which is the final output binding for the application. The input from
the three partial functions which are KStream, GlobalKTable, GlobalKTable respectively are available
for you in the method body for implementing the business logic as part of the lambda expression.

Input bindings are named as enrichOrder-in-0, enrichOrder-in-1 and enrichOrder-in-2 respectively.
Output binding is named as enrichOrder-out-0.

With curried functions, you can virtually have any number of inputs. However, keep in mind that,
anything more than a smaller number of inputs and partially applied functions for them as above

in Java might lead to unreadable code. Therefore if your Kafka Streams application requires more
than a reasonably smaller number of input bindings and you want to use this functional model,
then you may want to rethink your design and decompose the application appropriately.

Multiple Output Bindings

Kafka Streams allows to write outbound data into multiple topics. This feature is known as
branching in Kafka Streams. When using multiple output bindings, you need to provide an array of
KStream (KStream[]) as the outbound return type.

Here is an example:

@Bean
public Function<KStream<Object, String>, KStream<?, WordCount>[]> process() {

 Predicate<Object, WordCount> isEnglish = (k, v) -> v.word.equals("english");
 Predicate<Object, WordCount> isFrench = (k, v) -> v.word.equals("french");
 Predicate<Object, WordCount> isSpanish = (k, v) -> v.word.equals("spanish");

 return input -> input
 .flatMapValues(value -> Arrays.asList(value.toLowerCase().split("\\W+")))
 .groupBy((key, value) -> value)
 .windowedBy(TimeWindows.of(5000))
 .count(Materialized.as("WordCounts-branch"))
 .toStream()
 .map((key, value) -> new KeyValue<>(null, new WordCount(key.key(), value,
 new Date(key.window().start()), new Date(key.window().end()))))
 .branch(isEnglish, isFrench, isSpanish);
}

The programming model remains the same, however the outbound parameterized type is
KStream[]. The default output binding names are process-out-0, process-out-1, process-out-2
respectively. The reason why the binder generates three output bindings is because it detects the
length of the returned KStream array.

Summary of Function based Programming Styles for Kafka Streams

In summary, the following table shows the various options that can be used in the functional
paradigm.

Number of Inputs Number of Outputs Component to use

1 0 java.util.function.Consumer

2 0 java.util.function.BiConsumer

1 1..n java.util.function.Function

2 1..n java.util.function.BiFunction

>= 3 0..n Use curried functions

• In the case of more than one output in this table, the type simply becomes KStream[].

Imperative programming model.

Although the functional programming model outlined above is the preferred approach, you can still
use the classic StreamListener based approach if you prefer.

Here are some examples.

Following is the equivalent of the Word count example using StreamListener.

@SpringBootApplication
@EnableBinding(KafkaStreamsProcessor.class)
public class WordCountProcessorApplication {

 @StreamListener("input")
 @SendTo("output")
 public KStream<?, WordCount> process(KStream<?, String> input) {
 return input
 .flatMapValues(value ->
Arrays.asList(value.toLowerCase().split("\\W+")))
 .groupBy((key, value) -> value)
 .windowedBy(TimeWindows.of(5000))
 .count(Materialized.as("WordCounts-multi"))
 .toStream()
 .map((key, value) -> new KeyValue<>(null, new WordCount(key.key(),
value, new Date(key.window().start()), new Date(key.window().end()))));
 }

 public static void main(String[] args) {
 SpringApplication.run(WordCountProcessorApplication.class, args);
 }

As you can see, this is a bit more verbose since you need to provide EnableBinding and the other
extra annotations like StreamListener and SendTo to make it a complete application. EnableBinding is
where you specify your binding interface that contains your bindings. In this case, we are using the
stock KafkaStreamsProcessor binding interface that has the following contracts.

public interface KafkaStreamsProcessor {

 @Input("input")
 KStream<?, ?> input();

 @Output("output")
 KStream<?, ?> output();

}

Binder will create bindings for the input KStream and output KStream since you are using a binding

interface that contains those declarations.

In addition to the obvious differences in the programming model offered in the functional style,
one particular thing that needs to be mentioned here is that the binding names are what you
specify in the binding interface. For example, in the above application, since we are using
KafkaStreamsProcessor, the binding names are input and output. Binding properties need to use
those names. For instance spring.cloud.stream.bindings.input.destination,
spring.cloud.stream.bindings.output.destination etc. Keep in mind that this is fundamentally
different from the functional style since there the binder generates binding names for the
application. This is because the application does not provide any binding interfaces in the
functional model using EnableBinding.

Here is another example of a sink where we have two inputs.

@EnableBinding(KStreamKTableBinding.class)
.....
.....
@StreamListener
public void process(@Input("inputStream") KStream<String, PlayEvent> playEvents,
 @Input("inputTable") KTable<Long, Song> songTable) {

}

interface KStreamKTableBinding {

 @Input("inputStream")
 KStream<?, ?> inputStream();

 @Input("inputTable")
 KTable<?, ?> inputTable();
}

Following is the StreamListener equivalent of the same BiFunction based processor that we saw
above.

@EnableBinding(KStreamKTableBinding.class)
....
....

@StreamListener
@SendTo("output")
public KStream<String, Long> process(@Input("input") KStream<String, Long>
userClicksStream,
 @Input("inputTable") KTable<String, String>
userRegionsTable) {
....
....
}

interface KStreamKTableBinding extends KafkaStreamsProcessor {

 @Input("inputX")
 KTable<?, ?> inputTable();
}

Finally, here is the StreamListener equivalent of the application with three inputs and curried
functions.

@EnableBinding(CustomGlobalKTableProcessor.class)
...
...
 @StreamListener
 @SendTo("output")
 public KStream<Long, EnrichedOrder> process(
 @Input("input-1") KStream<Long, Order> ordersStream,
 @Input("input-"2) GlobalKTable<Long, Customer> customers,
 @Input("input-3") GlobalKTable<Long, Product> products) {

 KStream<Long, CustomerOrder> customerOrdersStream = ordersStream.join(
 customers, (orderId, order) -> order.getCustomerId(),
 (order, customer) -> new CustomerOrder(customer, order));

 return customerOrdersStream.join(products,
 (orderId, customerOrder) -> customerOrder.productId(),
 (customerOrder, product) -> {
 EnrichedOrder enrichedOrder = new EnrichedOrder();
 enrichedOrder.setProduct(product);
 enrichedOrder.setCustomer(customerOrder.customer);
 enrichedOrder.setOrder(customerOrder.order);
 return enrichedOrder;
 });
 }

 interface CustomGlobalKTableProcessor {

 @Input("input-1")
 KStream<?, ?> input1();

 @Input("input-2")
 GlobalKTable<?, ?> input2();

 @Input("input-3")
 GlobalKTable<?, ?> input3();

 @Output("output")
 KStream<?, ?> output();
 }

You might notice that the above two examples are even more verbose since in addition to provide
EnableBinding, you also need to write your own custom binding interface as well. Using the
functional model, you can avoid all those ceremonial details.

Before we move on from looking at the general programming model offered by Kafka Streams
binder, here is the StreamListener version of multiple output bindings.

EnableBinding(KStreamProcessorWithBranches.class)
public static class WordCountProcessorApplication {

 @Autowired
 private TimeWindows timeWindows;

 @StreamListener("input")
 @SendTo({"output1","output2","output3"})
 public KStream<?, WordCount>[] process(KStream<Object, String> input) {

 Predicate<Object, WordCount> isEnglish = (k, v) ->
v.word.equals("english");
 Predicate<Object, WordCount> isFrench = (k, v) ->
v.word.equals("french");
 Predicate<Object, WordCount> isSpanish = (k, v) ->
v.word.equals("spanish");

 return input
 .flatMapValues(value ->
Arrays.asList(value.toLowerCase().split("\\W+")))
 .groupBy((key, value) -> value)
 .windowedBy(timeWindows)
 .count(Materialized.as("WordCounts-1"))
 .toStream()
 .map((key, value) -> new KeyValue<>(null, new WordCount(key.key(),
value, new Date(key.window().start()), new Date(key.window().end()))))
 .branch(isEnglish, isFrench, isSpanish);
 }

 interface KStreamProcessorWithBranches {

 @Input("input")
 KStream<?, ?> input();

 @Output("output1")
 KStream<?, ?> output1();

 @Output("output2")
 KStream<?, ?> output2();

 @Output("output3")
 KStream<?, ?> output3();
 }
}

To recap, we have reviewed the various programming model choices when using the Kafka Streams
binder.

The binder provides binding capabilities for KStream, KTable and GlobalKTable on the input. KTable
and GlobalKTable bindings are only available on the input. Binder supports both input and output

bindings for KStream.

The upshot of the programming model of Kafka Streams binder is that the binder provides you the
flexibility of going with a fully functional programming model or using the StreamListener based
imperative approach.

Ancillaries to the programming model

Multiple Kafka Streams processors within a single application

Binder allows to have multiple Kafka Streams processors within a single Spring Cloud Stream
application. You can have an application as below.

@Bean
public java.util.function.Function<KStream<Object, String>, KStream<Object, String>>
process() {
 ...
}

@Bean
public java.util.function.Consumer<KStream<Object, String>> anotherProcess() {
 ...
}

@Bean
public java.util.function.BiFunction<KStream<Object, String>, KTable<Integer, String>,
KStream<Object, String>> yetAnotherProcess() {
 ...
}

In this case, the binder will create 3 separate Kafka Streams objects with different application ID’s
(more on this below). However, if you have more than one processor in the application, you have to
tell Spring Cloud Stream, which functions need to be activated. Here is how you activate the
functions.

spring.cloud.stream.function.definition: process;anotherProcess;yetAnotherProcess

If you want certain functions to be not activated right away, you can remove that from this list.

This is also true when you have a single Kafka Streams processor and other types of Function beans
in the same application that is handled through a different binder (for e.g., a function bean that is
based on the regular Kafka Message Channel binder)

Kafka Streams Application ID

Application id is a mandatory property that you need to provide for a Kafka Streams application.
Spring Cloud Stream Kafka Streams binder allows you to configure this application id in multiple
ways.

If you only have one single processor or StreamListener in the application, then you can set this at

the binder level using the following property:

spring.cloud.stream.kafka.streams.binder.applicationId.

As a convenience, if you only have a single processor, you can also use spring.application.name as
the property to delegate the application id.

If you have multiple Kafka Streams processors in the application, then you need to set the
application id per processor. In the case of the functional model, you can attach it to each function
as a property.

For e.g. imagine that you have the following functions.

@Bean
public java.util.function.Consumer<KStream<Object, String>> process() {
 ...
}

and

@Bean
public java.util.function.Consumer<KStream<Object, String>> anotherProcess() {
 ...
}

Then you can set the application id for each, using the following binder level properties.

spring.cloud.stream.kafka.streams.binder.functions.process.applicationId

and

spring.cloud.stream.kafka.streams.binder.functions.anotherProcess.applicationId

In the case of StreamListener, you need to set this on the first input binding on the processor.

For e.g. imagine that you have the following two StreamListener based processors.

@StreamListener
@SendTo("output")
public KStream<String, String> process(@Input("input") <KStream<Object, String>>
input) {
 ...
}

@StreamListener
@SendTo("anotherOutput")
public KStream<String, String> anotherProcess(@Input("anotherInput") <KStream<Object,
String>> input) {
 ...
}

Then you must set the application id for this using the following binding property.

spring.cloud.stream.kafka.streams.bindings.input.consumer.applicationId

and

spring.cloud.stream.kafka.streams.bindings.anotherInput.consumer.applicationId

For function based model also, this approach of setting application id at the binding level will work.
However, setting per function at the binder level as we have seen above is much easier if you are
using the functional model.

For production deployments, it is highly recommended to explicitly specify the application ID
through configuration. This is especially going to be very critical if you are auto scaling your
application in which case you need to make sure that you are deploying each instance with the
same application ID.

If the application does not provide an application ID, then in that case the binder will auto generate
a static application ID for you. This is convenient in development scenarios as it avoids the need for
explicitly providing the application ID. The generated application ID in this manner will be static
over application restarts. In the case of functional model, the generated application ID will be the
function bean name followed by the literal applicationID, for e.g process-applicationID if process if
the function bean name. In the case of StreamListener, instead of using the function bean name, the
generated application ID will be use the containing class name followed by the method name
followed by the literal applicationId.

Summary of setting Application ID

• By default, binder will auto generate the application ID per function or StreamListener methods.

• If you have a single processor, then you can use spring.kafka.streams.applicationId,
spring.application.name or spring.cloud.stream.kafka.streams.binder.applicationId.

• If you have multiple processors, then application ID can be set per function using the property -
spring.cloud.stream.kafka.streams.binder.functions.<function-name>.applicationId. In the case
of StreamListener, this can be done using
spring.cloud.stream.kafka.streams.bindings.input.applicationId, assuming that the input

binding name is input.

Overriding the default binding names generated by the binder with the functional style

By default, the binder uses the strategy discussed above to generate the binding name when using
the functional style, i.e. <function-bean-name>-<in>|<out>-[0..n], for e.g. process-in-0, process-out-0
etc. If you want to override those binding names, you can do that by specifying the following
properties.

spring.cloud.stream.function.bindings.<default binding name>. Default binding name is the
original binding name generated by the binder.

For e.g. lets say, you have this function.

@Bean
public BiFunction<KStream<String, Long>, KTable<String, String>, KStream<String,
Long>> process() {
...
}

Binder will generate bindings with names, process-in-0, process-in-1 and process-out-0. Now, if
you want to change them to something else completely, maybe more domain specific binding
names, then you can do so as below.

springc.cloud.stream.function.bindings.process-in-0=users

springc.cloud.stream.function.bindings.process-in-0=regions

and

spring.cloud.stream.function.bindings.process-out-0=clicks

After that, you must set all the binding level properties on these new binding names.

Please keep in mind that with the functional programming model described above, adhering to the
default binding names make sense in most situations. The only reason you may still want to do this
overriding is when you have larger number of configuration properties and you want to map the
bindings to something more domain friendly.

Setting up bootstrap server configuration

When running Kafka Streams applications, you must provide the Kafka broker server information.
If you don’t provide this information, the binder expects that you are running the broker at the
default localhost:9092. If that is not the case, then you need to override that. There are a couple of
ways to do that.

• Using the boot property - spring.kafka.bootstrapServers

• Binder level property - spring.cloud.stream.kafka.streams.binder.brokers

When it comes to the binder level property, it doesn’t matter if you use the broker property
provided through the regular Kafka binder - spring.cloud.stream.kafka.binder.brokers. Kafka

Streams binder will first check if Kafka Streams binder specific broker property is set
(spring.cloud.stream.kafka.streams.binder.brokers) and if not found, it looks for
spring.cloud.stream.kafka.binder.brokers.

Record serialization and deserialization

Kafka Streams binder allows you to serialize and deserialize records in two ways. One is the native
serialization and deserialization facilities provided by Kafka and the other one is the message
conversion capabilities of Spring Cloud Stream framework. Lets look at some details.

Inbound deserialization

Keys are always deserialized using native Serdes.

For values, by default, deserialization on the inbound is natively performed by Kafka. Please note
that this is a major change on default behavior from previous versions of Kafka Streams binder
where the deserialization was done by the framework.

Kafka Streams binder will try to infer matching Serde types by looking at the type signature of
java.util.function.Function|Consumer or StreamListener. Here is the order that it matches the
Serdes.

• If the application provides a bean of type Serde and if the return type is parameterized with the
actual type of the incoming key or value type, then it will use that Serde for inbound
deserialization. For e.g. if you have the following in the application, the binder detects that the
incoming value type for the KStream matches with a type that is parameterized on a Serde bean.
It will use that for inbound deserialization.

@Bean
public Serde<Foo() customSerde{
 ...
}

@Bean
public Function<KStream<String, Foo>, KStream<String, Foo>> process() {
}

• Next, it looks at the types and see if they are one of the types exposed by Kafka Streams. If so,
use them. Here are the Serde types that the binder will try to match from Kafka Streams.

Integer, Long, Short, Double, Float, byte[], UUID and String.

• If none of the Serdes provided by Kafka Streams don’t match the types, then it will use
JsonSerde provided by Spring Kafka. In this case, the binder assumes that the types are JSON
friendly. This is useful if you have multiple value objects as inputs since the binder will
internally infer them to correct Java types. Before falling back to the JsonSerde though, the
binder checks at the default Serde`s set in the Kafka Streams configuration to see if it is a
`Serde that it can match with the incoming KStream’s types.

If none of the above strategies worked, then the applications must provide the `Serde`s through
configuration. This can be configured in two ways - binding or default.

First the binder will look if a Serde is provided at the binding level. For e.g. if you have the following
processor,

@Bean
public BiFunction<KStream<CustomKey, AvroIn1>, KTable<CustomKey, AvroIn2>,
KStream<CustomKey, AvroOutput>> process() {...}

then, you can provide a binding level Serde using the following:

spring.cloud.stream.kafka.streams.bindings.process-in-
0.consumer.keySerde=CustomKeySerde
spring.cloud.stream.kafka.streams.bindings.process-in-
0.consumer.valueSerde=io.confluent.kafka.streams.serdes.avro.SpecificAvroSerde

spring.cloud.stream.kafka.streams.bindings.process-in-
1.consumer.keySerde=CustomKeySerde
spring.cloud.stream.kafka.streams.bindings.process-in-
1.consumer.valueSerde=io.confluent.kafka.streams.serdes.avro.SpecificAvroSerde

If you provide Serde as abover per input binding, then that will takes higher
precedence and the binder will stay away from any Serde inference.

If you want the default key/value Serdes to be used for inbound deserialization, you can do so at the
binder level.

spring.cloud.stream.kafka.streams.binder.configuration.default.key.serde
spring.cloud.stream.kafka.streams.binder.configuration.default.value.serde

If you don’t want the native decoding provided by Kafka, you can rely on the message conversion
features that Spring Cloud Stream provides. Since native decoding is the default, in order to let
Spring Cloud Stream deserialize the inbound value object, you need to explicitly disable native
decoding.

For e.g. if you have the same BiFunction processor as above, then
spring.cloud.stream.bindings.process-in-0.consumer.nativeDecoding: false You need to disable
native decoding for all the inputs individually. Otherwise, native decoding will still be applied for
those you do not disable.

By default, Spring Cloud Stream will use application/json as the content type and use an
appropriate json message converter. You can use custom message converters by using the following
property and an appropriate MessageConverter bean.

spring.cloud.stream.bindings.process-in-0.contentType

Outbound serialization

Outbound serialization pretty much follows the same rules as above for inbound deserialization. As
with the inbound deserialization, one major change from the previous versions of Spring Cloud
Stream is that the serialization on the outbound is handled by Kafka natively. Before 3.0 versions of
the binder, this was done by the framework itself.

Keys on the outbound are always serialized by Kafka using a matching Serde that is inferred by the
binder. If it can’t infer the type of the key, then that needs to be specified using configuration.

Value serdes are inferred using the same rules used for inbound deserialization. First it matches to
see if the outbound type is from a provided bean in the application. If not, it checks to see if it
matches with a Serde exposed by Kafka such as - Integer, Long, Short, Double, Float, byte[], UUID and
String. If that doesnt’t work, then it falls back to JsonSerde provided by the Spring Kafka project, but
first look at the default Serde configuration to see if there is a match. Keep in mind that all these
happen transparently to the application. If none of these work, then the user has to provide the
Serde to use by configuration.

Lets say you are using the same BiFunction processor as above. Then you can configure outbound
key/value Serdes as following.

spring.cloud.stream.kafka.streams.bindings.process-out-
0.producer.keySerde=CustomKeySerde
spring.cloud.stream.kafka.streams.bindings.process-out-
0.producer.valueSerde=io.confluent.kafka.streams.serdes.avro.SpecificAvroSerde

If Serde inference fails, and no binding level Serdes are provided, then the binder falls back to the
JsonSerde, but look at the default Serdes for a match.

Default serdes are configured in the same way as above where it is described under deserialization.

spring.cloud.stream.kafka.streams.binder.configuration.default.key.serde
spring.cloud.stream.kafka.streams.binder.configuration.default.value.serde

If your application uses the branching feature and has multiple output bindings, then these have to
be configured per binding. Once again, if the binder is capable of inferring the Serde types, you
don’t need to do this configuration.

If you don’t want the native encoding provided by Kafka, but want to use the framework provided
message conversion, then you need to explicitly disable native encoding since since native
encoding is the default. For e.g. if you have the same BiFunction processor as above, then
spring.cloud.stream.bindings.process-out-0.producer.nativeEncoding: false You need to disable
native encoding for all the output individually in the case of branching. Otherwise, native encoding
will still be applied for those you don’t disable.

When conversion is done by Spring Cloud Stream, by default, it will use application/json as the

content type and use an appropriate json message converter. You can use custom message
converters by using the following property and a corresponding MessageConverter bean.

spring.cloud.stream.bindings.process-out-0.contentType

When native encoding/decoding is disabled, binder will not do any inference as in the case of
native Serdes. Applications need to explicitly provide all the configuration options. For that reason,
it is generally advised to stay with the default options for de/serialization and stick with native
de/serialization provided by Kafka Streams when you write Spring Cloud Stream Kafka Streams
applications. The one scenario in which you must use message conversion capabilities provided by
the framework is when your upstream producer is using a specific serialization strategy. In that
case, you want to use a matching deserialization strategy as native mechanisms may fail. When
relying on the default Serde mechanism, the applications must ensure that the binder has a way
forward with correctly map the inbound and outbound with a proper Serde, as otherwise things
might fail.

It is worth to mention that the data de/serialization approaches outlined above are only applicable
on the edges of your processors, i.e. - inbound and outbound. Your business logic might still need to
call Kafka Streams API’s that explicitly need Serde objects. Those are still the responsibility of the
application and must be handled accordingly by the developer.

Error Handling

Apache Kafka Streams provides the capability for natively handling exceptions from deserialization
errors. For details on this support, please see this. Out of the box, Apache Kafka Streams provides
two kinds of deserialization exception handlers - LogAndContinueExceptionHandler and
LogAndFailExceptionHandler. As the name indicates, the former will log the error and continue
processing the next records and the latter will log the error and fail. LogAndFailExceptionHandler is
the default deserialization exception handler.

Handling Deserialization Exceptions in the Binder

Kafka Streams binder allows to specify the deserialization exception handlers above using the
following property.

spring.cloud.stream.kafka.streams.binder.deserializationExceptionHandler:
logAndContinue

or

spring.cloud.stream.kafka.streams.binder.deserializationExceptionHandler: logAndFail

In addition to the above two deserialization exception handlers, the binder also provides a third
one for sending the erroneous records (poison pills) to a DLQ (dead letter queue) topic. Here is how
you enable this DLQ exception handler.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+deserialization+exception+handlers

spring.cloud.stream.kafka.streams.binder.deserializationExceptionHandler: sendToDlq

When the above property is set, all the records in deserialization error are automatically sent to the
DLQ topic.

You can set the topic name where the DLQ messages are published as below.

spring.cloud.stream.kafka.streams.bindings.process-in-0.consumer.dlqName: custom-dlq
(Change the binding name accordingly)

If this is set, then the error records are sent to the topic custom-dlq. If this is not set, then it will
create a DLQ topic with the name error.<input-topic-name>.<application-id>. For instance, if your
binding’s destination topic is inputTopic and the application ID is process-applicationId, then the
default DLQ topic is error.inputTopic.process-applicationId. It is always recommended to explicitly
create a DLQ topic for each input binding if it is your intention to enable DLQ.

DLQ per input consumer binding

The property spring.cloud.stream.kafka.streams.binder.deserializationExceptionHandler is
applicable for the entire application. This implies that if there are multiple functions or
StreamListener methods in the same application, this property is applied to all of them. However, if
you have multiple processors or multiple input bindings within a single processor, then you can use
the finer-grained DLQ control that the binder provides per input consumer binding.

If you have the following processor,

@Bean
public BiFunction<KStream<String, Long>, KTable<String, String>, KStream<String,
Long>> process() {
...
}

and you only want to enable DLQ on the first input binding and logAndSkip on the second binding,
then you can do so on the consumer as below.

spring.cloud.stream.kafka.streams.bindings.process-in-

0.consumer.deserializationExceptionHandler: sendToDlq
spring.cloud.stream.kafka.streams.bindings.process-in-
1.consumer.deserializationExceptionHandler: logAndSkip

Setting deserialization exception handlers this way has a higher precedence than setting at the
binder level.

DLQ partitioning

By default, records are published to the Dead-Letter topic using the same partition as the original
record. This means the Dead-Letter topic must have at least as many partitions as the original
record.

To change this behavior, add a DlqPartitionFunction implementation as a @Bean to the application
context. Only one such bean can be present. The function is provided with the consumer group
(which is the same as the application ID in most situations), the failed ConsumerRecord and the
exception. For example, if you always want to route to partition 0, you might use:

@Bean
public DlqPartitionFunction partitionFunction() {
 return (group, record, ex) -> 0;
}

If you set a consumer binding’s dlqPartitions property to 1 (and the binder’s
minPartitionCount is equal to 1), there is no need to supply a DlqPartitionFunction;
the framework will always use partition 0. If you set a consumer binding’s
dlqPartitions property to a value greater than 1 (or the binder’s minPartitionCount
is greater than 1), you must provide a DlqPartitionFunction bean, even if the
partition count is the same as the original topic’s.

A couple of things to keep in mind when using the exception handling feature in Kafka Streams
binder.

• The property spring.cloud.stream.kafka.streams.binder.deserializationExceptionHandler is
applicable for the entire application. This implies that if there are multiple functions or
StreamListener methods in the same application, this property is applied to all of them.

• The exception handling for deserialization works consistently with native deserialization and
framework provided message conversion.

Handling Production Exceptions in the Binder

Unlike the support for deserialization exception handlers as described above, the binder does not
provide such first class mechanisms for handling production exceptions. However, you still can
configure production exception handlers using the StreamsBuilderFactoryBean customizer which
you can find more details about, in a subsequent section below.

State Store

State stores are created automatically by Kafka Streams when the high level DSL is used and
appropriate calls are made those trigger a state store.

If you want to materialize an incoming KTable binding as a named state store, then you can do so by
using the following strategy.

Lets say you have the following function.

@Bean
public BiFunction<KStream<String, Long>, KTable<String, String>, KStream<String,
Long>> process() {
 ...
}

Then by setting the following property, the incoming KTable data will be materialized in to the
named state store.

spring.cloud.stream.kafka.streams.bindings.process-in-1.consumer.materializedAs:
incoming-store

You can define custom state stores as beans in your application and those will be detected and
added to the Kafka Streams builder by the binder. Especially when the processor API is used, you
need to register a state store manually. In order to do so, you can create the StateStore as a bean in
the application. Here are examples of defining such beans.

@Bean
public StoreBuilder myStore() {
 return Stores.keyValueStoreBuilder(
 Stores.persistentKeyValueStore("my-store"), Serdes.Long(),
 Serdes.Long());
}

@Bean
public StoreBuilder otherStore() {
 return Stores.windowStoreBuilder(
 Stores.persistentWindowStore("other-store",
 1L, 3, 3L, false), Serdes.Long(),
 Serdes.Long());
}

These state stores can be then accessed by the applications directly.

During the bootstrap, the above beans will be processed by the binder and passed on to the Streams
builder object.

Accessing the state store:

Processor<Object, Product>() {

 WindowStore<Object, String> state;

 @Override
 public void init(ProcessorContext processorContext) {
 state = (WindowStore)processorContext.getStateStore("mystate");
 }
 ...
}

This will not work when it comes to registering global state stores. In order to register a global state
store, please see the section below on customizing StreamsBuilderFactoryBean.

Interactive Queries

Kafka Streams binder API exposes a class called InteractiveQueryService to interactively query the
state stores. You can access this as a Spring bean in your application. An easy way to get access to
this bean from your application is to autowire the bean.

@Autowired
private InteractiveQueryService interactiveQueryService;

Once you gain access to this bean, then you can query for the particular state-store that you are
interested. See below.

ReadOnlyKeyValueStore<Object, Object> keyValueStore =
 interactiveQueryService.getQueryableStoreType("my-store",
QueryableStoreTypes.keyValueStore());

During the startup, the above method call to retrieve the store might fail. For e.g it might still be in
the middle of initializing the state store. In such cases, it will be useful to retry this operation. Kafka
Streams binder provides a simple retry mechanism to accommodate this.

Following are the two properties that you can use to control this retrying.

• spring.cloud.stream.kafka.streams.binder.stateStoreRetry.maxAttempts - Default is 1 .

• spring.cloud.stream.kafka.streams.binder.stateStoreRetry.backOffInterval - Default is 1000

milliseconds.

If there are multiple instances of the kafka streams application running, then before you can query
them interactively, you need to identify which application instance hosts the particular key that you
are querying. InteractiveQueryService API provides methods for identifying the host information.

In order for this to work, you must configure the property application.server as below:

spring.cloud.stream.kafka.streams.binder.configuration.application.server:
<server>:<port>

Here are some code snippets:

org.apache.kafka.streams.state.HostInfo hostInfo =
interactiveQueryService.getHostInfo("store-name",
 key, keySerializer);

if (interactiveQueryService.getCurrentHostInfo().equals(hostInfo)) {

 //query from the store that is locally available
}
else {
 //query from the remote host
}

Health Indicator

The health indicator requires the dependency spring-boot-starter-actuator. For maven use:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

Spring Cloud Stream Kafka Streams Binder provides a health indicator to check the state of the
underlying streams threads. Spring Cloud Stream defines a property
management.health.binders.enabled to enable the health indicator. See the Spring Cloud Stream
documentation.

The health indicator provides the following details for each stream thread’s metadata:

• Thread name

• Thread state: CREATED, RUNNING, PARTITIONS_REVOKED, PARTITIONS_ASSIGNED, PENDING_SHUTDOWN or DEAD

• Active tasks: task ID and partitions

• Standby tasks: task ID and partitions

By default, only the global status is visible (UP or DOWN). To show the details, the property
management.endpoint.health.show-details must be set to ALWAYS or WHEN_AUTHORIZED. For more details
about the health information, see the Spring Boot Actuator documentation.

The status of the health indicator is UP if all the Kafka threads registered are in the
RUNNING state.

https://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_health_indicator
https://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_health_indicator
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-health

Since there are three individual binders in Kafka Streams binder (KStream, KTable and GlobalKTable),
all of them will report the health status. When enabling show-details, some of the information
reported may be redundant.

When there are multiple Kafka Streams processors present in the same application, then the health
checks will be reported for all of them and will be categorized by the application ID of Kafka
Streams.

Accessing Kafka Streams Metrics

Spring Cloud Stream Kafka Streams binder provides a basic mechanism for accessing Kafka
Streams metrics exported through a Micrometer MeterRegistry. Kafka Streams metrics that are
available through KafkaStreams#metrics() are exported to this meter registry by the binder. The
metrics exported are from the consumers, producers, admin-client and the stream itself.

The metrics exported by the binder are exported with the format of metrics group name followed
by a dot and then the actual metric name. All dashes in the original metric information is replaced
with dots.

For e.g. the metric name network-io-total from the metric group consumer-metrics is available in
the micrometer registry as consumer.metrics.network.io.total. Similarly, the metric commit-total
from stream-metrics is available as stream.metrics.commit.total.

If you have multiple Kafka Streams processors in the same application, then the metric name will
be prepended with the corresponding application ID of the Kafka Streams. The application ID in
this case will be preserved as is, i.e. no dashes will be converted to dots etc. For example, if the
application ID of the first processor is processor-1, then the metric name network-io-total from the
metric group consumer-metrics is available in the micrometer registry as processor-

1.consumer.metrics.network.io.total.

You can either programmatically access the Micrometer MeterRegistry in the application and then
iterate through the available gauges or use Spring Boot actuator to access the metrics through a
REST endpoint. When accessing through the Boot actuator endpoint, make sure to add metrics to
the property management.endpoints.web.exposure.include. Then you can access /acutator/metrics to
get a list of all the available metrics which then can be individually accessed through the same URI
(/actuator/metrics/<metric-name>).

Anything beyond the info level metrics available through KafkaStreams#metrics(), (for e.g. the
debugging level metrics) are still only available through JMX after you set the
metrics.recording.level to DEBUG. Kafka Streams, by default, set this level to INFO. Please see this
section from Kafka Streams documentation for more details. In a future release, binder may
support exporting these DEBUG level metrics through Micrometer.

Mixing high level DSL and low level Processor API

Kafka Streams provides two variants of APIs. It has a higher level DSL like API where you can chain
various operations that maybe familiar to a lot of functional programmers. Kafka Streams also
gives access to a low level Processor API. The processor API, although very powerful and gives the
ability to control things in a much lower level, is imperative in nature. Kafka Streams binder for
Spring Cloud Stream, allows you to use either the high level DSL or mixing both the DSL and the

https://kafka.apache.org/documentation/#kafka_streams_monitoring
https://kafka.apache.org/documentation/#kafka_streams_monitoring

processor API. Mixing both of these variants give you a lot of options to control various use cases in
an application. Applications can use the transform or process method API calls to get access to the
processor API.

Here is a look at how one may combine both the DSL and the processor API in a Spring Cloud
Stream application using the process API.

@Bean
public Consumer<KStream<Object, String>> process() {
 return input ->
 input.process(() -> new Processor<Object, String>() {
 @Override
 @SuppressWarnings("unchecked")
 public void init(ProcessorContext context) {
 this.context = context;
 }

 @Override
 public void process(Object key, String value) {
 //business logic
 }

 @Override
 public void close() {

 });
}

Here is an example using the transform API.

@Bean
public Consumer<KStream<Object, String>> process() {
 return (input, a) ->
 input.transform(() -> new Transformer<Object, String, KeyValue<Object,
String>>() {
 @Override
 public void init(ProcessorContext context) {

 }

 @Override
 public void close() {

 }

 @Override
 public KeyValue<Object, String> transform(Object key, String value) {
 // business logic - return transformed KStream;
 }
 });
}

The process API method call is a terminal operation while the transform API is non terminal and
gives you a potentially transformed KStream using which you can continue further processing using
either the DSL or the processor API.

Partition support on the outbound

A Kafka Streams processor usually sends the processed output into an outbound Kafka topic. If the
outbound topic is partitioned and the processor needs to send the outgoing data into particular
partitions, the applications needs to provide a bean of type StreamPartitioner. See
StreamPartitioner for more details. Let’s see some examples.

This is the same processor we already saw multiple times,

@Bean
public Function<KStream<Object, String>, KStream<?, WordCount>> process() {

 ...
}

Here is the output binding destination:

spring.cloud.stream.bindings.process-out-0.destination: outputTopic

If the topic outputTopic has 4 partitions, if you don’t provide a partitioning strategy, Kafka Streams
will use default partitioning strategy which may not be the outcome you want depending on the

https://kafka.apache.org/23/javadoc/org/apache/kafka/streams/processor/StreamPartitioner.html

particular use case. Let’s say, you want to send any key that matches to spring to partition 0, cloud to
partition 1, stream to partition 2, and everything else to partition 3. This is what you need to do in
the application.

@Bean
public StreamPartitioner<String, WordCount> streamPartitioner() {
 return (t, k, v, n) -> {
 if (k.equals("spring")) {
 return 0;
 }
 else if (k.equals("cloud")) {
 return 1;
 }
 else if (k.equals("stream")) {
 return 2;
 }
 else {
 return 3;
 }
 };
}

This is a rudimentary implementation, however, you have access to the key/value of the record, the
topic name and the total number of partitions. Therefore, you can implement complex partitioning
strategies if need be.

You also need to provide this bean name along with the application configuration.

spring.cloud.stream.kafka.streams.bindings.process-out-
0.producer.streamPartitionerBeanName: streamPartitioner

Each output topic in the application needs to be configured separately like this.

StreamsBuilderFactoryBean customizer

It is often required to customize the StreamsBuilderFactoryBean that creates the KafkaStreams objects.
Based on the underlying support provided by Spring Kafka, the binder allows you to customize the
StreamsBuilderFactoryBean. You can use the StreamsBuilderFactoryBeanCustomizer to customize the
StreamsBuilderFactoryBean itself. Then, once you get access to the StreamsBuilderFactoryBean

through this customizer, you can customize the corresponding KafkaStreams using
KafkaStreamsCustomzier. Both of these customizers are part of the Spring for Apache Kafka project.

Here is an example of using the StreamsBuilderFactoryBeanCustomizer.

@Bean
public StreamsBuilderFactoryBeanCustomizer streamsBuilderFactoryBeanCustomizer() {
 return sfb -> sfb.setStateListener((newState, oldState) -> {
 //Do some action here!
 });
}

The above is shown as an illustration of the things you can do to customize the
StreamsBuilderFactoryBean. You can essentially call any available mutation operations from
StreamsBuilderFactoryBean to customize it. This customizer will be invoked by the binder right
before the factory bean is started.

Once you get access to the StreamsBuilderFactoryBean, you can also customize the underlying
KafkaStreams object. Here is a blueprint for doing so.

@Bean
public StreamsBuilderFactoryBeanCustomizer streamsBuilderFactoryBeanCustomizer() {
 return factoryBean -> {
 factoryBean.setKafkaStreamsCustomizer(new KafkaStreamsCustomizer() {
 @Override
 public void customize(KafkaStreams kafkaStreams) {
 kafkaStreams.setUncaughtExceptionHandler((t, e) -> {

 });
 }
 });
 };
}

KafkaStreamsCustomizer will be called by the StreamsBuilderFactoryBeabn right before the underlying
KafkaStreams gets started.

There can only be one StreamsBuilderFactoryBeanCustomizer in the entire application. Then how do
we account for multiple Kafka Streams processors as each of them are backed up by individual
StreamsBuilderFactoryBean objects? In that case, if the customization needs to be different for those
processors, then the application needs to apply some filter based on the application ID.

For e.g,

@Bean
public StreamsBuilderFactoryBeanCustomizer streamsBuilderFactoryBeanCustomizer() {

 return factoryBean -> {
 if
(factoryBean.getStreamsConfiguration().getProperty(StreamsConfig.APPLICATION_ID_CONFIG
)
 .equals("processor1-application-id")) {
 factoryBean.setKafkaStreamsCustomizer(new KafkaStreamsCustomizer() {
 @Override
 public void customize(KafkaStreams kafkaStreams) {
 kafkaStreams.setUncaughtExceptionHandler((t, e) -> {

 });
 }
 });
 }
 };

Using Customizer to register a global state store

As mentioned above, the binder does not provide a first class way to register global state stores as a
feature. For that, you need to use the customizer. Here is how that can be done.

@Bean
public StreamsBuilderFactoryBeanCustomizer customizer() {
 return fb -> {
 try {
 final StreamsBuilder streamsBuilder = fb.getObject();
 streamsBuilder.addGlobalStore(...);
 }
 catch (Exception e) {

 }
 };
}

Again, if you have multiple processors, you want to attach the global state store to the right
StreamsBuilder by filtering out the other StreamsBuilderFactoryBean objects using the application id
as outlined above.

Using customizer to register a production exception handler

In the error handling section, we indicated that the binder does not provide a first class way to deal
with production exceptions. Though that is the case, you can still use the StreamsBuilderFacotryBean
customizer to register production exception handlers. See below.

@Bean
public StreamsBuilderFactoryBeanCustomizer customizer() {
 return fb -> {

fb.getStreamsConfiguration().put(StreamsConfig.DEFAULT_PRODUCTION_EXCEPTION_HANDLER_CL
ASS_CONFIG,
 CustomProductionExceptionHandler.class);
 };
}

Once again, if you have multiple processors, you may want to set it appropriately against the
correct StreamsBuilderFactoryBean. You may also add such production exception handlers using the
configuration property (See below for more on that), but this is an option if you choose to go with a
programmatic approach.

Timestamp extractor

Kafka Streams allows you to control the processing of the consumer records based on various
notions of timestamp. By default, Kafka Streams extracts the timestamp metadata embedded in the
consumer record. You can change this default behavior by providing a different TimestampExtractor
implementation per input binding. Here are some details on how that can be done.

@Bean
public Function<KStream<Long, Order>,
 Function<KTable<Long, Customer>,
 Function<GlobalKTable<Long, Product>, KStream<Long, Order>>>>
process() {
 return orderStream ->
 customers ->
 products -> orderStream;
}

@Bean
public TimestampExtractor timestampExtractor() {
 return new WallclockTimestampExtractor();
}

Then you set the above TimestampExtractor bean name per consumer binding.

spring.cloud.stream.kafka.streams.bindings.process-in-
0.consumer.timestampExtractorBeanName=timestampExtractor
spring.cloud.stream.kafka.streams.bindings.process-in-
1.consumer.timestampExtractorBeanName=timestampExtractor
spring.cloud.stream.kafka.streams.bindings.process-in-
2.consumer.timestampExtractorBeanName=timestampExtractor"

If you skip an input consumer binding for setting a custom timestamp extractor, that consumer will

use the default settings.

Multi binders with Kafka Streams based binders and regular Kafka Binder

You can have an application where you have both a function/consumer/supplier that is based on
the regular Kafka binder and a Kafka Streams based processor. However, you cannot mix both of
them within a single function or consumer.

Here is an example, where you have both binder based components within the same application.

@Bean
public Function<String, String> process() {
 return s -> s;
}

@Bean
public Function<KStream<Object, String>, KStream<?, WordCount>> kstreamProcess() {

 return input -> input;
}

This is the relevant parts from the configuration:

spring.cloud.stream.function.definition=process;kstreamProcess
spring.cloud.stream.bindings.process-in-0.destination=foo
spring.cloud.stream.bindings.process-out-0.destination=bar
spring.cloud.stream.bindings.kstreamProcess-in-0.destination=bar
spring.cloud.stream.bindings.kstreamProcess-out-0.destination=foobar

Things become a bit more complex if you have the same application as above, but is dealing with
two different Kafka clusters, for e.g. the regular process is acting upon both Kafka cluster 1 and
cluster 2 (receiving data from cluster-1 and sending to cluster-2) and the Kafka Streams processor is
acting upon Kafka cluster 2. Then you have to use the multi binder facilities provided by Spring
Cloud Stream.

Here is how your configuration may change in that scenario.

https://cloud.spring.io/spring-cloud-stream/reference/html/spring-cloud-stream.html#multiple-binders

multi binder configuration
spring.cloud.stream.binders.kafka1.type: kafka
spring.cloud.stream.binders.kafka1.environment.spring.cloud.stream.kafka.streams.binde
r.brokers=${kafkaCluster-1} #Replace kafkaCluster-1 with the approprate IP of the
cluster
spring.cloud.stream.binders.kafka2.type: kafka
spring.cloud.stream.binders.kafka2.environment.spring.cloud.stream.kafka.streams.binde
r.brokers=${kafkaCluster-2} #Replace kafkaCluster-2 with the approprate IP of the
cluster
spring.cloud.stream.binders.kafka3.type: kstream
spring.cloud.stream.binders.kafka3.environment.spring.cloud.stream.kafka.streams.binde
r.brokers=${kafkaCluster-2} #Replace kafkaCluster-2 with the approprate IP of the
cluster

spring.cloud.stream.function.definition=process;kstreamProcess

From cluster 1 to cluster 2 with regular process function
spring.cloud.stream.bindings.process-in-0.destination=foo
spring.cloud.stream.bindings.process-in-0.binder=kafka1 # source from cluster 1
spring.cloud.stream.bindings.process-out-0.destination=bar
spring.cloud.stream.bindings.process-out-0.binder=kafka2 # send to cluster 2

Kafka Streams processor on cluster 2
spring.cloud.stream.bindings.kstreamProcess-in-0.destination=bar
spring.cloud.stream.bindings.kstreamProcess-in-0.binder=kafka3
spring.cloud.stream.bindings.kstreamProcess-out-0.destination=foobar
spring.cloud.stream.bindings.kstreamProcess-out-0.binder=kafka3

Pay attention to the above configuration. We have two kinds of binders, but 3 binders all in all, first
one is the regular Kafka binder based on cluster 1 (kafka1), then another Kafka binder based on
cluster 2 (kafka2) and finally the kstream one (kafka3). The first processor in the application receives
data from kafka1 and publishes to kafka2 where both binders are based on regular Kafka binder but
differnt clusters. The second processor, which is a Kafka Streams processor consumes data from
kafka3 which is the same cluster as kafka2, but a different binder type.

Since there are three different binder types available in the Kafka Streams family of binders -
kstream, ktable and globalktable - if your application has multiple bindings based on any of these
binders, that needs to be explicitly provided as the binder type.

For e.g if you have a processor as below,

@Bean
public Function<KStream<Long, Order>,
 Function<KTable<Long, Customer>,
 Function<GlobalKTable<Long, Product>, KStream<Long, EnrichedOrder>>>>
enrichOrder() {

 ...
}

then, this has to be configured in a multi binder scenario as the following. Please note that this is
only needed if you have a true multi-binder scenario where there are multiple processors dealing
with multiple clusters within a single application. In that case, the binders need to be explicitly
provided with the bindings to distinguish from other processor’s binder types and clusters.

spring.cloud.stream.binders.kafka1.type: kstream
spring.cloud.stream.binders.kafka1.environment.spring.cloud.stream.kafka.streams.binde
r.brokers=${kafkaCluster-2}
spring.cloud.stream.binders.kafka2.type: ktable
spring.cloud.stream.binders.kafka2.environment.spring.cloud.stream.kafka.streams.binde
r.brokers=${kafkaCluster-2}
spring.cloud.stream.binders.kafka3.type: globalktable
spring.cloud.stream.binders.kafka3.environment.spring.cloud.stream.kafka.streams.binde
r.brokers=${kafkaCluster-2}

spring.cloud.stream.bindings.enrichOrder-in-0.binder=kafka1 #kstream
spring.cloud.stream.bindings.enrichOrder-in-1.binder=kafka2 #ktablr
spring.cloud.stream.bindings.enrichOrder-in-2.binder=kafka3 #globalktable
spring.cloud.stream.bindings.enrichOrder-out-0.binder=kafka1 #kstream

rest of the configuration is omitted.

State Cleanup

By default, the Kafkastreams.cleanup() method is called when the binding is stopped. See the Spring
Kafka documentation. To modify this behavior simply add a single CleanupConfig @Bean (configured
to clean up on start, stop, or neither) to the application context; the bean will be detected and wired
into the factory bean.

Kafka Streams topology visualization

Kafka Streams binder provides the following actuator endpoints for retrieving the topology
description using which you can visualize the topology using external tools.

/actuator/topology

/actuator/topology/<applicaiton-id of the processor>

You need to include the actuator and web dependencies from Spring Boot to access these endpoints.
Further, you also need to add topology to management.endpoints.web.exposure.include property. By

https://docs.spring.io/spring-kafka/reference/html/_reference.html#_configuration
https://docs.spring.io/spring-kafka/reference/html/_reference.html#_configuration

default, the topology endpoint is disabled.

Configuration Options

This section contains the configuration options used by the Kafka Streams binder.

For common configuration options and properties pertaining to binder, refer to the core
documentation.

Kafka Streams Binder Properties

The following properties are available at the binder level and must be prefixed with
spring.cloud.stream.kafka.streams.binder.

configuration

Map with a key/value pair containing properties pertaining to Apache Kafka Streams API. This
property must be prefixed with spring.cloud.stream.kafka.streams.binder.. Following are some
examples of using this property.

spring.cloud.stream.kafka.streams.binder.configuration.default.key.serde=org.apache.ka
fka.common.serialization.Serdes$StringSerde
spring.cloud.stream.kafka.streams.binder.configuration.default.value.serde=org.apache.
kafka.common.serialization.Serdes$StringSerde
spring.cloud.stream.kafka.streams.binder.configuration.commit.interval.ms=1000

For more information about all the properties that may go into streams configuration, see
StreamsConfig JavaDocs in Apache Kafka Streams docs. All configuration that you can set from
StreamsConfig can be set through this. When using this property, it is applicable against the entire
application since this is a binder level property. If you have more than processors in the
application, all of them will acquire these properties. In the case of properties like application.id,
this will become problematic and therefore you have to carefully examine how the properties from
StreamsConfig are mapped using this binder level configuration property.

functions.<function-bean-name>.applicationId

Applicable only for functional style processors. This can be used for setting application ID per
function in the application. In the case of multiple functions, this is a handy way to set the
application ID.

functions.<function-bean-name>.configuration

Applicable only for functional style processors. Map with a key/value pair containing properties
pertaining to Apache Kafka Streams API. This is similar to the binder level configuration
property describe above, but this level of configuration property is restricted only against the
named function. When you have multiple processors and you want to restrict access to the
configuration based on particular functions, you might want to use this. All StreamsConfig
properties can be used here.

brokers

Broker URL

Default: localhost

zkNodes

Zookeeper URL

Default: localhost

deserializationExceptionHandler

Deserialization error handler type. This handler is applied at the binder level and thus applied
against all input binding in the application. There is a way to control it in a more fine-grained
way at the consumer binding level. Possible values are - logAndContinue, logAndFail or sendToDlq

Default: logAndFail

applicationId

Convenient way to set the application.id for the Kafka Streams application globally at the binder
level. If the application contains multiple functions or StreamListener methods, then the
application id should be set differently. See above where setting the application id is discussed in
detail.

Default: application will generate a static application ID. See the application ID section for more
details.

stateStoreRetry.maxAttempts

Max attempts for trying to connect to a state store.

Default: 1

stateStoreRetry.backoffPeriod

Backoff period when trying to connect to a state store on a retry.

Default: 1000 ms

Kafka Streams Producer Properties

The following properties are only available for Kafka Streams producers and must be prefixed with
spring.cloud.stream.kafka.streams.bindings.<binding name>.producer. For convenience, if there are
multiple output bindings and they all require a common value, that can be configured by using the
prefix spring.cloud.stream.kafka.streams.default.producer..

keySerde

key serde to use

Default: See the above discussion on message de/serialization

valueSerde

value serde to use

Default: See the above discussion on message de/serialization

useNativeEncoding

flag to enable/disable native encoding

Default: true.

streamPartitionerBeanName: Custom outbound partitioner bean name to be used at the consumer.
Applications can provide custom StreamPartitioner as a Spring bean and the name of this bean can
be provided to the producer to use instead of the default one.

+ Default: See the discussion above on outbound partition support.

Kafka Streams Consumer Properties

The following properties are available for Kafka Streams consumers and must be prefixed with
spring.cloud.stream.kafka.streams.bindings.<binding-name>.consumer. For convenience, if there are
multiple input bindings and they all require a common value, that can be configured by using the
prefix spring.cloud.stream.kafka.streams.default.consumer..

applicationId

Setting application.id per input binding. This is only preferred for StreamListener based
processors, for function based processors see other approaches outlined above.

Default: See above.

keySerde

key serde to use

Default: See the above discussion on message de/serialization

valueSerde

value serde to use

Default: See the above discussion on message de/serialization

materializedAs

state store to materialize when using incoming KTable types

Default: none.

useNativeDecoding

flag to enable/disable native decoding

Default: true.

dlqName

DLQ topic name.

Default: See above on the discussion of error handling and DLQ.

startOffset

Offset to start from if there is no committed offset to consume from. This is mostly used when
the consumer is consuming from a topic for the first time. Kafka Streams uses earliest as the
default strategy and the binder uses the same default. This can be overridden to latest using this
property.

Default: earliest.

Note: Using resetOffsets on the consumer does not have any effect on Kafka Streams binder. Unlike
the message channel based binder, Kafka Streams binder does not seek to beginning or end on
demand.

deserializationExceptionHandler

Deserialization error handler type. This handler is applied per consumer binding as opposed to
the binder level property described before. Possible values are - logAndContinue, logAndFail or
sendToDlq

Default: logAndFail

timestampExtractorBeanName

Specific time stamp extractor bean name to be used at the consumer. Applications can provide
TimestampExtractor as a Spring bean and the name of this bean can be provided to the consumer
to use instead of the default one.

Default: See the discussion above on timestamp extractors.

Special note on concurrency

In Kafka Streams, you can control of the number of threads a processor can create using the
num.stream.threads property. This, you can do using the various configuration options described
above under binder, functions, producer or consumer level. You can also use the concurrency
property that core Spring Cloud Stream provides for this purpose. When using this, you need to use
it on the consumer. When you have more than one input bindings either in a function or
StreamListener, set this on the first input binding. For e.g. when setting
spring.cloud.stream.bindings.process-in-0.consumer.concurrency, it will be translated as
num.stream.threads by the binder. If you have multiple processors and one processor defines
binding level concurrency, but not the others, those ones with no binding level concurrency will
default back to the binder wide property specified through
spring.cloud.stream.binder.configuration.num.stream.threads. If this binder configuration is not
available, then the application will use the default set by Kafka Streams.

24.3. RabbitMQ Binder
This guide describes the RabbitMQ implementation of the Spring Cloud Stream Binder. It contains
information about its design, usage and configuration options, as well as information on how the
Stream Cloud Stream concepts map into RabbitMQ specific constructs.

Usage

To use the RabbitMQ binder, you can add it to your Spring Cloud Stream application, by using the

following Maven coordinates:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>
</dependency>

Alternatively, you can use the Spring Cloud Stream RabbitMQ Starter, as follows:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

RabbitMQ Binder Overview

The following simplified diagram shows how the RabbitMQ binder operates:

[rabbit binder] | https://raw.github.com/spring-cloud/master/docs/src/main/asciidoc/images/rabbit-

binder.png

Figure 18. RabbitMQ Binder

By default, the RabbitMQ Binder implementation maps each destination to a TopicExchange. For
each consumer group, a Queue is bound to that TopicExchange. Each consumer instance has a
corresponding RabbitMQ Consumer instance for its group’s Queue. For partitioned producers and
consumers, the queues are suffixed with the partition index and use the partition index as the
routing key. For anonymous consumers (those with no group property), an auto-delete queue (with a
randomized unique name) is used.

By using the optional autoBindDlq option, you can configure the binder to create and configure
dead-letter queues (DLQs) (and a dead-letter exchange DLX, as well as routing infrastructure). By
default, the dead letter queue has the name of the destination, appended with .dlq. If retry is
enabled (maxAttempts > 1), failed messages are delivered to the DLQ after retries are exhausted. If
retry is disabled (maxAttempts = 1), you should set requeueRejected to false (the default) so that
failed messages are routed to the DLQ, instead of being re-queued. In addition, republishToDlq
causes the binder to publish a failed message to the DLQ (instead of rejecting it). This feature lets
additional information (such as the stack trace in the x-exception-stacktrace header) be added to
the message in headers. See the frameMaxHeadroom property for information about truncated stack
traces. This option does not need retry enabled. You can republish a failed message after just one
attempt. Starting with version 1.2, you can configure the delivery mode of republished messages.
See the republishDeliveryMode property.

If the stream listener throws an ImmediateAcknowledgeAmqpException, the DLQ is bypassed and the
message simply discarded. Starting with version 2.1, this is true regardless of the setting of
republishToDlq; previously it was only the case when republishToDlq was false.

Setting requeueRejected to true (with republishToDlq=false) causes the message to
be re-queued and redelivered continually, which is likely not what you want
unless the reason for the failure is transient. In general, you should enable retry
within the binder by setting maxAttempts to greater than one or by setting
republishToDlq to true.

See RabbitMQ Binder Properties for more information about these properties.

The framework does not provide any standard mechanism to consume dead-letter messages (or to
re-route them back to the primary queue). Some options are described in Dead-Letter Queue
Processing.

When multiple RabbitMQ binders are used in a Spring Cloud Stream application, it
is important to disable 'RabbitAutoConfiguration' to avoid the same configuration
from RabbitAutoConfiguration being applied to the two binders. You can exclude
the class by using the @SpringBootApplication annotation.

Starting with version 2.0, the RabbitMessageChannelBinder sets the
RabbitTemplate.userPublisherConnection property to true so that the non-transactional producers
avoid deadlocks on consumers, which can happen if cached connections are blocked because of a
memory alarm on the broker.

https://www.rabbitmq.com/memory.html

Currently, a multiplex consumer (a single consumer listening to multiple queues) is
only supported for message-driven conssumers; polled consumers can only
retrieve messages from a single queue.

Configuration Options

This section contains settings specific to the RabbitMQ Binder and bound channels.

For general binding configuration options and properties, see the Spring Cloud Stream core
documentation.

RabbitMQ Binder Properties

By default, the RabbitMQ binder uses Spring Boot’s ConnectionFactory. Conseuqently, it supports all
Spring Boot configuration options for RabbitMQ. (For reference, see the Spring Boot
documentation). RabbitMQ configuration options use the spring.rabbitmq prefix.

In addition to Spring Boot options, the RabbitMQ binder supports the following properties:

spring.cloud.stream.rabbit.binder.adminAddresses

A comma-separated list of RabbitMQ management plugin URLs. Only used when nodes contains
more than one entry. Each entry in this list must have a corresponding entry in
spring.rabbitmq.addresses. Only needed if you use a RabbitMQ cluster and wish to consume
from the node that hosts the queue. See Queue Affinity and the
LocalizedQueueConnectionFactory for more information.

Default: empty.

spring.cloud.stream.rabbit.binder.nodes

A comma-separated list of RabbitMQ node names. When more than one entry, used to locate the
server address where a queue is located. Each entry in this list must have a corresponding entry
in spring.rabbitmq.addresses. Only needed if you use a RabbitMQ cluster and wish to consume
from the node that hosts the queue. See Queue Affinity and the
LocalizedQueueConnectionFactory for more information.

Default: empty.

spring.cloud.stream.rabbit.binder.compressionLevel

The compression level for compressed bindings. See java.util.zip.Deflater.

Default: 1 (BEST_LEVEL).

spring.cloud.stream.binder.connection-name-prefix

A connection name prefix used to name the connection(s) created by this binder. The name is
this prefix followed by #n, where n increments each time a new connection is opened.

Default: none (Spring AMQP default).

https://cloud.spring.io/spring-cloud-static/spring-cloud-stream/current/reference/html/spring-cloud-stream.html#_configuration_options
https://cloud.spring.io/spring-cloud-static/spring-cloud-stream/current/reference/html/spring-cloud-stream.html#_configuration_options
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-amqp/reference/html/_reference.html#queue-affinity
https://docs.spring.io/spring-amqp/reference/html/_reference.html#queue-affinity
https://docs.spring.io/spring-amqp/reference/html/_reference.html#queue-affinity
https://docs.spring.io/spring-amqp/reference/html/_reference.html#queue-affinity

RabbitMQ Consumer Properties

The following properties are available for Rabbit consumers only and must be prefixed with
spring.cloud.stream.rabbit.bindings.<channelName>.consumer..

However if the same set of properties needs to be applied to most bindings, to avoid repetition,
Spring Cloud Stream supports setting values for all channels, in the format of
spring.cloud.stream.rabbit.default.<property>=<value>.

Also, keep in mind that binding specific property will override its equivalent in the default.

acknowledgeMode

The acknowledge mode.

Default: AUTO.

anonymousGroupPrefix

When the binding has no group property, an anonymous, auto-delete queue is bound to the
destination exchange. The default naming stragegy for such queues results in a queue named
anonymous.<base64 representation of a UUID>. Set this property to change the prefix to
something other than the default.

Default: anonymous..

autoBindDlq

Whether to automatically declare the DLQ and bind it to the binder DLX.

Default: false.

bindingRoutingKey

The routing key with which to bind the queue to the exchange (if bindQueue is true). Can be
multiple keys - see bindingRoutingKeyDelimiter. For partitioned destinations, -<instanceIndex> is
appended to each key.

Default: #.

bindingRoutingKeyDelimiter

When this is not null, 'bindingRoutingKey' is considered to be a list of keys delimited by this
value; often a comma is used.

Default: null.

bindQueue

Whether to declare the queue and bind it to the destination exchange. Set it to false if you have
set up your own infrastructure and have previously created and bound the queue.

Default: true.

consumerTagPrefix

Used to create the consumer tag(s); will be appended by #n where n increments for each

consumer created. Example: ${spring.application.name}-

${spring.cloud.stream.bindings.input.group}-${spring.cloud.stream.instance-index}.

Default: none - the broker will generate random consumer tags.

containerType

Select the type of listener container to be used. See Choosing a Container in the Spring AMQP
documentation for more information.

Default: simple

deadLetterQueueName

The name of the DLQ

Default: prefix+destination.dlq

deadLetterExchange

A DLX to assign to the queue. Relevant only if autoBindDlq is true.

Default: 'prefix+DLX'

deadLetterExchangeType

The type of the DLX to assign to the queue. Relevant only if autoBindDlq is true.

Default: 'direct'

deadLetterRoutingKey

A dead letter routing key to assign to the queue. Relevant only if autoBindDlq is true.

Default: destination

declareDlx

Whether to declare the dead letter exchange for the destination. Relevant only if autoBindDlq is
true. Set to false if you have a pre-configured DLX.

Default: true.

declareExchange

Whether to declare the exchange for the destination.

Default: true.

delayedExchange

Whether to declare the exchange as a Delayed Message Exchange. Requires the delayed message
exchange plugin on the broker. The x-delayed-type argument is set to the exchangeType.

Default: false.

dlqBindingArguments

Arguments applied when binding the dlq to the dead letter exchange; used with headers

https://docs.spring.io/spring-amqp/reference/html/_reference.html#choose-container

deadLetterExchangeType to specify headers to match on. For example …dlqBindingArguments.x-

match=any, …dlqBindingArguments.someHeader=someValue.

Default: empty

dlqDeadLetterExchange

If a DLQ is declared, a DLX to assign to that queue.

Default: none

dlqDeadLetterRoutingKey

If a DLQ is declared, a dead letter routing key to assign to that queue.

Default: none

dlqExpires

How long before an unused dead letter queue is deleted (in milliseconds).

Default: no expiration

dlqLazy

Declare the dead letter queue with the x-queue-mode=lazy argument. See “Lazy Queues”. Consider
using a policy instead of this setting, because using a policy allows changing the setting without
deleting the queue.

Default: false.

dlqMaxLength

Maximum number of messages in the dead letter queue.

Default: no limit

dlqMaxLengthBytes

Maximum number of total bytes in the dead letter queue from all messages.

Default: no limit

dlqMaxPriority

Maximum priority of messages in the dead letter queue (0-255).

Default: none

dlqOverflowBehavior

Action to take when dlqMaxLength or dlqMaxLengthBytes is exceeded; currently drop-head or
reject-publish but refer to the RabbitMQ documentation.

Default: none

dlqQuorum.deliveryLimit

When quorum.enabled=true, set a delivery limit after which the message is dropped or dead-

https://www.rabbitmq.com/lazy-queues.html

lettered.

Default: none - broker default will apply.

dlqQuorum.enabled

When true, create a quorum dead letter queue instead of a classic queue.

Default: false

dlqQuorum.initialQuorumSize

When quorum.enabled=true, set the initial quorum size.

Default: none - broker default will apply.

dlqSingleActiveConsumer

Set to true to set the x-single-active-consumer queue property to true.

Default: false

dlqTtl

Default time to live to apply to the dead letter queue when declared (in milliseconds).

Default: no limit

durableSubscription

Whether the subscription should be durable. Only effective if group is also set.

Default: true.

exchangeAutoDelete

If declareExchange is true, whether the exchange should be auto-deleted (that is, removed after
the last queue is removed).

Default: true.

exchangeDurable

If declareExchange is true, whether the exchange should be durable (that is, it survives broker
restart).

Default: true.

exchangeType

The exchange type: direct, fanout, headers or topic for non-partitioned destinations and direct,
headers or topic for partitioned destinations.

Default: topic.

exclusive

Whether to create an exclusive consumer. Concurrency should be 1 when this is true. Often used
when strict ordering is required but enabling a hot standby instance to take over after a failure.

See recoveryInterval, which controls how often a standby instance attempts to consume.
Consider using singleActiveConsumer instead when using RabbitMQ 3.8 or later.

Default: false.

expires

How long before an unused queue is deleted (in milliseconds).

Default: no expiration

failedDeclarationRetryInterval

The interval (in milliseconds) between attempts to consume from a queue if it is missing.

Default: 5000

frameMaxHeadroom

The number of bytes to reserve for other headers when adding the stack trace to a DLQ message
header. All headers must fit within the frame_max size configured on the broker. Stack traces can
be large; if the size plus this property exceeds frame_max then the stack trace will be truncated. A
WARN log will be written; consider increasing the frame_max or reducing the stack trace by
catching the exception and throwing one with a smaller stack trace.

Default: 20000

headerPatterns

Patterns for headers to be mapped from inbound messages.

Default: ['*'] (all headers).

lazy

Declare the queue with the x-queue-mode=lazy argument. See “Lazy Queues”. Consider using a
policy instead of this setting, because using a policy allows changing the setting without deleting
the queue.

Default: false.

maxConcurrency

The maximum number of consumers. Not supported when the containerType is direct.

Default: 1.

maxLength

The maximum number of messages in the queue.

Default: no limit

maxLengthBytes

The maximum number of total bytes in the queue from all messages.

Default: no limit

https://www.rabbitmq.com/lazy-queues.html

maxPriority

The maximum priority of messages in the queue (0-255).

Default: none

missingQueuesFatal

When the queue cannot be found, whether to treat the condition as fatal and stop the listener
container. Defaults to false so that the container keeps trying to consume from the queue — for
example, when using a cluster and the node hosting a non-HA queue is down.

Default: false

overflowBehavior

Action to take when maxLength or maxLengthBytes is exceeded; currently drop-head or reject-
publish but refer to the RabbitMQ documentation.

Default: none

prefetch

Prefetch count.

Default: 1.

prefix

A prefix to be added to the name of the destination and queues.

Default: "".

queueBindingArguments

Arguments applied when binding the queue to the exchange; used with headers exchangeType to
specify headers to match on. For example …queueBindingArguments.x-match=any, …
queueBindingArguments.someHeader=someValue.

Default: empty

queueDeclarationRetries

The number of times to retry consuming from a queue if it is missing. Relevant only when
missingQueuesFatal is true. Otherwise, the container keeps retrying indefinitely. Not supported
when the containerType is direct.

Default: 3

queueNameGroupOnly

When true, consume from a queue with a name equal to the group. Otherwise the queue name is
destination.group. This is useful, for example, when using Spring Cloud Stream to consume from
an existing RabbitMQ queue.

Default: false.

quorum.deliveryLimit

When quorum.enabled=true, set a delivery limit after which the message is dropped or dead-
lettered.

Default: none - broker default will apply.

quorum.enabled

When true, create a quorum queue instead of a classic queue.

Default: false

quorum.initialQuorumSize

When quorum.enabled=true, set the initial quorum size.

Default: none - broker default will apply.

recoveryInterval

The interval between connection recovery attempts, in milliseconds.

Default: 5000.

requeueRejected

Whether delivery failures should be re-queued when retry is disabled or republishToDlq is false.

Default: false.

republishDeliveryMode

When republishToDlq is true, specifies the delivery mode of the republished message.

Default: DeliveryMode.PERSISTENT

republishToDlq

By default, messages that fail after retries are exhausted are rejected. If a dead-letter queue
(DLQ) is configured, RabbitMQ routes the failed message (unchanged) to the DLQ. If set to true,
the binder republishs failed messages to the DLQ with additional headers, including the
exception message and stack trace from the cause of the final failure. Also see the
frameMaxHeadroom property.

Default: false

singleActiveConsumer

Set to true to set the x-single-active-consumer queue property to true.

Default: false

transacted

Whether to use transacted channels.

Default: false.

ttl

Default time to live to apply to the queue when declared (in milliseconds).

Default: no limit

txSize

The number of deliveries between acks. Not supported when the containerType is direct.

Default: 1.

Advanced Listener Container Configuration

To set listener container properties that are not exposed as binder or binding properties, add a
single bean of type ListenerContainerCustomizer to the application context. The binder and binding
properties will be set and then the customizer will be called. The customizer (configure() method)
is provided with the queue name as well as the consumer group as arguments.

Advanced Queue/Exchange/Binding Configuration

From time to time, the RabbitMQ team add new features that are enabled by setting some argument
when declaring, for example, a queue. Generally, such features are enabled in the binder by adding
appropriate properties, but this may not be immediately available in a current version. Starting
with version 3.0.1, you can now add DeclarableCustomizer bean(s) to the application context to
modify a Declarable (Queue, Exchange or Binding) just before the declaration is performed. This
allows you to add arguments that are not currently directly supported by the binder.

Receiving Batched Messages

Normally, if a producer binding has batch-enabled=true (see Rabbit Producer Properties), or a
message is created by a BatchingRabbitTemplate, elements of the batch are returned as individual
calls to the listener method. Starting with version 3.0, any such batch can be presented as a List<?>
to the listener method if spring.cloud.stream.bindings.<name>.consumer.batch-mode is set to true.

Rabbit Producer Properties

The following properties are available for Rabbit producers only and must be prefixed with
spring.cloud.stream.rabbit.bindings.<channelName>.producer..

However if the same set of properties needs to be applied to most bindings, to avoid repetition,
Spring Cloud Stream supports setting values for all channels, in the format of
spring.cloud.stream.rabbit.default.<property>=<value>.

Also, keep in mind that binding specific property will override its equivalent in the default.

autoBindDlq

Whether to automatically declare the DLQ and bind it to the binder DLX.

Default: false.

batchingEnabled

Whether to enable message batching by producers. Messages are batched into one message

according to the following properties (described in the next three entries in this list): 'batchSize',
batchBufferLimit, and batchTimeout. See Batching for more information. Also see Receiving
Batched Messages.

Default: false.

batchSize

The number of messages to buffer when batching is enabled.

Default: 100.

batchBufferLimit

The maximum buffer size when batching is enabled.

Default: 10000.

batchTimeout

The batch timeout when batching is enabled.

Default: 5000.

bindingRoutingKey

The routing key with which to bind the queue to the exchange (if bindQueue is true). Can be
multiple keys - see bindingRoutingKeyDelimiter. For partitioned destinations, -n is appended to
each key. Only applies if requiredGroups are provided and then only to those groups.

Default: #.

bindingRoutingKeyDelimiter

When this is not null, 'bindingRoutingKey' is considered to be a list of keys delimited by this
value; often a comma is used. Only applies if requiredGroups are provided and then only to those
groups.

Default: null.

bindQueue

Whether to declare the queue and bind it to the destination exchange. Set it to false if you have
set up your own infrastructure and have previously created and bound the queue. Only applies
if requiredGroups are provided and then only to those groups.

Default: true.

compress

Whether data should be compressed when sent.

Default: false.

confirmAckChannel

When errorChannelEnabled is true, a channel to which to send positive delivery
acknowledgments (aka publisher confirms). If the channel does not exist, a DirectChannel is

https://docs.spring.io/spring-amqp//reference/html/_reference.html#template-batching

registered with this name. The connection factory must be configured to enable publisher
confirms.

Default: nullChannel (acks are discarded).

deadLetterQueueName

The name of the DLQ Only applies if requiredGroups are provided and then only to those groups.

Default: prefix+destination.dlq

deadLetterExchange

A DLX to assign to the queue. Relevant only when autoBindDlq is true. Applies only when
requiredGroups are provided and then only to those groups.

Default: 'prefix+DLX'

deadLetterExchangeType

The type of the DLX to assign to the queue. Relevant only if autoBindDlq is true. Applies only
when requiredGroups are provided and then only to those groups.

Default: 'direct'

deadLetterRoutingKey

A dead letter routing key to assign to the queue. Relevant only when autoBindDlq is true. Applies
only when requiredGroups are provided and then only to those groups.

Default: destination

declareDlx

Whether to declare the dead letter exchange for the destination. Relevant only if autoBindDlq is
true. Set to false if you have a pre-configured DLX. Applies only when requiredGroups are
provided and then only to those groups.

Default: true.

declareExchange

Whether to declare the exchange for the destination.

Default: true.

delayExpression

A SpEL expression to evaluate the delay to apply to the message (x-delay header). It has no effect
if the exchange is not a delayed message exchange.

Default: No x-delay header is set.

delayedExchange

Whether to declare the exchange as a Delayed Message Exchange. Requires the delayed message
exchange plugin on the broker. The x-delayed-type argument is set to the exchangeType.

Default: false.

deliveryMode

The delivery mode.

Default: PERSISTENT.

dlqBindingArguments

Arguments applied when binding the dlq to the dead letter exchange; used with headers
deadLetterExchangeType to specify headers to match on. For example …dlqBindingArguments.x-

match=any, …dlqBindingArguments.someHeader=someValue. Applies only when requiredGroups are
provided and then only to those groups.

Default: empty

dlqDeadLetterExchange

When a DLQ is declared, a DLX to assign to that queue. Applies only if requiredGroups are
provided and then only to those groups.

Default: none

dlqDeadLetterRoutingKey

When a DLQ is declared, a dead letter routing key to assign to that queue. Applies only when
requiredGroups are provided and then only to those groups.

Default: none

dlqExpires

How long (in milliseconds) before an unused dead letter queue is deleted. Applies only when
requiredGroups are provided and then only to those groups.

Default: no expiration

dlqLazy

Declare the dead letter queue with the x-queue-mode=lazy argument. See “Lazy Queues”. Consider
using a policy instead of this setting, because using a policy allows changing the setting without
deleting the queue. Applies only when requiredGroups are provided and then only to those
groups.

dlqMaxLength

Maximum number of messages in the dead letter queue. Applies only if requiredGroups are
provided and then only to those groups.

Default: no limit

dlqMaxLengthBytes

Maximum number of total bytes in the dead letter queue from all messages. Applies only when
requiredGroups are provided and then only to those groups.

Default: no limit

https://www.rabbitmq.com/lazy-queues.html

dlqMaxPriority

Maximum priority of messages in the dead letter queue (0-255) Applies only when
requiredGroups are provided and then only to those groups.

Default: none

dlqQuorum.deliveryLimit

When quorum.enabled=true, set a delivery limit after which the message is dropped or dead-
lettered. Applies only when requiredGroups are provided and then only to those groups.

Default: none - broker default will apply.

dlqQuorum.enabled

When true, create a quorum dead letter queue instead of a classic queue. Applies only when
requiredGroups are provided and then only to those groups.

Default: false

dlqQuorum.initialQuorumSize

When quorum.enabled=true, set the initial quorum size. Applies only when requiredGroups are
provided and then only to those groups.

Default: none - broker default will apply.

dlqSingleActiveConsumer

Set to true to set the x-single-active-consumer queue property to true. Applies only when
requiredGroups are provided and then only to those groups.

Default: false

dlqTtl

Default time (in milliseconds) to live to apply to the dead letter queue when declared. Applies
only when requiredGroups are provided and then only to those groups.

Default: no limit

exchangeAutoDelete

If declareExchange is true, whether the exchange should be auto-delete (it is removed after the
last queue is removed).

Default: true.

exchangeDurable

If declareExchange is true, whether the exchange should be durable (survives broker restart).

Default: true.

exchangeType

The exchange type: direct, fanout, headers or topic for non-partitioned destinations and direct,
headers or topic for partitioned destinations.

Default: topic.

expires

How long (in milliseconds) before an unused queue is deleted. Applies only when requiredGroups
are provided and then only to those groups.

Default: no expiration

headerPatterns

Patterns for headers to be mapped to outbound messages.

Default: ['*'] (all headers).

lazy

Declare the queue with the x-queue-mode=lazy argument. See “Lazy Queues”. Consider using a
policy instead of this setting, because using a policy allows changing the setting without deleting
the queue. Applies only when requiredGroups are provided and then only to those groups.

Default: false.

maxLength

Maximum number of messages in the queue. Applies only when requiredGroups are provided
and then only to those groups.

Default: no limit

maxLengthBytes

Maximum number of total bytes in the queue from all messages. Only applies if requiredGroups
are provided and then only to those groups.

Default: no limit

maxPriority

Maximum priority of messages in the queue (0-255). Only applies if requiredGroups are provided
and then only to those groups.

Default: none

prefix

A prefix to be added to the name of the destination exchange.

Default: "".

queueBindingArguments

Arguments applied when binding the queue to the exchange; used with headers exchangeType to
specify headers to match on. For example …queueBindingArguments.x-match=any, …
queueBindingArguments.someHeader=someValue. Applies only when requiredGroups are provided
and then only to those groups.

Default: empty

https://www.rabbitmq.com/lazy-queues.html

queueNameGroupOnly

When true, consume from a queue with a name equal to the group. Otherwise the queue name is
destination.group. This is useful, for example, when using Spring Cloud Stream to consume from
an existing RabbitMQ queue. Applies only when requiredGroups are provided and then only to
those groups.

Default: false.

quorum.deliveryLimit

When quorum.enabled=true, set a delivery limit after which the message is dropped or dead-
lettered. Applies only when requiredGroups are provided and then only to those groups.

Default: none - broker default will apply.

quorum.enabled

When true, create a quorum queue instead of a classic queue. Applies only when requiredGroups
are provided and then only to those groups.

Default: false

quorum.initialQuorumSize

When quorum.enabled=true, set the initial quorum size. Applies only when requiredGroups are
provided and then only to those groups.

Default: none - broker default will apply.

routingKeyExpression

A SpEL expression to determine the routing key to use when publishing messages. For a fixed
routing key, use a literal expression, such as routingKeyExpression='my.routingKey' in a
properties file or routingKeyExpression: '''my.routingKey''' in a YAML file.

Default: destination or destination-<partition> for partitioned destinations.

singleActiveConsumer

Set to true to set the x-single-active-consumer queue property to true. Applies only when
requiredGroups are provided and then only to those groups.

Default: false

transacted

Whether to use transacted channels.

Default: false.

ttl

Default time (in milliseconds) to live to apply to the queue when declared. Applies only when
requiredGroups are provided and then only to those groups.

Default: no limit

In the case of RabbitMQ, content type headers can be set by external applications.
Spring Cloud Stream supports them as part of an extended internal protocol used
for any type of transport — including transports, such as Kafka (prior to 0.11), that
do not natively support headers.

Using Existing Queues/Exchanges

By default, the binder will automatically provision a topic exchange with the name being derived
from the value of the destination binding property <prefix><destination>. The destination defaults
to the binding name, if not provided. When binding a consumer, a queue will automatically be
provisioned with the name <prefix><destination>.<group> (if a group binding property is specified),
or an anonymous, auto-delete queue when there is no group. The queue will be bound to the
exchange with the "match-all" wildcard routing key (#) for a non-partitioned binding or
<destination>-<instanceIndex> for a partitioned binding. The prefix is an empty String by default. If
an output binding is specified with requiredGroups, a queue/binding will be provisioned for each
group.

There are a number of rabbit-specific binding properties that allow you to modify this default
behavior.

If you have an existing exchange/queue that you wish to use, you can completely disable automatic
provisioning as follows, assuming the exchange is named myExchange and the queue is named
myQueue:

• spring.cloud.stream.bindings.<binding name>.destination=myExhange

• spring.cloud.stream.bindings.<binding name>.group=myQueue

• spring.cloud.stream.rabbit.bindings.<binding name>.consumer.bindQueue=false

• spring.cloud.stream.rabbit.bindings.<binding name>.consumer.declareExchange=false

• spring.cloud.stream.rabbit.bindings.<binding name>.consumer.queueNameGroupOnly=true

If you want the binder to provision the queue/exchange, but you want to do it using something
other than the defaults discussed here, use the following properties. Refer to the property
documentation above for more information.

• spring.cloud.stream.rabbit.bindings.<binding name>.consumer.bindingRoutingKey=myRoutingKey

• spring.cloud.stream.rabbit.bindings.<binding name>.consumer.exchangeType=<type>

• spring.cloud.stream.rabbit.bindings.<binding
name>.producer.routingKeyExpression='myRoutingKey'

There are similar properties used when declaring a dead-letter exchange/queue, when autoBindDlq
is true.

Retry With the RabbitMQ Binder

When retry is enabled within the binder, the listener container thread is suspended for any back
off periods that are configured. This might be important when strict ordering is required with a
single consumer. However, for other use cases, it prevents other messages from being processed on
that thread. An alternative to using binder retry is to set up dead lettering with time to live on the
dead-letter queue (DLQ) as well as dead-letter configuration on the DLQ itself. See “RabbitMQ

Binder Properties” for more information about the properties discussed here. You can use the
following example configuration to enable this feature:

• Set autoBindDlq to true. The binder create a DLQ. Optionally, you can specify a name in
deadLetterQueueName.

• Set dlqTtl to the back off time you want to wait between redeliveries.

• Set the dlqDeadLetterExchange to the default exchange. Expired messages from the DLQ are
routed to the original queue, because the default deadLetterRoutingKey is the queue name
(destination.group). Setting to the default exchange is achieved by setting the property with no
value, as shown in the next example.

To force a message to be dead-lettered, either throw an AmqpRejectAndDontRequeueException or set
requeueRejected to true (the default) and throw any exception.

The loop continue without end, which is fine for transient problems, but you may want to give up
after some number of attempts. Fortunately, RabbitMQ provides the x-death header, which lets you
determine how many cycles have occurred.

To acknowledge a message after giving up, throw an ImmediateAcknowledgeAmqpException.

Putting it All Together

The following configuration creates an exchange myDestination with queue
myDestination.consumerGroup bound to a topic exchange with a wildcard routing key #:

spring.cloud.stream.bindings.input.destination=myDestination
spring.cloud.stream.bindings.input.group=consumerGroup
#disable binder retries
spring.cloud.stream.bindings.input.consumer.max-attempts=1
#dlx/dlq setup
spring.cloud.stream.rabbit.bindings.input.consumer.auto-bind-dlq=true
spring.cloud.stream.rabbit.bindings.input.consumer.dlq-ttl=5000
spring.cloud.stream.rabbit.bindings.input.consumer.dlq-dead-letter-exchange=

This configuration creates a DLQ bound to a direct exchange (DLX) with a routing key of
myDestination.consumerGroup. When messages are rejected, they are routed to the DLQ. After 5
seconds, the message expires and is routed to the original queue by using the queue name as the
routing key, as shown in the following example:

Spring Boot application

@SpringBootApplication
@EnableBinding(Sink.class)
public class XDeathApplication {

 public static void main(String[] args) {
 SpringApplication.run(XDeathApplication.class, args);
 }

 @StreamListener(Sink.INPUT)
 public void listen(String in, @Header(name = "x-death", required = false) Map<?,?>
death) {
 if (death != null && death.get("count").equals(3L)) {
 // giving up - don't send to DLX
 throw new ImmediateAcknowledgeAmqpException("Failed after 4 attempts");
 }
 throw new AmqpRejectAndDontRequeueException("failed");
 }

}

Notice that the count property in the x-death header is a Long.

Error Channels

Starting with version 1.3, the binder unconditionally sends exceptions to an error channel for each
consumer destination and can also be configured to send async producer send failures to an error
channel. See “Error Handling” for more information.

RabbitMQ has two types of send failures:

• Returned messages,

• Negatively acknowledged Publisher Confirms.

The latter is rare. According to the RabbitMQ documentation "[A nack] will only be delivered if an
internal error occurs in the Erlang process responsible for a queue.".

As well as enabling producer error channels (as described in “Error Handling”), the RabbitMQ
binder only sends messages to the channels if the connection factory is appropriately configured, as
follows:

• ccf.setPublisherConfirms(true);

• ccf.setPublisherReturns(true);

When using Spring Boot configuration for the connection factory, set the following properties:

• spring.rabbitmq.publisher-confirms

• spring.rabbitmq.publisher-returns

The payload of the ErrorMessage for a returned message is a ReturnedAmqpMessageException with the

https://www.rabbitmq.com/confirms.html

following properties:

• failedMessage: The spring-messaging Message<?> that failed to be sent.

• amqpMessage: The raw spring-amqp Message.

• replyCode: An integer value indicating the reason for the failure (for example, 312 - No route).

• replyText: A text value indicating the reason for the failure (for example, NO_ROUTE).

• exchange: The exchange to which the message was published.

• routingKey: The routing key used when the message was published.

For negatively acknowledged confirmations, the payload is a NackedAmqpMessageException with the
following properties:

• failedMessage: The spring-messaging Message<?> that failed to be sent.

• nackReason: A reason (if available — you may need to examine the broker logs for more
information).

There is no automatic handling of these exceptions (such as sending to a dead-letter queue). You
can consume these exceptions with your own Spring Integration flow.

Dead-Letter Queue Processing

Because you cannot anticipate how users would want to dispose of dead-lettered messages, the
framework does not provide any standard mechanism to handle them. If the reason for the dead-
lettering is transient, you may wish to route the messages back to the original queue. However, if
the problem is a permanent issue, that could cause an infinite loop. The following Spring Boot
application shows an example of how to route those messages back to the original queue but moves
them to a third “parking lot” queue after three attempts. The second example uses the RabbitMQ
Delayed Message Exchange to introduce a delay to the re-queued message. In this example, the
delay increases for each attempt. These examples use a @RabbitListener to receive messages from
the DLQ. You could also use RabbitTemplate.receive() in a batch process.

The examples assume the original destination is so8400in and the consumer group is so8400.

Non-Partitioned Destinations

The first two examples are for when the destination is not partitioned:

https://www.rabbitmq.com/blog/2015/04/16/scheduling-messages-with-rabbitmq/
https://www.rabbitmq.com/blog/2015/04/16/scheduling-messages-with-rabbitmq/

@SpringBootApplication
public class ReRouteDlqApplication {

 private static final String ORIGINAL_QUEUE = "so8400in.so8400";

 private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

 private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

 private static final String X_RETRIES_HEADER = "x-retries";

 public static void main(String[] args) throws Exception {
 ConfigurableApplicationContext context =
SpringApplication.run(ReRouteDlqApplication.class, args);
 System.out.println("Hit enter to terminate");
 System.in.read();
 context.close();
 }

 @Autowired
 private RabbitTemplate rabbitTemplate;

 @RabbitListener(queues = DLQ)
 public void rePublish(Message failedMessage) {
 Integer retriesHeader = (Integer)
failedMessage.getMessageProperties().getHeaders().get(X_RETRIES_HEADER);
 if (retriesHeader == null) {
 retriesHeader = Integer.valueOf(0);
 }
 if (retriesHeader < 3) {
 failedMessage.getMessageProperties().getHeaders().put(X_RETRIES_HEADER,
retriesHeader + 1);
 this.rabbitTemplate.send(ORIGINAL_QUEUE, failedMessage);
 }
 else {
 this.rabbitTemplate.send(PARKING_LOT, failedMessage);
 }
 }

 @Bean
 public Queue parkingLot() {
 return new Queue(PARKING_LOT);
 }

}

@SpringBootApplication
public class ReRouteDlqApplication {

 private static final String ORIGINAL_QUEUE = "so8400in.so8400";

 private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

 private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

 private static final String X_RETRIES_HEADER = "x-retries";

 private static final String DELAY_EXCHANGE = "dlqReRouter";

 public static void main(String[] args) throws Exception {
 ConfigurableApplicationContext context =
SpringApplication.run(ReRouteDlqApplication.class, args);
 System.out.println("Hit enter to terminate");
 System.in.read();
 context.close();
 }

 @Autowired
 private RabbitTemplate rabbitTemplate;

 @RabbitListener(queues = DLQ)
 public void rePublish(Message failedMessage) {
 Map<String, Object> headers =
failedMessage.getMessageProperties().getHeaders();
 Integer retriesHeader = (Integer) headers.get(X_RETRIES_HEADER);
 if (retriesHeader == null) {
 retriesHeader = Integer.valueOf(0);
 }
 if (retriesHeader < 3) {
 headers.put(X_RETRIES_HEADER, retriesHeader + 1);
 headers.put("x-delay", 5000 * retriesHeader);
 this.rabbitTemplate.send(DELAY_EXCHANGE, ORIGINAL_QUEUE, failedMessage);
 }
 else {
 this.rabbitTemplate.send(PARKING_LOT, failedMessage);
 }
 }

 @Bean
 public DirectExchange delayExchange() {
 DirectExchange exchange = new DirectExchange(DELAY_EXCHANGE);
 exchange.setDelayed(true);
 return exchange;
 }

 @Bean
 public Binding bindOriginalToDelay() {
 return BindingBuilder.bind(new
Queue(ORIGINAL_QUEUE)).to(delayExchange()).with(ORIGINAL_QUEUE);
 }

 @Bean
 public Queue parkingLot() {
 return new Queue(PARKING_LOT);
 }

}

Partitioned Destinations

With partitioned destinations, there is one DLQ for all partitions. We determine the original queue
from the headers.

republishToDlq=false

When republishToDlq is false, RabbitMQ publishes the message to the DLX/DLQ with an x-death
header containing information about the original destination, as shown in the following example:

@SpringBootApplication
public class ReRouteDlqApplication {

 private static final String ORIGINAL_QUEUE = "so8400in.so8400";

 private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

 private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

 private static final String X_DEATH_HEADER = "x-death";

 private static final String X_RETRIES_HEADER = "x-retries";

 public static void main(String[] args) throws Exception {
 ConfigurableApplicationContext context =
SpringApplication.run(ReRouteDlqApplication.class, args);
 System.out.println("Hit enter to terminate");
 System.in.read();
 context.close();
 }

 @Autowired
 private RabbitTemplate rabbitTemplate;

 @SuppressWarnings("unchecked")
 @RabbitListener(queues = DLQ)
 public void rePublish(Message failedMessage) {
 Map<String, Object> headers =
failedMessage.getMessageProperties().getHeaders();
 Integer retriesHeader = (Integer) headers.get(X_RETRIES_HEADER);
 if (retriesHeader == null) {
 retriesHeader = Integer.valueOf(0);

 }
 if (retriesHeader < 3) {
 headers.put(X_RETRIES_HEADER, retriesHeader + 1);
 List<Map<String, ?>> xDeath = (List<Map<String, ?>>)
headers.get(X_DEATH_HEADER);
 String exchange = (String) xDeath.get(0).get("exchange");
 List<String> routingKeys = (List<String>) xDeath.get(0).get("routing-
keys");
 this.rabbitTemplate.send(exchange, routingKeys.get(0), failedMessage);
 }
 else {
 this.rabbitTemplate.send(PARKING_LOT, failedMessage);
 }
 }

 @Bean
 public Queue parkingLot() {
 return new Queue(PARKING_LOT);
 }

}

republishToDlq=true

When republishToDlq is true, the republishing recoverer adds the original exchange and routing
key to headers, as shown in the following example:

@SpringBootApplication
public class ReRouteDlqApplication {

 private static final String ORIGINAL_QUEUE = "so8400in.so8400";

 private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

 private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

 private static final String X_RETRIES_HEADER = "x-retries";

 private static final String X_ORIGINAL_EXCHANGE_HEADER =
RepublishMessageRecoverer.X_ORIGINAL_EXCHANGE;

 private static final String X_ORIGINAL_ROUTING_KEY_HEADER =
RepublishMessageRecoverer.X_ORIGINAL_ROUTING_KEY;

 public static void main(String[] args) throws Exception {
 ConfigurableApplicationContext context =
SpringApplication.run(ReRouteDlqApplication.class, args);
 System.out.println("Hit enter to terminate");
 System.in.read();
 context.close();

 }

 @Autowired
 private RabbitTemplate rabbitTemplate;

 @RabbitListener(queues = DLQ)
 public void rePublish(Message failedMessage) {
 Map<String, Object> headers =
failedMessage.getMessageProperties().getHeaders();
 Integer retriesHeader = (Integer) headers.get(X_RETRIES_HEADER);
 if (retriesHeader == null) {
 retriesHeader = Integer.valueOf(0);
 }
 if (retriesHeader < 3) {
 headers.put(X_RETRIES_HEADER, retriesHeader + 1);
 String exchange = (String) headers.get(X_ORIGINAL_EXCHANGE_HEADER);
 String originalRoutingKey = (String)
headers.get(X_ORIGINAL_ROUTING_KEY_HEADER);
 this.rabbitTemplate.send(exchange, originalRoutingKey, failedMessage);
 }
 else {
 this.rabbitTemplate.send(PARKING_LOT, failedMessage);
 }
 }

 @Bean
 public Queue parkingLot() {
 return new Queue(PARKING_LOT);
 }

}

Partitioning with the RabbitMQ Binder

RabbitMQ does not support partitioning natively.

Sometimes, it is advantageous to send data to specific partitions — for example, when you want to
strictly order message processing, all messages for a particular customer should go to the same
partition.

The RabbitMessageChannelBinder provides partitioning by binding a queue for each partition to the
destination exchange.

The following Java and YAML examples show how to configure the producer:

Producer

@SpringBootApplication
@EnableBinding(Source.class)
public class RabbitPartitionProducerApplication {

 private static final Random RANDOM = new Random(System.currentTimeMillis());

 private static final String[] data = new String[] {
 "abc1", "def1", "qux1",
 "abc2", "def2", "qux2",
 "abc3", "def3", "qux3",
 "abc4", "def4", "qux4",
 };

 public static void main(String[] args) {
 new SpringApplicationBuilder(RabbitPartitionProducerApplication.class)
 .web(false)
 .run(args);
 }

 @InboundChannelAdapter(channel = Source.OUTPUT, poller = @Poller(fixedRate =
"5000"))
 public Message<?> generate() {
 String value = data[RANDOM.nextInt(data.length)];
 System.out.println("Sending: " + value);
 return MessageBuilder.withPayload(value)
 .setHeader("partitionKey", value)
 .build();
 }

}

application.yml

 spring:
 cloud:
 stream:
 bindings:
 output:
 destination: partitioned.destination
 producer:
 partitioned: true
 partition-key-expression: headers['partitionKey']
 partition-count: 2
 required-groups:
 - myGroup

The configuration in the prececing example uses the default partitioning
(key.hashCode() % partitionCount). This may or may not provide a suitably
balanced algorithm, depending on the key values. You can override this default by
using the partitionSelectorExpression or partitionSelectorClass properties.

The required-groups property is required only if you need the consumer queues to
be provisioned when the producer is deployed. Otherwise, any messages sent to a
partition are lost until the corresponding consumer is deployed.

The following configuration provisions a topic exchange:

The following queues are bound to that exchange:

The following bindings associate the queues to the exchange:

The following Java and YAML examples continue the previous examples and show how to configure
the consumer:

Consumer

@SpringBootApplication
@EnableBinding(Sink.class)
public class RabbitPartitionConsumerApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(RabbitPartitionConsumerApplication.class)
 .web(false)
 .run(args);
 }

 @StreamListener(Sink.INPUT)
 public void listen(@Payload String in, @Header(AmqpHeaders.CONSUMER_QUEUE) String
queue) {
 System.out.println(in + " received from queue " + queue);
 }

}

application.yml

 spring:
 cloud:
 stream:
 bindings:
 input:
 destination: partitioned.destination
 group: myGroup
 consumer:
 partitioned: true
 instance-index: 0

The RabbitMessageChannelBinder does not support dynamic scaling. There must be
at least one consumer per partition. The consumer’s instanceIndex is used to
indicate which partition is consumed. Platforms such as Cloud Foundry can have
only one instance with an instanceIndex.

Appendix: Compendium of
Configuration Properties
Name Default Description

aws.paramstore.default-context application

aws.paramstore.enabled true Is AWS Parameter Store support
enabled.

aws.paramstore.fail-fast true Throw exceptions during config
lookup if true, otherwise, log
warnings.

aws.paramstore.name Alternative to
spring.application.name to use
in looking up values in AWS
Parameter Store.

aws.paramstore.prefix /config Prefix indicating first level for
every property. Value must start
with a forward slash followed
by a valid path segment or be
empty. Defaults to "/config".

aws.paramstore.profile-
separator

_

cloud.aws.credentials.access-
key

The access key to be used with a
static provider.

cloud.aws.credentials.instance-
profile

true Configures an instance profile
credentials provider with no
further configuration.

cloud.aws.credentials.profile-
name

The AWS profile name.

cloud.aws.credentials.profile-
path

The AWS profile path.

cloud.aws.credentials.secret-key The secret key to be used with a
static provider.

cloud.aws.credentials.use-
default-aws-credentials-chain

false Use the DefaultAWSCredentials
Chain instead of configuring a
custom credentials chain.

Name Default Description

cloud.aws.loader.core-pool-size 1 The core pool size of the Task
Executor used for parallel S3
interaction. @see
org.springframework.schedulin
g.concurrent.ThreadPoolTaskEx
ecutor#setCorePoolSize(int)

cloud.aws.loader.max-pool-size The maximum pool size of the
Task Executor used for parallel
S3 interaction. @see
org.springframework.schedulin
g.concurrent.ThreadPoolTaskEx
ecutor#setMaxPoolSize(int)

cloud.aws.loader.queue-
capacity

The maximum queue capacity
for backed up S3 requests. @see
org.springframework.schedulin
g.concurrent.ThreadPoolTaskEx
ecutor#setQueueCapacity(int)

cloud.aws.region.auto true Enables automatic region
detection based on the EC2
meta data service.

cloud.aws.region.static

cloud.aws.stack.auto true Enables the automatic stack
name detection for the
application.

cloud.aws.stack.name myStackName The name of the manually
configured stack name that will
be used to retrieve the
resources.

encrypt.fail-on-error true Flag to say that a process should
fail if there is an encryption or
decryption error.

encrypt.key A symmetric key. As a stronger
alternative, consider using a
keystore.

encrypt.key-store.alias Alias for a key in the store.

encrypt.key-store.location Location of the key store file,
e.g. classpath:/keystore.jks.

encrypt.key-store.password Password that locks the
keystore.

Name Default Description

encrypt.key-store.secret Secret protecting the key
(defaults to the same as the
password).

encrypt.key-store.type jks The KeyStore type. Defaults to
jks.

encrypt.rsa.algorithm The RSA algorithm to use
(DEFAULT or OEAP). Once it is
set, do not change it (or existing
ciphers will not be decryptable).

encrypt.rsa.salt deadbeef Salt for the random secret used
to encrypt cipher text. Once it is
set, do not change it (or existing
ciphers will not be decryptable).

encrypt.rsa.strong false Flag to indicate that "strong"
AES encryption should be used
internally. If true, then the GCM
algorithm is applied to the AES
encrypted bytes. Default is false
(in which case "standard" CBC is
used instead). Once it is set, do
not change it (or existing
ciphers will not be decryptable).

encrypt.salt deadbeef A salt for the symmetric key, in
the form of a hex-encoded byte
array. As a stronger alternative,
consider using a keystore.

endpoints.zookeeper.enabled true Enable the /zookeeper endpoint
to inspect the state of
zookeeper.

eureka.client.healthcheck.enabl
ed

true Enables the Eureka health
check handler.

health.config.enabled false Flag to indicate that the config
server health indicator should
be installed.

health.config.time-to-live 0 Time to live for cached result, in
milliseconds. Default 300000 (5
min).

hystrix.metrics.enabled true Enable Hystrix metrics polling.
Defaults to true.

Name Default Description

hystrix.metrics.polling-interval-
ms

2000 Interval between subsequent
polling of metrics. Defaults to
2000 ms.

hystrix.shareSecurityContext false Enables auto-configuration of
the Hystrix concurrency
strategy plugin hook who will
transfer the SecurityContext
from your main thread to the
one used by the Hystrix
command.

management.endpoint.bindings
.cache.time-to-live

0ms Maximum time that a response
can be cached.

management.endpoint.bindings
.enabled

true Whether to enable the bindings
endpoint.

management.endpoint.bus-
env.enabled

true Whether to enable the bus-env
endpoint.

management.endpoint.bus-
refresh.enabled

true Whether to enable the bus-
refresh endpoint.

management.endpoint.channels
.cache.time-to-live

0ms Maximum time that a response
can be cached.

management.endpoint.channels
.enabled

true Whether to enable the channels
endpoint.

management.endpoint.consul.c
ache.time-to-live

0ms Maximum time that a response
can be cached.

management.endpoint.consul.e
nabled

true Whether to enable the consul
endpoint.

management.endpoint.env.post.
enabled

false Enables writable environment
endpoint.

management.endpoint.features.
cache.time-to-live

0ms Maximum time that a response
can be cached.

management.endpoint.features.
enabled

true Whether to enable the features
endpoint.

management.endpoint.gateway.
enabled

true Whether to enable the gateway
endpoint.

management.endpoint.hystrix.c
onfig

Hystrix settings. These are
traditionally set using servlet
parameters. Refer to the
documentation of Hystrix for
more details.

Name Default Description

management.endpoint.hystrix.s
tream.enabled

true Whether to enable the
hystrix.stream endpoint.

management.endpoint.pause.en
abled

true Enable the /pause endpoint (to
send Lifecycle.stop()).

management.endpoint.refresh.e
nabled

true Enable the /refresh endpoint to
refresh configuration and re-
initialize refresh scoped beans.

management.endpoint.restart.e
nabled

true Enable the /restart endpoint to
restart the application context.

management.endpoint.resume.
enabled

true Enable the /resume endpoint (to
send Lifecycle.start()).

management.endpoint.service-
registry.cache.time-to-live

0ms Maximum time that a response
can be cached.

management.endpoint.service-
registry.enabled

true Whether to enable the service-
registry endpoint.

management.endpoint.topology
.cache.time-to-live

0ms Maximum time that a response
can be cached.

management.endpoint.topology
.enabled

true Whether to enable the topology
endpoint.

management.health.binders.en
abled

true Allows to enable/disable
binder’s' health indicators. If
you want to disable health
indicator completely, then set it
to false.

management.health.refresh.ena
bled

true Enable the health endpoint for
the refresh scope.

management.health.zookeeper.
enabled

true Enable the health endpoint for
zookeeper.

management.metrics.binders.h
ystrix.enabled

true Enables creation of OK Http
Client factory beans.

management.metrics.export.clo
udwatch.batch-size

management.metrics.export.clo
udwatch.connect-timeout

management.metrics.export.clo
udwatch.enabled

true Enables cloud watch metrics.

management.metrics.export.clo
udwatch.namespace

Cloud watch namespace.

Name Default Description

management.metrics.export.clo
udwatch.read-timeout

management.metrics.export.clo
udwatch.step

maven.checksum-policy

maven.connect-timeout

maven.enable-repository-
listener

maven.local-repository

maven.offline

maven.proxy

maven.remote-repositories

maven.request-timeout

maven.resolve-pom

maven.update-policy

maven.use-wagon

proxy.auth.load-balanced false

proxy.auth.routes Authentication strategy per
route.

ribbon.eager-load.clients

ribbon.eager-load.enabled false

ribbon.http.client.enabled false Deprecated property to enable
Ribbon RestClient.

ribbon.okhttp.enabled false Enables the use of the OK HTTP
Client with Ribbon.

ribbon.restclient.enabled false Enables the use of the
deprecated Ribbon RestClient.

ribbon.secure-ports

spring.cloud.bus.ack.destinatio
n-service

Service that wants to listen to
acks. By default null (meaning
all services).

spring.cloud.bus.ack.enabled true Flag to switch off acks (default
on).

spring.cloud.bus.destination springCloudBus Name of Spring Cloud Stream
destination for messages.

Name Default Description

spring.cloud.bus.enabled true Flag to indicate that the bus is
enabled.

spring.cloud.bus.env.enabled true Flag to switch off environment
change events (default on).

spring.cloud.bus.id application The identifier for this
application instance.

spring.cloud.bus.refresh.enable
d

true Flag to switch off refresh events
(default on).

spring.cloud.bus.trace.enabled false Flag to switch on tracing of acks
(default off).

spring.cloud.circuitbreaker.hyst
rix.enabled

true Enables auto-configuration of
the Hystrix Spring Cloud
CircuitBreaker API
implementation.

spring.cloud.cloudfoundry.disc
overy.default-server-port

80 Port to use when no port is
defined by ribbon.

spring.cloud.cloudfoundry.disc
overy.enabled

true Flag to indicate that discovery is
enabled.

spring.cloud.cloudfoundry.disc
overy.heartbeat-frequency

5000 Frequency in milliseconds of
poll for heart beat. The client
will poll on this frequency and
broadcast a list of service ids.

spring.cloud.cloudfoundry.disc
overy.internal-domain

apps.internal Default internal domain when
configured to use Native DNS
service discovery.

spring.cloud.cloudfoundry.disc
overy.order

0 Order of the discovery client
used by
CompositeDiscoveryClient for
sorting available clients.

spring.cloud.cloudfoundry.disc
overy.use-container-ip

false Whether to resolve hostname
when BOSH DNS is used. In
order to use this feature,
spring.cloud.cloudfoundry.disc
overy.use-dns must be true.

spring.cloud.cloudfoundry.disc
overy.use-dns

false Whether to use BOSH DNS for
the discovery. In order to use
this feature, your Cloud
Foundry installation must
support Service Discovery.

spring.cloud.cloudfoundry.org Organization name to initially
target.

Name Default Description

spring.cloud.cloudfoundry.pass
word

Password for user to
authenticate and obtain token.

spring.cloud.cloudfoundry.skip-
ssl-validation

false

spring.cloud.cloudfoundry.spac
e

Space name to initially target.

spring.cloud.cloudfoundry.url URL of Cloud Foundry API
(Cloud Controller).

spring.cloud.cloudfoundry.user
name

Username to authenticate
(usually an email address).

spring.cloud.compatibility-
verifier.compatible-boot-
versions

Default accepted versions for
the Spring Boot dependency.
You can set {@code x} for the
patch version if you don’t want
to specify a concrete value.
Example: {@code 3.4.x}

spring.cloud.compatibility-
verifier.enabled

false Enables creation of Spring
Cloud compatibility
verification.

spring.cloud.config.allow-
override

true Flag to indicate that {@link
#isOverrideSystemProperties()
systemPropertiesOverride} can
be used. Set to false to prevent
users from changing the default
accidentally. Default true.

spring.cloud.config.discovery.e
nabled

false Flag to indicate that config
server discovery is enabled
(config server URL will be
looked up via discovery).

spring.cloud.config.discovery.se
rvice-id

configserver Service id to locate config
server.

spring.cloud.config.enabled true Flag to say that remote
configuration is enabled.
Default true;

spring.cloud.config.fail-fast false Flag to indicate that failure to
connect to the server is fatal
(default false).

spring.cloud.config.headers Additional headers used to
create the client request.

Name Default Description

spring.cloud.config.label The label name to use to pull
remote configuration
properties. The default is set on
the server (generally "master"
for a git based server).

spring.cloud.config.name Name of application used to
fetch remote properties.

spring.cloud.config.override-
none

false Flag to indicate that when
{@link
#setAllowOverride(boolean)
allowOverride} is true, external
properties should take lowest
priority and should not
override any existing property
sources (including local config
files). Default false.

spring.cloud.config.override-
system-properties

true Flag to indicate that the
external properties should
override system properties.
Default true.

spring.cloud.config.password The password to use (HTTP
Basic) when contacting the
remote server.

spring.cloud.config.profile default The default profile to use when
fetching remote configuration
(comma-separated). Default is
"default".

spring.cloud.config.request-
connect-timeout

0 timeout on waiting to connect
to the Config Server.

spring.cloud.config.request-
read-timeout

0 timeout on waiting to read data
from the Config Server.

spring.cloud.config.retry.initial-
interval

1000 Initial retry interval in
milliseconds.

spring.cloud.config.retry.max-
attempts

6 Maximum number of attempts.

spring.cloud.config.retry.max-
interval

2000 Maximum interval for backoff.

spring.cloud.config.retry.multip
lier

1.1 Multiplier for next interval.

spring.cloud.config.send-state true Flag to indicate whether to send
state. Default true.

Name Default Description

spring.cloud.config.server.accep
t-empty

true Flag to indicate that If HTTP 404
needs to be sent if Application is
not Found.

spring.cloud.config.server.awss
3.bucket

Name of the S3 bucket that
contains config.

spring.cloud.config.server.awss
3.order

0

spring.cloud.config.server.awss
3.region

AWS region that contains
config.

spring.cloud.config.server.boots
trap

false Flag indicating that the config
server should initialize its own
Environment with properties
from the remote repository. Off
by default because it delays
startup but can be useful when
embedding the server in
another application.

spring.cloud.config.server.cred
hub.ca-cert-files

spring.cloud.config.server.cred
hub.connection-timeout

spring.cloud.config.server.cred
hub.oauth2.registration-id

spring.cloud.config.server.cred
hub.order

spring.cloud.config.server.cred
hub.read-timeout

spring.cloud.config.server.cred
hub.url

spring.cloud.config.server.defau
lt-application-name

application Default application name when
incoming requests do not have
a specific one.

spring.cloud.config.server.defau
lt-label

Default repository label when
incoming requests do not have
a specific label.

spring.cloud.config.server.defau
lt-profile

default Default application profile
when incoming requests do not
have a specific one.

Name Default Description

spring.cloud.config.server.encry
pt.enabled

true Enable decryption of
environment properties before
sending to client.

spring.cloud.config.server.encry
pt.plain-text-encrypt

false Enable decryption of
environment properties served
by plain text endpoint {@link
org.springframework.cloud.con
fig.server.resource.ResourceCo
ntroller}.

spring.cloud.config.server.git.ba
sedir

Base directory for local working
copy of repository.

spring.cloud.config.server.git.cl
one-on-start

false Flag to indicate that the
repository should be cloned on
startup (not on demand).
Generally leads to slower
startup but faster first query.

spring.cloud.config.server.git.de
fault-label

The default label to be used
with the remote repository.

spring.cloud.config.server.git.de
lete-untracked-branches

false Flag to indicate that the branch
should be deleted locally if it’s
origin tracked branch was
removed.

spring.cloud.config.server.git.fo
rce-pull

false Flag to indicate that the
repository should force pull. If
true discard any local changes
and take from remote
repository.

spring.cloud.config.server.git.ho
st-key

Valid SSH host key. Must be set
if hostKeyAlgorithm is also set.

spring.cloud.config.server.git.ho
st-key-algorithm

One of ssh-dss, ssh-rsa, ecdsa-
sha2-nistp256, ecdsa-sha2-
nistp384, or ecdsa-sha2-
nistp521. Must be set if hostKey
is also set.

spring.cloud.config.server.git.ig
nore-local-ssh-settings

false If true, use property-based
instead of file-based SSH config.

spring.cloud.config.server.git.kn
own-hosts-file

Location of custom
.known_hosts file.

spring.cloud.config.server.git.or
der

The order of the environment
repository.

Name Default Description

spring.cloud.config.server.git.pa
ssphrase

Passphrase for unlocking your
ssh private key.

spring.cloud.config.server.git.pa
ssword

Password for authentication
with remote repository.

spring.cloud.config.server.git.pr
eferred-authentications

Override server authentication
method order. This should
allow for evading login prompts
if server has keyboard-
interactive authentication
before the publickey method.

spring.cloud.config.server.git.pr
ivate-key

Valid SSH private key. Must be
set if ignoreLocalSshSettings is
true and Git URI is SSH format.

spring.cloud.config.server.git.pr
oxy

HTTP proxy configuration.

spring.cloud.config.server.git.re
fresh-rate

0 Time (in seconds) between
refresh of the git repository.

spring.cloud.config.server.git.re
pos

Map of repository identifier to
location and other properties.

spring.cloud.config.server.git.se
arch-paths

Search paths to use within local
working copy. By default
searches only the root.

spring.cloud.config.server.git.sk
ip-ssl-validation

false Flag to indicate that SSL
certificate validation should be
bypassed when communicating
with a repository served over
an HTTPS connection.

spring.cloud.config.server.git.st
rict-host-key-checking

true If false, ignore errors with host
key.

spring.cloud.config.server.git.ti
meout

5 Timeout (in seconds) for
obtaining HTTP or SSH
connection (if applicable),
defaults to 5 seconds.

spring.cloud.config.server.git.ur
i

URI of remote repository.

spring.cloud.config.server.git.us
ername

Username for authentication
with remote repository.

spring.cloud.config.server.healt
h.repositories

Name Default Description

spring.cloud.config.server.jdbc.
order

0

spring.cloud.config.server.jdbc.
sql

SELECT KEY, VALUE from
PROPERTIES where
APPLICATION=? and PROFILE=?
and LABEL=?

SQL used to query database for
keys and values.

spring.cloud.config.server.nativ
e.add-label-locations

true Flag to determine whether label
locations should be added.

spring.cloud.config.server.nativ
e.default-label

master

spring.cloud.config.server.nativ
e.fail-on-error

false Flag to determine how to
handle exceptions during
decryption (default false).

spring.cloud.config.server.nativ
e.order

spring.cloud.config.server.nativ
e.search-locations

[] Locations to search for
configuration files. Defaults to
the same as a Spring Boot app
so
[classpath:/,classpath:/config/,fil
e:./,file:./config/].

spring.cloud.config.server.nativ
e.version

Version string to be reported for
native repository.

spring.cloud.config.server.overr
ides

Extra map for a property source
to be sent to all clients
unconditionally.

spring.cloud.config.server.prefi
x

Prefix for configuration
resource paths (default is
empty). Useful when
embedding in another
application when you don’t
want to change the context path
or servlet path.

spring.cloud.config.server.redis.
order

spring.cloud.config.server.strip-
document-from-yaml

true Flag to indicate that YAML
documents that are text or
collections (not a map) should
be returned in "native" form.

spring.cloud.config.server.svn.b
asedir

Base directory for local working
copy of repository.

Name Default Description

spring.cloud.config.server.svn.d
efault-label

The default label to be used
with the remote repository.

spring.cloud.config.server.svn.o
rder

The order of the environment
repository.

spring.cloud.config.server.svn.p
assphrase

Passphrase for unlocking your
ssh private key.

spring.cloud.config.server.svn.p
assword

Password for authentication
with remote repository.

spring.cloud.config.server.svn.s
earch-paths

Search paths to use within local
working copy. By default
searches only the root.

spring.cloud.config.server.svn.s
trict-host-key-checking

true Reject incoming SSH host keys
from remote servers not in the
known host list.

spring.cloud.config.server.svn.u
ri

URI of remote repository.

spring.cloud.config.server.svn.u
sername

Username for authentication
with remote repository.

spring.cloud.config.server.vault.
app-role.app-role-path

approle Mount path of the AppRole
authentication backend.

spring.cloud.config.server.vault.
app-role.role

Name of the role, optional, used
for pull-mode.

spring.cloud.config.server.vault.
app-role.role-id

The RoleId.

spring.cloud.config.server.vault.
app-role.secret-id

The SecretId.

spring.cloud.config.server.vault.
authentication

spring.cloud.config.server.vault.
aws-ec2.aws-ec2-path

aws-ec2 Mount path of the AWS-EC2
authentication backend.

spring.cloud.config.server.vault.
aws-ec2.identity-document

169.254.169.254/latest/dynamic/
instance-identity/pkcs7

URL of the AWS-EC2 PKCS7
identity document.

spring.cloud.config.server.vault.
aws-ec2.nonce

Nonce used for AWS-EC2
authentication. An empty nonce
defaults to nonce generation.

spring.cloud.config.server.vault.
aws-ec2.role

Name of the role, optional.

spring.cloud.config.server.vault.
aws-iam.aws-path

aws Mount path of the AWS
authentication backend.

http://169.254.169.254/latest/dynamic/instance-identity/pkcs7
http://169.254.169.254/latest/dynamic/instance-identity/pkcs7

Name Default Description

spring.cloud.config.server.vault.
aws-iam.endpoint-uri

STS server URI. @since 2.2

spring.cloud.config.server.vault.
aws-iam.role

Name of the role, optional.
Defaults to the friendly IAM
name if not set.

spring.cloud.config.server.vault.
aws-iam.server-name

Name of the server used to set
{@code X-Vault-AWS-IAM-
Server-ID} header in the
headers of login requests.

spring.cloud.config.server.vault.
azure-msi.azure-path

azure Mount path of the Azure MSI
authentication backend.

spring.cloud.config.server.vault.
azure-msi.identity-token-
service

URI to the Azure MSI Identity
Service.

spring.cloud.config.server.vault.
azure-msi.metadata-service

URI to the Azure MSI Metadata
Service.

spring.cloud.config.server.vault.
azure-msi.role

Name of the role.

spring.cloud.config.server.vault.
backend

secret Vault backend. Defaults to
secret.

spring.cloud.config.server.vault.
default-key

application The key in vault shared by all
applications. Defaults to
application. Set to empty to
disable.

spring.cloud.config.server.vault.
gcp-gce.gcp-path

gcp Mount path of the Kubernetes
authentication backend.

spring.cloud.config.server.vault.
gcp-gce.role

Name of the role against which
the login is being attempted.

spring.cloud.config.server.vault.
gcp-gce.service-account

Optional service account id.
Using the default id if left
unconfigured.

spring.cloud.config.server.vault.
gcp-iam.credentials.encoded-
key

The base64 encoded contents of
an OAuth2 account private key
in JSON format.

spring.cloud.config.server.vault.
gcp-iam.credentials.location

Location of the OAuth2
credentials private key. <p>
Since this is a Resource, the
private key can be in a
multitude of locations, such as a
local file system, classpath, URL,
etc.

Name Default Description

spring.cloud.config.server.vault.
gcp-iam.gcp-path

gcp Mount path of the Kubernetes
authentication backend.

spring.cloud.config.server.vault.
gcp-iam.jwt-validity

15m Validity of the JWT token.

spring.cloud.config.server.vault.
gcp-iam.project-id

Overrides the GCP project Id.

spring.cloud.config.server.vault.
gcp-iam.role

Name of the role against which
the login is being attempted.

spring.cloud.config.server.vault.
gcp-iam.service-account-id

Overrides the GCP service
account Id.

spring.cloud.config.server.vault.
host

127.0.0.1 Vault host. Defaults to 127.0.0.1.

spring.cloud.config.server.vault.
kubernetes.kubernetes-path

kubernetes Mount path of the Kubernetes
authentication backend.

spring.cloud.config.server.vault.
kubernetes.role

Name of the role against which
the login is being attempted.

spring.cloud.config.server.vault.
kubernetes.service-account-
token-file

/var/run/secrets/kubernetes.io/s
erviceaccount/token

Path to the service account
token file.

spring.cloud.config.server.vault.
kv-version

1 Value to indicate which version
of Vault kv backend is used.
Defaults to 1.

spring.cloud.config.server.vault.
namespace

The value of the Vault X-Vault-
Namespace header. Defaults to
null. This a Vault Enterprise
feature only.

spring.cloud.config.server.vault.
order

spring.cloud.config.server.vault.
pcf.instance-certificate

Path to the instance certificate
(PEM). Defaults to {@code
CF_INSTANCE_CERT} env
variable.

spring.cloud.config.server.vault.
pcf.instance-key

Path to the instance key (PEM).
Defaults to {@code
CF_INSTANCE_KEY} env
variable.

spring.cloud.config.server.vault.
pcf.pcf-path

pcf Mount path of the Kubernetes
authentication backend.

spring.cloud.config.server.vault.
pcf.role

Name of the role against which
the login is being attempted.

Name Default Description

spring.cloud.config.server.vault.
port

8200 Vault port. Defaults to 8200.

spring.cloud.config.server.vault.
profile-separator

, Vault profile separator. Defaults
to comma.

spring.cloud.config.server.vault.
proxy

HTTP proxy configuration.

spring.cloud.config.server.vault.
scheme

http Vault scheme. Defaults to http.

spring.cloud.config.server.vault.
skip-ssl-validation

false Flag to indicate that SSL
certificate validation should be
bypassed when communicating
with a repository served over
an HTTPS connection.

spring.cloud.config.server.vault.
ssl.cert-auth-path

cert Mount path of the TLS cert
authentication backend.

spring.cloud.config.server.vault.
ssl.key-store

Trust store that holds
certificates and private keys.

spring.cloud.config.server.vault.
ssl.key-store-password

Password used to access the key
store.

spring.cloud.config.server.vault.
ssl.trust-store

Trust store that holds SSL
certificates.

spring.cloud.config.server.vault.
ssl.trust-store-password

Password used to access the
trust store.

spring.cloud.config.server.vault.
timeout

5 Timeout (in seconds) for
obtaining HTTP connection,
defaults to 5 seconds.

spring.cloud.config.server.vault.
token

Static vault token. Required if
{@link #authentication} is
{@code TOKEN}.

spring.cloud.config.token Security Token passed thru to
underlying environment
repository.

spring.cloud.config.uri [localhost:8888] The URI of the remote server
(default localhost:8888).

spring.cloud.config.username The username to use (HTTP
Basic) when contacting the
remote server.

spring.cloud.consul.config.acl-
token

http://localhost:8888
http://localhost:8888

Name Default Description

spring.cloud.consul.config.data-
key

data If format is Format.PROPERTIES
or Format.YAML then the
following field is used as key to
look up consul for
configuration.

spring.cloud.consul.config.defa
ult-context

application

spring.cloud.consul.config.enab
led

true

spring.cloud.consul.config.fail-
fast

true Throw exceptions during config
lookup if true, otherwise, log
warnings.

spring.cloud.consul.config.form
at

spring.cloud.consul.config.nam
e

Alternative to
spring.application.name to use
in looking up values in consul
KV.

spring.cloud.consul.config.prefi
x

config

spring.cloud.consul.config.profi
le-separator

,

spring.cloud.consul.config.watc
h.delay

1000 The value of the fixed delay for
the watch in millis. Defaults to
1000.

spring.cloud.consul.config.watc
h.enabled

true If the watch is enabled. Defaults
to true.

spring.cloud.consul.config.watc
h.wait-time

55 The number of seconds to wait
(or block) for watch query,
defaults to 55. Needs to be less
than default ConsulClient
(defaults to 60). To increase
ConsulClient timeout create a
ConsulClient bean with a
custom ConsulRawClient with a
custom HttpClient.

spring.cloud.consul.discovery.a
cl-token

spring.cloud.consul.discovery.c
atalog-services-watch-delay

1000 The delay between calls to
watch consul catalog in millis,
default is 1000.

Name Default Description

spring.cloud.consul.discovery.c
atalog-services-watch-timeout

2 The number of seconds to block
while watching consul catalog,
default is 2.

spring.cloud.consul.discovery.c
onsistency-mode

Consistency mode for health
service request.

spring.cloud.consul.discovery.d
atacenters

Map of serviceId’s → datacenter
to query for in server list. This
allows looking up services in
another datacenters.

spring.cloud.consul.discovery.d
efault-query-tag

Tag to query for in service list if
one is not listed in
serverListQueryTags.

spring.cloud.consul.discovery.d
efault-zone-metadata-name

zone Service instance zone comes
from metadata. This allows
changing the metadata tag
name.

spring.cloud.consul.discovery.d
eregister

true Disable automatic de-
registration of service in consul.

spring.cloud.consul.discovery.e
nable-tag-override

Enable tag override for the
registered service.

spring.cloud.consul.discovery.e
nabled

true Is service discovery enabled?

spring.cloud.consul.discovery.fa
il-fast

true Throw exceptions during
service registration if true,
otherwise, log warnings
(defaults to true).

spring.cloud.consul.discovery.h
ealth-check-critical-timeout

Timeout to deregister services
critical for longer than timeout
(e.g. 30m). Requires consul
version 7.x or higher.

spring.cloud.consul.discovery.h
ealth-check-headers

Headers to be applied to the
Health Check calls.

spring.cloud.consul.discovery.h
ealth-check-interval

10s How often to perform the
health check (e.g. 10s), defaults
to 10s.

spring.cloud.consul.discovery.h
ealth-check-path

/actuator/health Alternate server path to invoke
for health checking.

spring.cloud.consul.discovery.h
ealth-check-timeout

Timeout for health check (e.g.
10s).

Name Default Description

spring.cloud.consul.discovery.h
ealth-check-tls-skip-verify

Skips certificate verification
during service checks if true,
otherwise runs certificate
verification.

spring.cloud.consul.discovery.h
ealth-check-url

Custom health check url to
override default.

spring.cloud.consul.discovery.h
eartbeat.enabled

false

spring.cloud.consul.discovery.h
eartbeat.interval-ratio

spring.cloud.consul.discovery.h
eartbeat.ttl-unit

s

spring.cloud.consul.discovery.h
eartbeat.ttl-value

30

spring.cloud.consul.discovery.h
ostname

Hostname to use when
accessing server.

spring.cloud.consul.discovery.in
clude-hostname-in-instance-id

false Whether hostname is included
into the default instance id
when registering service.

spring.cloud.consul.discovery.in
stance-group

Service instance group.

spring.cloud.consul.discovery.in
stance-id

Unique service instance id.

spring.cloud.consul.discovery.in
stance-zone

Service instance zone.

spring.cloud.consul.discovery.ip
-address

IP address to use when
accessing service (must also set
preferIpAddress to use).

spring.cloud.consul.discovery.li
fecycle.enabled

true

spring.cloud.consul.discovery.m
anagement-enable-tag-override

Enable tag override for the
registered management service.

spring.cloud.consul.discovery.m
anagement-metadata

Metadata to use when
registering management
service.

spring.cloud.consul.discovery.m
anagement-port

Port to register the
management service under
(defaults to management port).

spring.cloud.consul.discovery.m
anagement-suffix

management Suffix to use when registering
management service.

Name Default Description

spring.cloud.consul.discovery.m
anagement-tags

Tags to use when registering
management service.

spring.cloud.consul.discovery.m
etadata

Metadata to use when
registering service.

spring.cloud.consul.discovery.o
rder

0 Order of the discovery client
used by
CompositeDiscoveryClient for
sorting available clients.

spring.cloud.consul.discovery.p
ort

Port to register the service
under (defaults to listening
port).

spring.cloud.consul.discovery.p
refer-agent-address

false Source of how we will
determine the address to use.

spring.cloud.consul.discovery.p
refer-ip-address

false Use ip address rather than
hostname during registration.

spring.cloud.consul.discovery.q
uery-passing

false Add the 'passing` parameter to
/v1/health/service/serviceName.
This pushes health check
passing to the server.

spring.cloud.consul.discovery.r
egister

true Register as a service in consul.

spring.cloud.consul.discovery.r
egister-health-check

true Register health check in consul.
Useful during development of a
service.

spring.cloud.consul.discovery.sc
heme

http Whether to register an http or
https service.

spring.cloud.consul.discovery.s
erver-list-query-tags

Map of serviceId’s → tag to
query for in server list. This
allows filtering services by a
single tag.

spring.cloud.consul.discovery.s
ervice-name

Service name.

spring.cloud.consul.discovery.ta
gs

Tags to use when registering
service.

spring.cloud.consul.discovery.ta
gs-as-metadata

true Use tags as metadata, defaults
to true.

spring.cloud.consul.enabled true Is spring cloud consul enabled.

spring.cloud.consul.host localhost Consul agent hostname.
Defaults to 'localhost'.

Name Default Description

spring.cloud.consul.port 8500 Consul agent port. Defaults to
'8500'.

spring.cloud.consul.retry.enabl
ed

true If consul retry is enabled.

spring.cloud.consul.retry.initial-
interval

1000 Initial retry interval in
milliseconds.

spring.cloud.consul.retry.max-
attempts

6 Maximum number of attempts.

spring.cloud.consul.retry.max-
interval

2000 Maximum interval for backoff.

spring.cloud.consul.retry.multip
lier

1.1 Multiplier for next interval.

spring.cloud.consul.scheme Consul agent scheme
(HTTP/HTTPS). If there is no
scheme in address - client will
use HTTP.

spring.cloud.consul.service-
registry.auto-
registration.enabled

true Enables Consul Service Registry
Auto-registration.

spring.cloud.consul.service-
registry.enabled

true Enables Consul Service Registry
functionality.

spring.cloud.consul.tls.certificat
e-password

Password to open the
certificate.

spring.cloud.consul.tls.certificat
e-path

File path to the certificate.

spring.cloud.consul.tls.key-
store-instance-type

Type of key framework to use.

spring.cloud.consul.tls.key-
store-password

Password to an external
keystore.

spring.cloud.consul.tls.key-
store-path

Path to an external keystore.

spring.cloud.discovery.client.clo
udfoundry.order

spring.cloud.discovery.client.co
mposite-indicator.enabled

true Enables discovery client
composite health indicator.

spring.cloud.discovery.client.he
alth-indicator.enabled

true

Name Default Description

spring.cloud.discovery.client.he
alth-indicator.include-
description

false

spring.cloud.discovery.client.si
mple.instances

spring.cloud.discovery.client.si
mple.local.instance-id

The unique identifier or name
for the service instance.

spring.cloud.discovery.client.si
mple.local.metadata

Metadata for the service
instance. Can be used by
discovery clients to modify
their behaviour per instance,
e.g. when load balancing.

spring.cloud.discovery.client.si
mple.local.service-id

The identifier or name for the
service. Multiple instances
might share the same service
ID.

spring.cloud.discovery.client.si
mple.local.uri

The URI of the service instance.
Will be parsed to extract the
scheme, host, and port.

spring.cloud.discovery.client.si
mple.order

spring.cloud.discovery.enabled true Enables discovery client health
indicators.

spring.cloud.features.enabled true Enables the features endpoint.

spring.cloud.function.compile Configuration for function
bodies, which will be compiled.
The key in the map is the
function name and the value is
a map containing a key
"lambda" which is the body to
compile, and optionally a "type"
(defaults to "function"). Can also
contain "inputType" and
"outputType" in case it is
ambiguous.

spring.cloud.function.definition Definition of the function to be
used. This could be function
name (e.g., 'myFunction') or
function composition definition
(e.g.,
'myFunction|yourFunction')

Name Default Description

spring.cloud.function.imports Configuration for a set of files
containing function bodies,
which will be imported and
compiled. The key in the map is
the function name and the
value is another map,
containing a "location" of the
file to compile and (optionally)
a "type" (defaults to "function").

spring.cloud.function.routing-
expression

SpEL expression which should
result in function definition
(e.g., function name or
composition instruction). NOTE:
SpEL evaluation context’s root
object is the input argument
(e.g., Message).

spring.cloud.function.task.cons
umer

spring.cloud.function.task.funct
ion

spring.cloud.function.task.suppl
ier

spring.cloud.function.web.expo
rt.auto-startup

true Flag to indicate that the
supplier emits HTTP requests
automatically on startup.

spring.cloud.function.web.expo
rt.debug

true Flag to indicate that extra
logging is required for the
supplier.

spring.cloud.function.web.expo
rt.enabled

false Flag to enable the export of a
supplier.

spring.cloud.function.web.expo
rt.sink.content-type

application/json Content type to use when
serializing source’s output for
transport (default
'application/json`).

spring.cloud.function.web.expo
rt.sink.headers

Additional headers to append to
the outgoing HTTP requests.

spring.cloud.function.web.expo
rt.sink.name

The name of a specific existing
Supplier to export from the
function catalog.

Name Default Description

spring.cloud.function.web.expo
rt.sink.url

URL template for outgoing
HTTP requests. Each item from
the supplier is POSTed to this
target.

spring.cloud.function.web.expo
rt.source.include-headers

true Include the incoming headers
in the outgoing Supplier. If true
the supplier will be of generic
type Message of T equal to the
source type.

spring.cloud.function.web.expo
rt.source.type

If the origin url is set, the type
of content expected (e.g. a POJO
class). Defaults to String.

spring.cloud.function.web.expo
rt.source.url

URL template for creating a
virtual Supplier from HTTP
GET.

spring.cloud.function.web.path Path to web resources for
functions (should start with / if
not empty).

spring.cloud.function.web.suppl
ier.auto-startup

true

spring.cloud.function.web.suppl
ier.debug

true

spring.cloud.function.web.suppl
ier.enabled

false

spring.cloud.function.web.suppl
ier.headers

spring.cloud.function.web.suppl
ier.name

spring.cloud.function.web.suppl
ier.template-url

spring.cloud.gateway.default-
filters

List of filter definitions that are
applied to every route.

spring.cloud.gateway.discovery.
locator.enabled

false Flag that enables
DiscoveryClient gateway
integration.

spring.cloud.gateway.discovery.
locator.filters

Name Default Description

spring.cloud.gateway.discovery.
locator.include-expression

true SpEL expression that will
evaluate whether to include a
service in gateway integration
or not, defaults to: true.

spring.cloud.gateway.discovery.
locator.lower-case-service-id

false Option to lower case serviceId
in predicates and filters,
defaults to false. Useful with
eureka when it automatically
uppercases serviceId. so
MYSERIVCE, would match
/myservice/**

spring.cloud.gateway.discovery.
locator.predicates

spring.cloud.gateway.discovery.
locator.route-id-prefix

The prefix for the routeId,
defaults to
discoveryClient.getClass().getSi
mpleName() + "_". Service Id
will be appended to create the
routeId.

spring.cloud.gateway.discovery.
locator.url-expression

'lb://'+serviceId SpEL expression that create the
uri for each route, defaults to:
'lb://'+serviceId.

spring.cloud.gateway.enabled true Enables gateway functionality.

spring.cloud.gateway.fail-on-
route-definition-error

true Option to fail on route
definition errors, defaults to
true. Otherwise, a warning is
logged.

spring.cloud.gateway.filter.rem
ove-hop-by-hop.headers

spring.cloud.gateway.filter.rem
ove-hop-by-hop.order

spring.cloud.gateway.filter.requ
est-rate-limiter.deny-empty-key

true Switch to deny requests if the
Key Resolver returns an empty
key, defaults to true.

spring.cloud.gateway.filter.requ
est-rate-limiter.empty-key-
status-code

HttpStatus to return when
denyEmptyKey is true, defaults
to FORBIDDEN.

Name Default Description

spring.cloud.gateway.filter.secu
re-headers.content-security-
policy

default-src 'self' https:; font-src
'self' https: data:; img-src 'self'
https: data:; object-src 'none';
script-src https:; style-src 'self'
https: 'unsafe-inline'

spring.cloud.gateway.filter.secu
re-headers.content-type-options

nosniff

spring.cloud.gateway.filter.secu
re-headers.disable

spring.cloud.gateway.filter.secu
re-headers.download-options

noopen

spring.cloud.gateway.filter.secu
re-headers.frame-options

DENY

spring.cloud.gateway.filter.secu
re-headers.permitted-cross-
domain-policies

none

spring.cloud.gateway.filter.secu
re-headers.referrer-policy

no-referrer

spring.cloud.gateway.filter.secu
re-headers.strict-transport-
security

max-age=631138519

spring.cloud.gateway.filter.secu
re-headers.xss-protection-
header

1 ; mode=block

spring.cloud.gateway.forwarde
d.enabled

true Enables the
ForwardedHeadersFilter.

spring.cloud.gateway.globalcors
.add-to-simple-url-handler-
mapping

false If global CORS config should be
added to the URL handler.

spring.cloud.gateway.globalcors
.cors-configurations

spring.cloud.gateway.httpclient.
connect-timeout

The connect timeout in millis,
the default is 45s.

spring.cloud.gateway.httpclient.
max-header-size

The max response header size.

spring.cloud.gateway.httpclient.
max-initial-line-length

The max initial line length.

spring.cloud.gateway.httpclient.
pool.acquire-timeout

Only for type FIXED, the
maximum time in millis to wait
for aquiring.

Name Default Description

spring.cloud.gateway.httpclient.
pool.max-connections

Only for type FIXED, the
maximum number of
connections before starting
pending acquisition on existing
ones.

spring.cloud.gateway.httpclient.
pool.max-idle-time

Time in millis after which the
channel will be closed. If NULL,
there is no max idle time.

spring.cloud.gateway.httpclient.
pool.max-life-time

Duration after which the
channel will be closed. If NULL,
there is no max life time.

spring.cloud.gateway.httpclient.
pool.name

proxy The channel pool map name,
defaults to proxy.

spring.cloud.gateway.httpclient.
pool.type

Type of pool for HttpClient to
use, defaults to ELASTIC.

spring.cloud.gateway.httpclient.
proxy.host

Hostname for proxy
configuration of Netty
HttpClient.

spring.cloud.gateway.httpclient.
proxy.non-proxy-hosts-pattern

Regular expression (Java) for a
configured list of hosts. that
should be reached directly,
bypassing the proxy

spring.cloud.gateway.httpclient.
proxy.password

Password for proxy
configuration of Netty
HttpClient.

spring.cloud.gateway.httpclient.
proxy.port

Port for proxy configuration of
Netty HttpClient.

spring.cloud.gateway.httpclient.
proxy.username

Username for proxy
configuration of Netty
HttpClient.

spring.cloud.gateway.httpclient.
response-timeout

The response timeout.

spring.cloud.gateway.httpclient.
ssl.close-notify-flush-timeout

3000ms SSL close_notify flush timeout.
Default to 3000 ms.

spring.cloud.gateway.httpclient.
ssl.close-notify-flush-timeout-
millis

spring.cloud.gateway.httpclient.
ssl.close-notify-read-timeout

SSL close_notify read timeout.
Default to 0 ms.

Name Default Description

spring.cloud.gateway.httpclient.
ssl.close-notify-read-timeout-
millis

spring.cloud.gateway.httpclient.
ssl.default-configuration-type

The default ssl configuration
type. Defaults to TCP.

spring.cloud.gateway.httpclient.
ssl.handshake-timeout

10000ms SSL handshake timeout. Default
to 10000 ms

spring.cloud.gateway.httpclient.
ssl.handshake-timeout-millis

spring.cloud.gateway.httpclient.
ssl.key-password

Key password, default is same
as keyStorePassword.

spring.cloud.gateway.httpclient.
ssl.key-store

Keystore path for Netty
HttpClient.

spring.cloud.gateway.httpclient.
ssl.key-store-password

Keystore password.

spring.cloud.gateway.httpclient.
ssl.key-store-provider

Keystore provider for Netty
HttpClient, optional field.

spring.cloud.gateway.httpclient.
ssl.key-store-type

JKS Keystore type for Netty
HttpClient, default is JKS.

spring.cloud.gateway.httpclient.
ssl.trusted-x509-certificates

Trusted certificates for
verifying the remote endpoint’s
certificate.

spring.cloud.gateway.httpclient.
ssl.use-insecure-trust-manager

false Installs the netty
InsecureTrustManagerFactory.
This is insecure and not suitable
for production.

spring.cloud.gateway.httpclient.
websocket.max-frame-payload-
length

Max frame payload length.

spring.cloud.gateway.httpclient.
websocket.proxy-ping

true Proxy ping frames to
downstream services, defaults
to true.

spring.cloud.gateway.httpclient.
wiretap

false Enables wiretap debugging for
Netty HttpClient.

spring.cloud.gateway.httpserve
r.wiretap

false Enables wiretap debugging for
Netty HttpServer.

spring.cloud.gateway.loadbalan
cer.use404

false

spring.cloud.gateway.metrics.e
nabled

true Enables the collection of
metrics data.

Name Default Description

spring.cloud.gateway.metrics.ta
gs

Tags map that added to metrics.

spring.cloud.gateway.proxy.aut
o-forward

A set of header names that
should be send downstream by
default.

spring.cloud.gateway.proxy.hea
ders

Fixed header values that will be
added to all downstream
requests.

spring.cloud.gateway.proxy.sen
sitive

A set of sensitive header names
that will not be sent
downstream by default.

spring.cloud.gateway.redis-rate-
limiter.burst-capacity-header

X-RateLimit-Burst-Capacity The name of the header that
returns the burst capacity
configuration.

spring.cloud.gateway.redis-rate-
limiter.config

spring.cloud.gateway.redis-rate-
limiter.include-headers

true Whether or not to include
headers containing rate limiter
information, defaults to true.

spring.cloud.gateway.redis-rate-
limiter.remaining-header

X-RateLimit-Remaining The name of the header that
returns number of remaining
requests during the current
second.

spring.cloud.gateway.redis-rate-
limiter.replenish-rate-header

X-RateLimit-Replenish-Rate The name of the header that
returns the replenish rate
configuration.

spring.cloud.gateway.redis-rate-
limiter.requested-tokens-header

X-RateLimit-Requested-Tokens The name of the header that
returns the requested tokens
configuration.

spring.cloud.gateway.routes List of Routes.

spring.cloud.gateway.set-
status.original-status-header-
name

The name of the header which
contains http code of the
proxied request.

spring.cloud.gateway.streaming
-media-types

spring.cloud.gateway.x-
forwarded.enabled

true If the XForwardedHeadersFilter
is enabled.

spring.cloud.gateway.x-
forwarded.for-append

true If appending X-Forwarded-For
as a list is enabled.

Name Default Description

spring.cloud.gateway.x-
forwarded.for-enabled

true If X-Forwarded-For is enabled.

spring.cloud.gateway.x-
forwarded.host-append

true If appending X-Forwarded-Host
as a list is enabled.

spring.cloud.gateway.x-
forwarded.host-enabled

true If X-Forwarded-Host is enabled.

spring.cloud.gateway.x-
forwarded.order

0 The order of the
XForwardedHeadersFilter.

spring.cloud.gateway.x-
forwarded.port-append

true If appending X-Forwarded-Port
as a list is enabled.

spring.cloud.gateway.x-
forwarded.port-enabled

true If X-Forwarded-Port is enabled.

spring.cloud.gateway.x-
forwarded.prefix-append

true If appending X-Forwarded-
Prefix as a list is enabled.

spring.cloud.gateway.x-
forwarded.prefix-enabled

true If X-Forwarded-Prefix is
enabled.

spring.cloud.gateway.x-
forwarded.proto-append

true If appending X-Forwarded-
Proto as a list is enabled.

spring.cloud.gateway.x-
forwarded.proto-enabled

true If X-Forwarded-Proto is
enabled.

spring.cloud.gcp.bigquery.crede
ntials.encoded-key

spring.cloud.gcp.bigquery.crede
ntials.location

spring.cloud.gcp.bigquery.crede
ntials.scopes

spring.cloud.gcp.bigquery.datas
et-name

Name of the BigQuery dataset
to use.

spring.cloud.gcp.bigquery.enabl
ed

true Auto-configure Google Cloud
BigQuery components.

spring.cloud.gcp.bigquery.proje
ct-id

Overrides the GCP project ID
specified in the Core module to
use for BigQuery.

spring.cloud.gcp.config.credenti
als.encoded-key

spring.cloud.gcp.config.credenti
als.location

spring.cloud.gcp.config.credenti
als.scopes

Name Default Description

spring.cloud.gcp.config.enabled true Auto-configure Google Cloud
Runtime components.

spring.cloud.gcp.config.name Name of the application.

spring.cloud.gcp.config.profile Comma-delimited string of
profiles under which the app is
running. Gets its default value
from the {@code
spring.profiles.active} property,
falling back on the {@code
spring.profiles.default}
property.

spring.cloud.gcp.config.project-
id

Overrides the GCP project ID
specified in the Core module.

spring.cloud.gcp.config.timeout-
millis

60000 Timeout for Google Runtime
Configuration API calls.

spring.cloud.gcp.core.enabled true Auto-configure Google Cloud
Core components.

spring.cloud.gcp.credentials.enc
oded-key

spring.cloud.gcp.credentials.loc
ation

spring.cloud.gcp.credentials.sco
pes

spring.cloud.gcp.datastore.cred
entials.encoded-key

spring.cloud.gcp.datastore.cred
entials.location

spring.cloud.gcp.datastore.cred
entials.scopes

spring.cloud.gcp.datastore.emul
ator-host

@deprecated use
<code>spring.cloud.gcp.datastor
e.host</code> instead. @see
#host

spring.cloud.gcp.datastore.emul
ator.consistency

0.9 Consistency to use creating the
Datastore server instance.
Default: {@code 0.9}

spring.cloud.gcp.datastore.emul
ator.enabled

false If enabled the Datastore client
will connect to an local
datastore emulator.

Name Default Description

spring.cloud.gcp.datastore.emul
ator.port

8081 Is the datastore emulator port.
Default: {@code 8081}

spring.cloud.gcp.datastore.enab
led

true Auto-configure Google Cloud
Datastore components.

spring.cloud.gcp.datastore.host The host and port of a Datastore
emulator as the following
example: localhost:8081.

spring.cloud.gcp.datastore.nam
espace

spring.cloud.gcp.datastore.proje
ct-id

spring.cloud.gcp.firestore.crede
ntials.encoded-key

spring.cloud.gcp.firestore.crede
ntials.location

spring.cloud.gcp.firestore.crede
ntials.scopes

spring.cloud.gcp.firestore.emul
ator.enabled

false Enables autoconfiguration to
use the Firestore emulator.

spring.cloud.gcp.firestore.enabl
ed

true Auto-configure Google Cloud
Firestore components.

spring.cloud.gcp.firestore.host-
port

firestore.googleapis.com:443 The host and port of the
Firestore emulator service; can
be overridden to specify an
emulator.

spring.cloud.gcp.firestore.proje
ct-id

spring.cloud.gcp.logging.enable
d

true Auto-configure Google Cloud
Stackdriver logging for Spring
MVC.

spring.cloud.gcp.project-id GCP project ID where services
are running.

spring.cloud.gcp.pubsub.creden
tials.encoded-key

spring.cloud.gcp.pubsub.creden
tials.location

spring.cloud.gcp.pubsub.creden
tials.scopes

Name Default Description

spring.cloud.gcp.pubsub.emulat
or-host

The host and port of the local
running emulator. If provided,
this will setup the client to
connect against a running
pub/sub emulator.

spring.cloud.gcp.pubsub.enable
d

true Auto-configure Google Cloud
Pub/Sub components.

spring.cloud.gcp.pubsub.keep-
alive-interval-minutes

5 How often to ping the server to
keep the channel alive.

spring.cloud.gcp.pubsub.project
-id

Overrides the GCP project ID
specified in the Core module.

spring.cloud.gcp.pubsub.publis
her.batching.delay-threshold-
seconds

The delay threshold to use for
batching. After this amount of
time has elapsed (counting
from the first element added),
the elements will be wrapped
up in a batch and sent.

spring.cloud.gcp.pubsub.publis
her.batching.element-count-
threshold

The element count threshold to
use for batching.

spring.cloud.gcp.pubsub.publis
her.batching.enabled

Enables batching if true.

spring.cloud.gcp.pubsub.publis
her.batching.flow-control.limit-
exceeded-behavior

The behavior when the
specified limits are exceeded.

spring.cloud.gcp.pubsub.publis
her.batching.flow-control.max-
outstanding-element-count

Maximum number of
outstanding elements to keep in
memory before enforcing flow
control.

spring.cloud.gcp.pubsub.publis
her.batching.flow-control.max-
outstanding-request-bytes

Maximum number of
outstanding bytes to keep in
memory before enforcing flow
control.

spring.cloud.gcp.pubsub.publis
her.batching.request-byte-
threshold

The request byte threshold to
use for batching.

spring.cloud.gcp.pubsub.publis
her.executor-threads

4 Number of threads used by
every publisher.

Name Default Description

spring.cloud.gcp.pubsub.publis
her.retry.initial-retry-delay-
seconds

InitialRetryDelay controls the
delay before the first retry.
Subsequent retries will use this
value adjusted according to the
RetryDelayMultiplier.

spring.cloud.gcp.pubsub.publis
her.retry.initial-rpc-timeout-
seconds

InitialRpcTimeout controls the
timeout for the initial RPC.
Subsequent calls will use this
value adjusted according to the
RpcTimeoutMultiplier.

spring.cloud.gcp.pubsub.publis
her.retry.jittered

Jitter determines if the delay
time should be randomized.

spring.cloud.gcp.pubsub.publis
her.retry.max-attempts

MaxAttempts defines the
maximum number of attempts
to perform. If this value is
greater than 0, and the number
of attempts reaches this limit,
the logic will give up retrying
even if the total retry time is
still lower than TotalTimeout.

spring.cloud.gcp.pubsub.publis
her.retry.max-retry-delay-
seconds

MaxRetryDelay puts a limit on
the value of the retry delay, so
that the RetryDelayMultiplier
can’t increase the retry delay
higher than this amount.

spring.cloud.gcp.pubsub.publis
her.retry.max-rpc-timeout-
seconds

MaxRpcTimeout puts a limit on
the value of the RPC timeout, so
that the RpcTimeoutMultiplier
can’t increase the RPC timeout
higher than this amount.

spring.cloud.gcp.pubsub.publis
her.retry.retry-delay-multiplier

RetryDelayMultiplier controls
the change in retry delay. The
retry delay of the previous call
is multiplied by the
RetryDelayMultiplier to
calculate the retry delay for the
next call.

Name Default Description

spring.cloud.gcp.pubsub.publis
her.retry.rpc-timeout-multiplier

RpcTimeoutMultiplier controls
the change in RPC timeout. The
timeout of the previous call is
multiplied by the
RpcTimeoutMultiplier to
calculate the timeout for the
next call.

spring.cloud.gcp.pubsub.publis
her.retry.total-timeout-seconds

TotalTimeout has ultimate
control over how long the logic
should keep trying the remote
call until it gives up completely.
The higher the total timeout,
the more retries can be
attempted.

spring.cloud.gcp.pubsub.reactiv
e.enabled

true Auto-configure Google Cloud
Pub/Sub Reactive components.

spring.cloud.gcp.pubsub.subscri
ber.executor-threads

4 Number of threads used by
every subscriber.

spring.cloud.gcp.pubsub.subscri
ber.flow-control.limit-exceeded-
behavior

The behavior when the
specified limits are exceeded.

spring.cloud.gcp.pubsub.subscri
ber.flow-control.max-
outstanding-element-count

Maximum number of
outstanding elements to keep in
memory before enforcing flow
control.

spring.cloud.gcp.pubsub.subscri
ber.flow-control.max-
outstanding-request-bytes

Maximum number of
outstanding bytes to keep in
memory before enforcing flow
control.

spring.cloud.gcp.pubsub.subscri
ber.max-ack-extension-period

0 The optional max ack extension
period in seconds for the
subscriber factory.

spring.cloud.gcp.pubsub.subscri
ber.max-acknowledgement-
threads

4 Number of threads used for
batch acknowledgement.

spring.cloud.gcp.pubsub.subscri
ber.parallel-pull-count

The optional parallel pull count
setting for the subscriber
factory.

spring.cloud.gcp.pubsub.subscri
ber.pull-endpoint

The optional pull endpoint
setting for the subscriber
factory.

Name Default Description

spring.cloud.gcp.pubsub.subscri
ber.retry.initial-retry-delay-
seconds

InitialRetryDelay controls the
delay before the first retry.
Subsequent retries will use this
value adjusted according to the
RetryDelayMultiplier.

spring.cloud.gcp.pubsub.subscri
ber.retry.initial-rpc-timeout-
seconds

InitialRpcTimeout controls the
timeout for the initial RPC.
Subsequent calls will use this
value adjusted according to the
RpcTimeoutMultiplier.

spring.cloud.gcp.pubsub.subscri
ber.retry.jittered

Jitter determines if the delay
time should be randomized.

spring.cloud.gcp.pubsub.subscri
ber.retry.max-attempts

MaxAttempts defines the
maximum number of attempts
to perform. If this value is
greater than 0, and the number
of attempts reaches this limit,
the logic will give up retrying
even if the total retry time is
still lower than TotalTimeout.

spring.cloud.gcp.pubsub.subscri
ber.retry.max-retry-delay-
seconds

MaxRetryDelay puts a limit on
the value of the retry delay, so
that the RetryDelayMultiplier
can’t increase the retry delay
higher than this amount.

spring.cloud.gcp.pubsub.subscri
ber.retry.max-rpc-timeout-
seconds

MaxRpcTimeout puts a limit on
the value of the RPC timeout, so
that the RpcTimeoutMultiplier
can’t increase the RPC timeout
higher than this amount.

spring.cloud.gcp.pubsub.subscri
ber.retry.retry-delay-multiplier

RetryDelayMultiplier controls
the change in retry delay. The
retry delay of the previous call
is multiplied by the
RetryDelayMultiplier to
calculate the retry delay for the
next call.

Name Default Description

spring.cloud.gcp.pubsub.subscri
ber.retry.rpc-timeout-multiplier

RpcTimeoutMultiplier controls
the change in RPC timeout. The
timeout of the previous call is
multiplied by the
RpcTimeoutMultiplier to
calculate the timeout for the
next call.

spring.cloud.gcp.pubsub.subscri
ber.retry.total-timeout-seconds

TotalTimeout has ultimate
control over how long the logic
should keep trying the remote
call until it gives up completely.
The higher the total timeout,
the more retries can be
attempted.

spring.cloud.gcp.secretmanager
.credentials.encoded-key

spring.cloud.gcp.secretmanager
.credentials.location

spring.cloud.gcp.secretmanager
.credentials.scopes

spring.cloud.gcp.secretmanager
.enabled

true Auto-configure GCP Secret
Manager support components.

spring.cloud.gcp.secretmanager
.project-id

Overrides the GCP Project ID
specified in the Core module.

spring.cloud.gcp.security.fireba
se.public-keys-endpoint

www.googleapis.com/robot/v1/
metadata/x509/
securetoken@system.gserviceac
count.com

Link to Google’s public
endpoint containing Firebase
public keys.

spring.cloud.gcp.security.iap.alg
orithm

ES256 Encryption algorithm used to
sign the JWK token.

spring.cloud.gcp.security.iap.au
dience

Non-dynamic audience string to
validate.

spring.cloud.gcp.security.iap.en
abled

true Auto-configure Google Cloud
IAP identity extraction
components.

spring.cloud.gcp.security.iap.he
ader

x-goog-iap-jwt-assertion Header from which to extract
the JWK key.

spring.cloud.gcp.security.iap.iss
uer

cloud.google.com/iap JWK issuer to verify.

spring.cloud.gcp.security.iap.re
gistry

www.gstatic.com/iap/verify/
public_key-jwk

Link to JWK public key registry.

https://www.googleapis.com/robot/v1/metadata/x509/securetoken@system.gserviceaccount.com
https://www.googleapis.com/robot/v1/metadata/x509/securetoken@system.gserviceaccount.com
https://www.googleapis.com/robot/v1/metadata/x509/securetoken@system.gserviceaccount.com
https://www.googleapis.com/robot/v1/metadata/x509/securetoken@system.gserviceaccount.com
https://cloud.google.com/iap
https://www.gstatic.com/iap/verify/public_key-jwk
https://www.gstatic.com/iap/verify/public_key-jwk

Name Default Description

spring.cloud.gcp.spanner.create
-interleaved-table-ddl-on-delete
-cascade

true

spring.cloud.gcp.spanner.crede
ntials.encoded-key

spring.cloud.gcp.spanner.crede
ntials.location

spring.cloud.gcp.spanner.crede
ntials.scopes

spring.cloud.gcp.spanner.datab
ase

spring.cloud.gcp.spanner.emula
tor-host

localhost:9010

spring.cloud.gcp.spanner.emula
tor.enabled

false Enables auto-configuration to
use the Spanner emulator.

spring.cloud.gcp.spanner.enabl
ed

true Auto-configure Google Cloud
Spanner components.

spring.cloud.gcp.spanner.fail-if-
pool-exhausted

false

spring.cloud.gcp.spanner.instan
ce-id

spring.cloud.gcp.spanner.keep-
alive-interval-minutes

-1

spring.cloud.gcp.spanner.max-
idle-sessions

-1

spring.cloud.gcp.spanner.max-
sessions

-1

spring.cloud.gcp.spanner.min-
sessions

-1

spring.cloud.gcp.spanner.num-
rpc-channels

-1

spring.cloud.gcp.spanner.prefet
ch-chunks

-1

spring.cloud.gcp.spanner.projec
t-id

spring.cloud.gcp.spanner.write-
sessions-fraction

-1

Name Default Description

spring.cloud.gcp.sql.credentials Overrides the GCP OAuth2
credentials specified in the Core
module.

spring.cloud.gcp.sql.database-
name

Name of the database in the
Cloud SQL instance.

spring.cloud.gcp.sql.enabled true Auto-configure Google Cloud
SQL support components.

spring.cloud.gcp.sql.instance-
connection-name

Cloud SQL instance connection
name.
[GCP_PROJECT_ID]:[INSTANCE_
REGION]:[INSTANCE_NAME].

spring.cloud.gcp.storage.auto-
create-files

spring.cloud.gcp.storage.creden
tials.encoded-key

spring.cloud.gcp.storage.creden
tials.location

spring.cloud.gcp.storage.creden
tials.scopes

spring.cloud.gcp.storage.enable
d

true Auto-configure Google Cloud
Storage components.

spring.cloud.gcp.trace.authority HTTP/2 authority the channel
claims to be connecting to.

spring.cloud.gcp.trace.compress
ion

Compression to use for the call.

spring.cloud.gcp.trace.credentia
ls.encoded-key

spring.cloud.gcp.trace.credentia
ls.location

spring.cloud.gcp.trace.credentia
ls.scopes

spring.cloud.gcp.trace.deadline-
ms

Call deadline.

spring.cloud.gcp.trace.enabled true Auto-configure Google Cloud
Stackdriver tracing
components.

spring.cloud.gcp.trace.max-
inbound-size

Maximum size for an inbound
message.

Name Default Description

spring.cloud.gcp.trace.max-
outbound-size

Maximum size for an outbound
message.

spring.cloud.gcp.trace.message-
timeout

1 Timeout in seconds before
pending spans will be sent in
batches to GCP Stackdriver
Trace.

spring.cloud.gcp.trace.num-
executor-threads

4 Number of threads to be used
by the Trace executor.

spring.cloud.gcp.trace.project-id Overrides the GCP project ID
specified in the Core module.

spring.cloud.gcp.trace.wait-for-
ready

Waits for the channel to be
ready in case of a transient
failure. Defaults to failing fast
in that case.

spring.cloud.gcp.vision.credenti
als.encoded-key

spring.cloud.gcp.vision.credenti
als.location

spring.cloud.gcp.vision.credenti
als.scopes

spring.cloud.gcp.vision.enabled true Auto-configure Google Cloud
Vision components.

spring.cloud.gcp.vision.executo
r-threads-count

1 Number of threads used to poll
for the completion of Document
OCR operations.

spring.cloud.gcp.vision.json-
output-batch-size

20 Number of document pages to
include in each JSON output
file.

spring.cloud.httpclientfactories.
apache.enabled

true Enables creation of Apache Http
Client factory beans.

spring.cloud.httpclientfactories.
ok.enabled

true Enables creation of OK Http
Client factory beans.

spring.cloud.hypermedia.refres
h.fixed-delay

5000

spring.cloud.hypermedia.refres
h.initial-delay

10000

spring.cloud.inetutils.default-
hostname

localhost The default hostname. Used in
case of errors.

spring.cloud.inetutils.default-ip-
address

127.0.0.1 The default IP address. Used in
case of errors.

Name Default Description

spring.cloud.inetutils.ignored-
interfaces

List of Java regular expressions
for network interfaces that will
be ignored.

spring.cloud.inetutils.preferred-
networks

List of Java regular expressions
for network addresses that will
be preferred.

spring.cloud.inetutils.timeout-
seconds

1 Timeout, in seconds, for
calculating hostname.

spring.cloud.inetutils.use-only-
site-local-interfaces

false Whether to use only interfaces
with site local addresses. See
{@link
InetAddress#isSiteLocalAddress
()} for more details.

spring.cloud.kubernetes.client.a
pi-version

spring.cloud.kubernetes.client.a
piVersion

v1 Kubernetes API Version

spring.cloud.kubernetes.client.c
a-cert-data

spring.cloud.kubernetes.client.c
a-cert-file

spring.cloud.kubernetes.client.c
aCertData

Kubernetes API CACertData

spring.cloud.kubernetes.client.c
aCertFile

Kubernetes API CACertFile

spring.cloud.kubernetes.client.c
lient-cert-data

spring.cloud.kubernetes.client.c
lient-cert-file

spring.cloud.kubernetes.client.c
lient-key-algo

spring.cloud.kubernetes.client.c
lient-key-data

spring.cloud.kubernetes.client.c
lient-key-file

spring.cloud.kubernetes.client.c
lient-key-passphrase

spring.cloud.kubernetes.client.c
lientCertData

Kubernetes API ClientCertData

Name Default Description

spring.cloud.kubernetes.client.c
lientCertFile

Kubernetes API ClientCertFile

spring.cloud.kubernetes.client.c
lientKeyAlgo

RSA Kubernetes API ClientKeyAlgo

spring.cloud.kubernetes.client.c
lientKeyData

Kubernetes API ClientKeyData

spring.cloud.kubernetes.client.c
lientKeyFile

Kubernetes API ClientKeyFile

spring.cloud.kubernetes.client.c
lientKeyPassphrase

changeit Kubernetes API
ClientKeyPassphrase

spring.cloud.kubernetes.client.c
onnection-timeout

spring.cloud.kubernetes.client.c
onnectionTimeout

10s Connection timeout

spring.cloud.kubernetes.client.h
ttp-proxy

spring.cloud.kubernetes.client.h
ttps-proxy

spring.cloud.kubernetes.client.l
ogging-interval

spring.cloud.kubernetes.client.l
oggingInterval

20s Logging interval

spring.cloud.kubernetes.client.
master-url

spring.cloud.kubernetes.client.
masterUrl

kubernetes.default.svc Kubernetes API Master Node
URL

spring.cloud.kubernetes.client.n
amespace

true Kubernetes Namespace

spring.cloud.kubernetes.client.n
o-proxy

spring.cloud.kubernetes.client.p
assword

Kubernetes API Password

spring.cloud.kubernetes.client.p
roxy-password

spring.cloud.kubernetes.client.p
roxy-username

spring.cloud.kubernetes.client.r
equest-timeout

https://kubernetes.default.svc

Name Default Description

spring.cloud.kubernetes.client.r
equestTimeout

10s Request timeout

spring.cloud.kubernetes.client.r
olling-timeout

spring.cloud.kubernetes.client.r
ollingTimeout

900s Rolling timeout

spring.cloud.kubernetes.client.t
rust-certs

spring.cloud.kubernetes.client.t
rustCerts

false Kubernetes API Trust
Certificates

spring.cloud.kubernetes.client.u
sername

Kubernetes API Username

spring.cloud.kubernetes.client.
watch-reconnect-interval

spring.cloud.kubernetes.client.
watch-reconnect-limit

spring.cloud.kubernetes.client.
watchReconnectInterval

1s Reconnect Interval

spring.cloud.kubernetes.client.
watchReconnectLimit

-1 Reconnect Interval limit retries

spring.cloud.kubernetes.config.
enable-api

true

spring.cloud.kubernetes.config.
enabled

true Enable the ConfigMap property
source locator.

spring.cloud.kubernetes.config.
name

spring.cloud.kubernetes.config.
namespace

spring.cloud.kubernetes.config.
paths

spring.cloud.kubernetes.config.
sources

spring.cloud.kubernetes.discove
ry.all-namespaces

false If discovering all namespaces.

spring.cloud.kubernetes.discove
ry.enabled

true If Kubernetes Discovery is
enabled.

Name Default Description

spring.cloud.kubernetes.discove
ry.filter

SpEL expression to filter
services AFTER they have been
retrieved from the Kubernetes
API server.

spring.cloud.kubernetes.discove
ry.known-secure-ports

Set the port numbers that are
considered secure and use
HTTPS.

spring.cloud.kubernetes.discove
ry.metadata.add-annotations

true When set, the Kubernetes
annotations of the services will
be included as metadata of the
returned ServiceInstance.

spring.cloud.kubernetes.discove
ry.metadata.add-labels

true When set, the Kubernetes labels
of the services will be included
as metadata of the returned
ServiceInstance.

spring.cloud.kubernetes.discove
ry.metadata.add-ports

true When set, any named
Kubernetes service ports will be
included as metadata of the
returned ServiceInstance.

spring.cloud.kubernetes.discove
ry.metadata.annotations-prefix

When addAnnotations is set,
then this will be used as a
prefix to the key names in the
metadata map.

spring.cloud.kubernetes.discove
ry.metadata.labels-prefix

When addLabels is set, then this
will be used as a prefix to the
key names in the metadata
map.

spring.cloud.kubernetes.discove
ry.metadata.ports-prefix

port. When addPorts is set, then this
will be used as a prefix to the
key names in the metadata
map.

spring.cloud.kubernetes.discove
ry.order

spring.cloud.kubernetes.discove
ry.primary-port-name

If set then the port with a given
name is used as primary when
multiple ports are defined for a
service.

spring.cloud.kubernetes.discove
ry.service-labels

If set, then only the services
matching these labels will be
fetched from the Kubernetes
API server.

Name Default Description

spring.cloud.kubernetes.discove
ry.service-name

unknown The service name of the local
instance.

spring.cloud.kubernetes.enable
d

true Whether to enable Kubernetes
integration.

spring.cloud.kubernetes.reload.
enabled

false Enables the Kubernetes
configuration reload on change.

spring.cloud.kubernetes.reload.
max-wait-for-restart

2s If Restart or Shutdown
strategies are used, Spring
Cloud Kubernetes waits a
random amount of time before
restarting. This is done in order
to avoid having all instances of
the same application restart at
the same time. This property
configures the maximum of
amount of wait time from the
moment the signal is received
that a restart is needed until the
moment the restart is actually
triggered

spring.cloud.kubernetes.reload.
mode

Sets the detection mode for
Kubernetes configuration
reload.

spring.cloud.kubernetes.reload.
monitoring-config-maps

true Enables monitoring on config
maps to detect changes.

spring.cloud.kubernetes.reload.
monitoring-secrets

false Enables monitoring on secrets
to detect changes.

spring.cloud.kubernetes.reload.
period

15000ms Sets the polling period to use
when the detection mode is
POLLING.

spring.cloud.kubernetes.reload.
strategy

Sets the reload strategy for
Kubernetes configuration
reload on change.

spring.cloud.kubernetes.secrets.
enable-api

false

spring.cloud.kubernetes.secrets.
enabled

true Enable the Secrets property
source locator.

spring.cloud.kubernetes.secrets.
labels

spring.cloud.kubernetes.secrets.
name

Name Default Description

spring.cloud.kubernetes.secrets.
namespace

spring.cloud.kubernetes.secrets.
paths

spring.cloud.kubernetes.secrets.
sources

spring.cloud.loadbalancer.cach
e.caffeine.spec

The spec to use to create caches.
See CaffeineSpec for more
details on the spec format.

spring.cloud.loadbalancer.cach
e.capacity

256 Initial cache capacity expressed
as int.

spring.cloud.loadbalancer.cach
e.enabled

true Enables Spring Cloud
LoadBalancer caching
mechanism.

spring.cloud.loadbalancer.cach
e.ttl

35s Time To Live - time counted
from writing of the record, after
which cache entries are
expired, expressed as a {@link
Duration}. The property {@link
String} has to be in keeping
with the appropriate syntax as
specified in Spring Boot
<code>StringToDurationConver
ter</code>. @see <a href=
"https://github.com/spring-
projects/spring-
boot/blob/master/spring-boot-
project/spring-
boot/src/main/java/org/springfr
amework/boot/convert/StringTo
DurationConverter.java">String
ToDurationConverter.java

spring.cloud.loadbalancer.healt
h-check.initial-delay

0 Initial delay value for the
HealthCheck scheduler.

spring.cloud.loadbalancer.healt
h-check.interval

25s Interval for rerunning the
HealthCheck scheduler.

spring.cloud.loadbalancer.healt
h-check.path

spring.cloud.loadbalancer.retry.
enabled

true

Name Default Description

spring.cloud.loadbalancer.ribbo
n.enabled

true Causes
RibbonLoadBalancerClient to be
used by default.

spring.cloud.loadbalancer.servi
ce-discovery.timeout

String representation of
Duration of the timeout for calls
to service discovery.

spring.cloud.loadbalancer.zone Spring Cloud LoadBalancer
zone.

spring.cloud.refresh.enabled true Enables autoconfiguration for
the refresh scope and
associated features.

spring.cloud.refresh.extra-
refreshable

true Additional class names for
beans to post process into
refresh scope.

spring.cloud.refresh.never-
refreshable

true Comma separated list of class
names for beans to never be
refreshed or rebound.

spring.cloud.service-
registry.auto-
registration.enabled

true Whether service auto-
registration is enabled. Defaults
to true.

spring.cloud.service-
registry.auto-registration.fail-
fast

false Whether startup fails if there is
no AutoServiceRegistration.
Defaults to false.

spring.cloud.service-
registry.auto-
registration.register-
management

true Whether to register the
management as a service.
Defaults to true.

spring.cloud.service-
registry.enabled

true Enables Service Registry
functionality.

Name Default Description

spring.cloud.stream.binders Additional per-binder
properties (see {@link
BinderProperties}) if more then
one binder of the same type is
used (i.e., connect to multiple
instances of RabbitMq). Here
you can specify multiple binder
configurations, each with
different environment settings.
For example;
spring.cloud.stream.binders.rab
bit1.environment. . . ,
spring.cloud.stream.binders.rab
bit2.environment. . .

spring.cloud.stream.binding-
retry-interval

30 Retry interval (in seconds) used
to schedule binding attempts.
Default: 30 sec.

spring.cloud.stream.bindings Additional binding properties
(see {@link BinderProperties})
per binding name (e.g., 'input`).
For example; This sets the
content-type for the 'input'
binding of a Sink application:
'spring.cloud.stream.bindings.in
put.contentType=text/plain'

spring.cloud.stream.consul.bind
er.event-timeout

5

spring.cloud.stream.default-
binder

The name of the binder to use
by all bindings in the event
multiple binders available (e.g.,
'rabbit').

spring.cloud.stream.dynamic-
destination-cache-size

10 The maximum size of Least
Recently Used (LRU) cache of
dynamic destinations. Once this
size is reached, new
destinations will trigger the
removal of old destinations.
Default: 10

spring.cloud.stream.dynamic-
destinations

[] A list of destinations that can be
bound dynamically. If set, only
listed destinations can be
bound.

Name Default Description

spring.cloud.stream.function.ba
tch-mode

false

spring.cloud.stream.function.bi
ndings

spring.cloud.stream.function.de
finition

Definition of functions to bind.
If several functions need to be
composed into one, use pipes
(e.g., 'fooFunc|barFunc')

spring.cloud.stream.instance-
count

1 The number of deployed
instances of an application.
Default: 1. NOTE: Could also be
managed per individual
binding
"spring.cloud.stream.bindings.f
oo.consumer.instance-count"
where 'foo' is the name of the
binding.

spring.cloud.stream.instance-
index

0 The instance id of the
application: a number from 0 to
instanceCount-1. Used for
partitioning and with Kafka.
NOTE: Could also be managed
per individual binding
"spring.cloud.stream.bindings.f
oo.consumer.instance-index"
where 'foo' is the name of the
binding.

spring.cloud.stream.instance-
index-list

A list of instance id’s from 0 to
instanceCount-1. Used for
partitioning and with Kafka.
NOTE: Could also be managed
per individual binding
"spring.cloud.stream.bindings.f
oo.consumer.instance-index-
list" where 'foo' is the name of
the binding. This setting will
override the one set in
'spring.cloud.stream.instance-
index'

spring.cloud.stream.integration.
message-handler-not-
propagated-headers

Message header names that will
NOT be copied from the
inbound message.

Name Default Description

spring.cloud.stream.kafka.bind
er.authorization-exception-
retry-interval

Time between retries after
AuthorizationException is
caught in the
ListenerContainer; defalt is null
which disables retries. For more
info see: {@link
org.springframework.kafka.list
ener.ConsumerProperties#setA
uthorizationExceptionRetryInte
rval(java.time.Duration)}

spring.cloud.stream.kafka.bind
er.auto-add-partitions

false

spring.cloud.stream.kafka.bind
er.auto-create-topics

true

spring.cloud.stream.kafka.bind
er.brokers

[localhost]

spring.cloud.stream.kafka.bind
er.configuration

Arbitrary kafka properties that
apply to both producers and
consumers.

spring.cloud.stream.kafka.bind
er.consumer-properties

Arbitrary kafka consumer
properties.

spring.cloud.stream.kafka.bind
er.header-mapper-bean-name

The bean name of a custom
header mapper to use instead of
a {@link
org.springframework.kafka.sup
port.DefaultKafkaHeaderMappe
r}.

spring.cloud.stream.kafka.bind
er.headers

[]

spring.cloud.stream.kafka.bind
er.health-timeout

60 Time to wait to get partition
information in seconds; default
60.

spring.cloud.stream.kafka.bind
er.jaas

spring.cloud.stream.kafka.bind
er.min-partition-count

1

spring.cloud.stream.kafka.bind
er.producer-properties

Arbitrary kafka producer
properties.

spring.cloud.stream.kafka.bind
er.replication-factor

1

Name Default Description

spring.cloud.stream.kafka.bind
er.required-acks

1

spring.cloud.stream.kafka.bind
er.transaction.producer.batch-
timeout

spring.cloud.stream.kafka.bind
er.transaction.producer.buffer-
size

spring.cloud.stream.kafka.bind
er.transaction.producer.compre
ssion-type

spring.cloud.stream.kafka.bind
er.transaction.producer.configu
ration

spring.cloud.stream.kafka.bind
er.transaction.producer.error-
channel-enabled

spring.cloud.stream.kafka.bind
er.transaction.producer.header-
mode

spring.cloud.stream.kafka.bind
er.transaction.producer.header-
patterns

spring.cloud.stream.kafka.bind
er.transaction.producer.messag
e-key-expression

spring.cloud.stream.kafka.bind
er.transaction.producer.partitio
n-count

spring.cloud.stream.kafka.bind
er.transaction.producer.partitio
n-key-expression

spring.cloud.stream.kafka.bind
er.transaction.producer.partitio
n-key-extractor-name

spring.cloud.stream.kafka.bind
er.transaction.producer.partitio
n-selector-expression

spring.cloud.stream.kafka.bind
er.transaction.producer.partitio
n-selector-name

Name Default Description

spring.cloud.stream.kafka.bind
er.transaction.producer.require
d-groups

spring.cloud.stream.kafka.bind
er.transaction.producer.sync

spring.cloud.stream.kafka.bind
er.transaction.producer.topic

spring.cloud.stream.kafka.bind
er.transaction.producer.use-
native-encoding

spring.cloud.stream.kafka.bind
er.transaction.transaction-id-
prefix

spring.cloud.stream.kafka.bindi
ngs

spring.cloud.stream.kafka.strea
ms.binder.application-id

spring.cloud.stream.kafka.strea
ms.binder.authorization-
exception-retry-interval

spring.cloud.stream.kafka.strea
ms.binder.auto-add-partitions

spring.cloud.stream.kafka.strea
ms.binder.auto-create-topics

spring.cloud.stream.kafka.strea
ms.binder.brokers

spring.cloud.stream.kafka.strea
ms.binder.configuration

spring.cloud.stream.kafka.strea
ms.binder.consumer-properties

spring.cloud.stream.kafka.strea
ms.binder.deserialization-
exception-handler

{@link
org.apache.kafka.streams.error
s.DeserializationExceptionHand
ler} to use when there is a
deserialization exception. This
handler will be applied against
all input bindings unless
overridden at the consumer
binding.

Name Default Description

spring.cloud.stream.kafka.strea
ms.binder.functions

spring.cloud.stream.kafka.strea
ms.binder.header-mapper-
bean-name

spring.cloud.stream.kafka.strea
ms.binder.headers

spring.cloud.stream.kafka.strea
ms.binder.health-timeout

spring.cloud.stream.kafka.strea
ms.binder.jaas

spring.cloud.stream.kafka.strea
ms.binder.min-partition-count

spring.cloud.stream.kafka.strea
ms.binder.producer-properties

spring.cloud.stream.kafka.strea
ms.binder.replication-factor

spring.cloud.stream.kafka.strea
ms.binder.required-acks

spring.cloud.stream.kafka.strea
ms.binder.serde-error

spring.cloud.stream.kafka.strea
ms.binder.state-store-
retry.backoff-period

1000

spring.cloud.stream.kafka.strea
ms.binder.state-store-retry.max-
attempts

1

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.batch-timeout

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.buffer-size

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.compression-type

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.configuration

Name Default Description

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.error-channel-enabled

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.header-mode

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.header-patterns

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.message-key-expression

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.partition-count

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.partition-key-expression

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.partition-key-extractor-name

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.partition-selector-expression

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.partition-selector-name

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.required-groups

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.sync

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.topic

spring.cloud.stream.kafka.strea
ms.binder.transaction.producer
.use-native-encoding

Name Default Description

spring.cloud.stream.kafka.strea
ms.binder.transaction.transacti
on-id-prefix

spring.cloud.stream.kafka.strea
ms.bindings

spring.cloud.stream.metrics.exp
ort-properties

List of properties that are going
to be appended to each
message. This gets populate by
onApplicationEvent, once the
context refreshes to avoid
overhead of doing per message
basis.

spring.cloud.stream.metrics.key The name of the metric being
emitted. Should be an unique
value per application. Defaults
to:
${spring.application.name:${vc
ap.application.name:${spring.co
nfig.name:application}}}.

spring.cloud.stream.metrics.me
ter-filter

Pattern to control the 'meters'
one wants to capture. By default
all 'meters' will be captured. For
example, 'spring.integration.*'
will only capture metric
information for meters whose
name starts with
'spring.integration'.

spring.cloud.stream.metrics.pro
perties

Application properties that
should be added to the metrics
payload For example:
spring.application**.

spring.cloud.stream.metrics.sch
edule-interval

60s Interval expressed as Duration
for scheduling metrics
snapshots publishing. Defaults
to 60 seconds

Name Default Description

spring.cloud.stream.override-
cloud-connectors

false This property is only applicable
when the cloud profile is active
and Spring Cloud Connectors
are provided with the
application. If the property is
false (the default), the binder
detects a suitable bound service
(for example, a RabbitMQ
service bound in Cloud Foundry
for the RabbitMQ binder) and
uses it for creating connections
(usually through Spring Cloud
Connectors). When set to true,
this property instructs binders
to completely ignore the bound
services and rely on Spring Boot
properties (for example, relying
on the spring.rabbitmq.*
properties provided in the
environment for the RabbitMQ
binder). The typical usage of
this property is to be nested in a
customized environment when
connecting to multiple systems.

spring.cloud.stream.poller.cron Cron expression value for the
Cron Trigger.

spring.cloud.stream.poller.fixed
-delay

1000 Fixed delay for default poller.

spring.cloud.stream.poller.initia
l-delay

0 Initial delay for periodic
triggers.

spring.cloud.stream.poller.max-
messages-per-poll

1 Maximum messages per poll for
the default poller.

spring.cloud.stream.rabbit.bind
er.admin-addresses

[] Urls for management plugins;
only needed for queue affinity.

spring.cloud.stream.rabbit.bind
er.admin-adresses

spring.cloud.stream.rabbit.bind
er.compression-level

0 Compression level for
compressed bindings; see
'java.util.zip.Deflator'.

spring.cloud.stream.rabbit.bind
er.connection-name-prefix

Prefix for connection names
from this binder.

Name Default Description

spring.cloud.stream.rabbit.bind
er.nodes

[] Cluster member node names;
only needed for queue affinity.

spring.cloud.stream.rabbit.bind
ings

spring.cloud.stream.sendto.dest
ination

none The name of the header used to
determine the name of the
output destination

spring.cloud.stream.source A colon delimited string
representing the names of the
sources based on which source
bindings will be created. This is
primarily to support cases
where source binding may be
required without providing a
corresponding Supplier. (e.g.,
for cases where the actual
source of data is outside of
scope of spring-cloud-stream -
HTTP → Stream)

spring.cloud.task.batch.comma
nd-line-runner-order

0 The order for the {@code
CommandLineRunner} used to
run batch jobs when {@code
spring.cloud.task.batch.fail-on-
job-failure=true}. Defaults to 0
(same as the {@link
org.springframework.boot.auto
configure.batch.JobLauncherCo
mmandLineRunner}).

spring.cloud.task.batch.events.c
hunk-order

Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.ChunkListener}.

spring.cloud.task.batch.events.c
hunk.enabled

true This property is used to
determine if a task should listen
for batch chunk events.

spring.cloud.task.batch.events.e
nabled

true This property is used to
determine if a task should listen
for batch events.

spring.cloud.task.batch.events.it
em-process-order

Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.ItemProcessListener}.

Name Default Description

spring.cloud.task.batch.events.it
em-process.enabled

true This property is used to
determine if a task should listen
for batch item processed events.

spring.cloud.task.batch.events.it
em-read-order

Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.ItemReadListener}.

spring.cloud.task.batch.events.it
em-read.enabled

true This property is used to
determine if a task should listen
for batch item read events.

spring.cloud.task.batch.events.it
em-write-order

Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.ItemWriteListener}.

spring.cloud.task.batch.events.it
em-write.enabled

true This property is used to
determine if a task should listen
for batch item write events.

spring.cloud.task.batch.events.j
ob-execution-order

Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.JobExecutionListener}.

spring.cloud.task.batch.events.j
ob-execution.enabled

true This property is used to
determine if a task should listen
for batch job execution events.

spring.cloud.task.batch.events.s
kip-order

Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.SkipListener}.

spring.cloud.task.batch.events.s
kip.enabled

true This property is used to
determine if a task should listen
for batch skip events.

spring.cloud.task.batch.events.s
tep-execution-order

Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.StepExecutionListener}.

spring.cloud.task.batch.events.s
tep-execution.enabled

true This property is used to
determine if a task should listen
for batch step execution events.

Name Default Description

spring.cloud.task.batch.fail-on-
job-failure

false This property is used to
determine if a task app should
return with a non zero exit code
if a batch job fails.

spring.cloud.task.batch.fail-on-
job-failure-poll-interval

5000 Fixed delay in milliseconds that
Spring Cloud Task will wait
when checking if {@link
org.springframework.batch.cor
e.JobExecution}s have
completed, when
spring.cloud.task.batch.failOnJo
bFailure is set to true. Defaults
to 5000.

spring.cloud.task.batch.job-
names

Comma-separated list of job
names to execute on startup
(for instance, job1,job2). By
default, all Jobs found in the
context are executed.
@deprecated use
spring.batch.job.names instead
of
spring.cloud.task.batch.jobNam
es.

spring.cloud.task.batch.listener.
enabled

true This property is used to
determine if a task will be
linked to the batch jobs that are
run.

spring.cloud.task.closecontext-
enabled

false When set to true the context is
closed at the end of the task.
Else the context remains open.

spring.cloud.task.events.enable
d

true This property is used to
determine if a task app should
emit task events.

spring.cloud.task.executionid An id that will be used by the
task when updating the task
execution.

spring.cloud.task.external-
execution-id

An id that can be associated
with a task.

Name Default Description

spring.cloud.task.initialize-
enabled

If set to true then tables are
initialized. If set to false tables
are not initialized. Defaults to
null. The requirement for it to
be defaulted to null is so that
we can support the
<code>spring.cloud.task.initializ
e.enable</code> until it is
removed.

spring.cloud.task.parent-
execution-id

The id of the parent task
execution id that launched this
task execution. Defaults to null
if task execution had no parent.

spring.cloud.task.single-
instance-enabled

false This property is used to
determine if a task will execute
if another task with the same
app name is running.

spring.cloud.task.single-
instance-lock-check-interval

500 Declares the time (in millis) that
a task execution will wait
between checks. Default time is:
500 millis.

spring.cloud.task.single-
instance-lock-ttl

Declares the maximum amount
of time (in millis) that a task
execution can hold a lock to
prevent another task from
executing with a specific task
name when the single-instance-
enabled is set to true. Default
time is: Integer.MAX_VALUE.

spring.cloud.task.table-prefix TASK_ The prefix to append to the
table names created by Spring
Cloud Task.

spring.cloud.util.enabled true Enables creation of Spring
Cloud utility beans.

spring.cloud.vault.app-id.app-
id-path

app-id Mount path of the AppId
authentication backend.

spring.cloud.vault.app-
id.network-interface

Network interface hint for the
"MAC_ADDRESS" UserId
mechanism.

Name Default Description

spring.cloud.vault.app-id.user-
id

MAC_ADDRESS UserId mechanism. Can be
either "MAC_ADDRESS",
"IP_ADDRESS", a string or a
class name.

spring.cloud.vault.app-role.app-
role-path

approle Mount path of the AppRole
authentication backend.

spring.cloud.vault.app-role.role Name of the role, optional, used
for pull-mode.

spring.cloud.vault.app-role.role-
id

The RoleId.

spring.cloud.vault.app-
role.secret-id

The SecretId.

spring.cloud.vault.application-
name

application Application name for AppId
authentication.

spring.cloud.vault.authenticatio
n

spring.cloud.vault.aws-ec2.aws-
ec2-path

aws-ec2 Mount path of the AWS-EC2
authentication backend.

spring.cloud.vault.aws-
ec2.identity-document

169.254.169.254/latest/dynamic/
instance-identity/pkcs7

URL of the AWS-EC2 PKCS7
identity document.

spring.cloud.vault.aws-
ec2.nonce

Nonce used for AWS-EC2
authentication. An empty nonce
defaults to nonce generation.

spring.cloud.vault.aws-ec2.role Name of the role, optional.

spring.cloud.vault.aws-iam.aws-
path

aws Mount path of the AWS
authentication backend.

spring.cloud.vault.aws-
iam.endpoint-uri

STS server URI. @since 2.2

spring.cloud.vault.aws-iam.role Name of the role, optional.
Defaults to the friendly IAM
name if not set.

spring.cloud.vault.aws-
iam.server-name

Name of the server used to set
{@code X-Vault-AWS-IAM-
Server-ID} header in the
headers of login requests.

spring.cloud.vault.aws.access-
key-property

cloud.aws.credentials.accessKey Target property for the
obtained access key.

spring.cloud.vault.aws.backend aws aws backend path.

spring.cloud.vault.aws.enabled false Enable aws backend usage.

http://169.254.169.254/latest/dynamic/instance-identity/pkcs7
http://169.254.169.254/latest/dynamic/instance-identity/pkcs7

Name Default Description

spring.cloud.vault.aws.role Role name for credentials.

spring.cloud.vault.aws.secret-
key-property

cloud.aws.credentials.secretKey Target property for the
obtained secret key.

spring.cloud.vault.azure-
msi.azure-path

azure Mount path of the Azure MSI
authentication backend.

spring.cloud.vault.azure-
msi.role

Name of the role.

spring.cloud.vault.cassandra.ba
ckend

cassandra Cassandra backend path.

spring.cloud.vault.cassandra.en
abled

false Enable cassandra backend
usage.

spring.cloud.vault.cassandra.pa
ssword-property

spring.data.cassandra.password Target property for the
obtained password.

spring.cloud.vault.cassandra.rol
e

Role name for credentials.

spring.cloud.vault.cassandra.sta
tic-role

false Enable static role usage. @since
2.2

spring.cloud.vault.cassandra.us
ername-property

spring.data.cassandra.usernam
e

Target property for the
obtained username.

spring.cloud.vault.config.lifecyc
le.enabled

true Enable lifecycle management.

spring.cloud.vault.config.lifecyc
le.expiry-threshold

The expiry threshold. {@link
Lease} is renewed the given
{@link Duration} before it
expires. @since 2.2

spring.cloud.vault.config.lifecyc
le.lease-endpoints

Set the {@link LeaseEndpoints}
to delegate renewal/revocation
calls to. {@link LeaseEndpoints}
encapsulates differences
between Vault versions that
affect the location of
renewal/revocation endpoints.
Can be {@link
LeaseEndpoints#SysLeases} for
version 0.8 or above of Vault or
{@link LeaseEndpoints#Legacy}
for older versions (the default).
@since 2.2

spring.cloud.vault.config.lifecyc
le.min-renewal

The time period that is at least
required before renewing a
lease. @since 2.2

Name Default Description

spring.cloud.vault.config.order 0 Used to set a {@link
org.springframework.core.env.
PropertySource} priority. This is
useful to use Vault as an
override on other property
sources. @see
org.springframework.core.Prior
ityOrdered

spring.cloud.vault.connection-
timeout

5000 Connection timeout.

spring.cloud.vault.consul.backe
nd

consul Consul backend path.

spring.cloud.vault.consul.enabl
ed

false Enable consul backend usage.

spring.cloud.vault.consul.role Role name for credentials.

spring.cloud.vault.consul.token-
property

spring.cloud.consul.token Target property for the
obtained token.

spring.cloud.vault.database.bac
kend

database Database backend path.

spring.cloud.vault.database.ena
bled

false Enable database backend usage.

spring.cloud.vault.database.pas
sword-property

spring.datasource.password Target property for the
obtained password.

spring.cloud.vault.database.role Role name for credentials.

spring.cloud.vault.database.stat
ic-role

false Enable static role usage.

spring.cloud.vault.database.use
rname-property

spring.datasource.username Target property for the
obtained username.

spring.cloud.vault.discovery.en
abled

false Flag to indicate that Vault
server discovery is enabled
(vault server URL will be looked
up via discovery).

spring.cloud.vault.discovery.ser
vice-id

vault Service id to locate Vault.

spring.cloud.vault.enabled true Enable Vault config server.

spring.cloud.vault.fail-fast false Fail fast if data cannot be
obtained from Vault.

spring.cloud.vault.gcp-gce.gcp-
path

gcp Mount path of the Kubernetes
authentication backend.

Name Default Description

spring.cloud.vault.gcp-gce.role Name of the role against which
the login is being attempted.

spring.cloud.vault.gcp-
gce.service-account

Optional service account id.
Using the default id if left
unconfigured.

spring.cloud.vault.gcp-
iam.credentials.encoded-key

The base64 encoded contents of
an OAuth2 account private key
in JSON format.

spring.cloud.vault.gcp-
iam.credentials.location

Location of the OAuth2
credentials private key. <p>
Since this is a Resource, the
private key can be in a
multitude of locations, such as a
local file system, classpath, URL,
etc.

spring.cloud.vault.gcp-iam.gcp-
path

gcp Mount path of the Kubernetes
authentication backend.

spring.cloud.vault.gcp-iam.jwt-
validity

15m Validity of the JWT token.

spring.cloud.vault.gcp-
iam.project-id

Overrides the GCP project Id.

spring.cloud.vault.gcp-iam.role Name of the role against which
the login is being attempted.

spring.cloud.vault.gcp-
iam.service-account-id

Overrides the GCP service
account Id.

spring.cloud.vault.generic.appli
cation-name

application Application name to be used for
the context.

spring.cloud.vault.generic.back
end

secret Name of the default backend.

spring.cloud.vault.generic.defau
lt-context

application Name of the default context.

spring.cloud.vault.generic.enabl
ed

true Enable the generic backend.

spring.cloud.vault.generic.profil
e-separator

/ Profile-separator to combine
application name and profile.

spring.cloud.vault.host localhost Vault server host.

spring.cloud.vault.kubernetes.k
ubernetes-path

kubernetes Mount path of the Kubernetes
authentication backend.

spring.cloud.vault.kubernetes.r
ole

Name of the role against which
the login is being attempted.

Name Default Description

spring.cloud.vault.kubernetes.s
ervice-account-token-file

/var/run/secrets/kubernetes.io/s
erviceaccount/token

Path to the service account
token file.

spring.cloud.vault.kv.applicatio
n-name

application Application name to be used for
the context.

spring.cloud.vault.kv.backend secret Name of the default backend.

spring.cloud.vault.kv.backend-
version

2 Key-Value backend version.
Currently supported versions
are: Version 1
(unversioned key-value
backend). Version 2
(versioned key-value
backend).

spring.cloud.vault.kv.default-
context

application Name of the default context.

spring.cloud.vault.kv.enabled false Enable the kev-value backend.

spring.cloud.vault.kv.profile-
separator

/ Profile-separator to combine
application name and profile.

spring.cloud.vault.mongodb.bac
kend

mongodb Cassandra backend path.

spring.cloud.vault.mongodb.ena
bled

false Enable mongodb backend
usage.

spring.cloud.vault.mongodb.pas
sword-property

spring.data.mongodb.password Target property for the
obtained password.

spring.cloud.vault.mongodb.rol
e

Role name for credentials.

spring.cloud.vault.mongodb.stat
ic-role

false Enable static role usage. @since
2.2

spring.cloud.vault.mongodb.use
rname-property

spring.data.mongodb.username Target property for the
obtained username.

spring.cloud.vault.mysql.backe
nd

mysql mysql backend path.

spring.cloud.vault.mysql.enable
d

false Enable mysql backend usage.

spring.cloud.vault.mysql.passw
ord-property

spring.datasource.password Target property for the
obtained username.

spring.cloud.vault.mysql.role Role name for credentials.

spring.cloud.vault.mysql.userna
me-property

spring.datasource.username Target property for the
obtained username.

Name Default Description

spring.cloud.vault.namespace Vault namespace (requires
Vault Enterprise).

spring.cloud.vault.pcf.instance-
certificate

Path to the instance certificate
(PEM). Defaults to {@code
CF_INSTANCE_CERT} env
variable.

spring.cloud.vault.pcf.instance-
key

Path to the instance key (PEM).
Defaults to {@code
CF_INSTANCE_KEY} env
variable.

spring.cloud.vault.pcf.pcf-path pcf Mount path of the Kubernetes
authentication backend.

spring.cloud.vault.pcf.role Name of the role against which
the login is being attempted.

spring.cloud.vault.port 8200 Vault server port.

spring.cloud.vault.postgresql.ba
ckend

postgresql postgresql backend path.

spring.cloud.vault.postgresql.en
abled

false Enable postgresql backend
usage.

spring.cloud.vault.postgresql.pa
ssword-property

spring.datasource.password Target property for the
obtained username.

spring.cloud.vault.postgresql.ro
le

Role name for credentials.

spring.cloud.vault.postgresql.us
ername-property

spring.datasource.username Target property for the
obtained username.

spring.cloud.vault.rabbitmq.bac
kend

rabbitmq rabbitmq backend path.

spring.cloud.vault.rabbitmq.ena
bled

false Enable rabbitmq backend
usage.

spring.cloud.vault.rabbitmq.pas
sword-property

spring.rabbitmq.password Target property for the
obtained password.

spring.cloud.vault.rabbitmq.rol
e

Role name for credentials.

spring.cloud.vault.rabbitmq.use
rname-property

spring.rabbitmq.username Target property for the
obtained username.

spring.cloud.vault.read-timeout 15000 Read timeout.

spring.cloud.vault.scheme https Protocol scheme. Can be either
"http" or "https".

Name Default Description

spring.cloud.vault.ssl.cert-auth-
path

cert Mount path of the TLS cert
authentication backend.

spring.cloud.vault.ssl.key-store Trust store that holds
certificates and private keys.

spring.cloud.vault.ssl.key-store-
password

Password used to access the key
store.

spring.cloud.vault.ssl.trust-store Trust store that holds SSL
certificates.

spring.cloud.vault.ssl.trust-
store-password

Password used to access the
trust store.

spring.cloud.vault.token Static vault token. Required if
{@link #authentication} is
{@code TOKEN}.

spring.cloud.vault.uri Vault URI. Can be set with
scheme, host and port.

spring.cloud.zookeeper.base-
sleep-time-ms

50 Initial amount of time to wait
between retries.

spring.cloud.zookeeper.block-
until-connected-unit

The unit of time related to
blocking on connection to
Zookeeper.

spring.cloud.zookeeper.block-
until-connected-wait

10 Wait time to block on
connection to Zookeeper.

spring.cloud.zookeeper.connect
-string

localhost:2181 Connection string to the
Zookeeper cluster.

spring.cloud.zookeeper.connect
ion-timeout

The configured connection
timeout in milliseconds.

spring.cloud.zookeeper.default-
health-endpoint

Default health endpoint that
will be checked to verify that a
dependency is alive.

spring.cloud.zookeeper.depend
encies

Mapping of alias to
ZookeeperDependency. From
Ribbon perspective the alias is
actually serviceID since Ribbon
can’t accept nested structures in
serviceID.

spring.cloud.zookeeper.depend
ency-configurations

spring.cloud.zookeeper.depend
ency-names

Name Default Description

spring.cloud.zookeeper.discove
ry.enabled

true

spring.cloud.zookeeper.discove
ry.initial-status

The initial status of this
instance (defaults to {@link
StatusConstants#STATUS_UP}).

spring.cloud.zookeeper.discove
ry.instance-host

Predefined host with which a
service can register itself in
Zookeeper. Corresponds to the
{code address} from the URI
spec.

spring.cloud.zookeeper.discove
ry.instance-id

Id used to register with
zookeeper. Defaults to a
random UUID.

spring.cloud.zookeeper.discove
ry.instance-port

Port to register the service
under (defaults to listening
port).

spring.cloud.zookeeper.discove
ry.instance-ssl-port

Ssl port of the registered
service.

spring.cloud.zookeeper.discove
ry.metadata

Gets the metadata name/value
pairs associated with this
instance. This information is
sent to zookeeper and can be
used by other instances.

spring.cloud.zookeeper.discove
ry.order

0 Order of the discovery client
used by
CompositeDiscoveryClient for
sorting available clients.

spring.cloud.zookeeper.discove
ry.register

true Register as a service in
zookeeper.

spring.cloud.zookeeper.discove
ry.root

/services Root Zookeeper folder in which
all instances are registered.

spring.cloud.zookeeper.discove
ry.uri-spec

{scheme}://{address}:{port} The URI specification to resolve
during service registration in
Zookeeper.

spring.cloud.zookeeper.enabled true Is Zookeeper enabled.

spring.cloud.zookeeper.max-
retries

10 Max number of times to retry.

spring.cloud.zookeeper.max-
sleep-ms

500 Max time in ms to sleep on each
retry.

Name Default Description

spring.cloud.zookeeper.prefix Common prefix that will be
applied to all Zookeeper
dependencies' paths.

spring.cloud.zookeeper.session-
timeout

The configured/negotiated
session timeout in milliseconds.
Please refer to <a
href='https://cwiki.apache.org/c
onfluence/display/CURATOR/TN
14'>Curator’s Tech Note 14
to understand how Curator
implements connection
sessions. @see <a
href='https://cwiki.apache.org/c
onfluence/display/CURATOR/TN
14'>Curator’s Tech Note 14

spring.sleuth.annotation.enable
d

true

spring.sleuth.async.configurer.e
nabled

true Enable default
AsyncConfigurer.

spring.sleuth.async.enabled true Enable instrumenting async
related components so that the
tracing information is passed
between threads.

spring.sleuth.async.ignored-
beans

List of {@link
java.util.concurrent.Executor}
bean names that should be
ignored and not wrapped in a
trace representation.

spring.sleuth.baggage-keys List of baggage key names that
should be propagated out of
process. These keys will be
prefixed with baggage before the
actual key. This property is set
in order to be backward
compatible with previous
Sleuth versions. @see
brave.propagation.ExtraFieldPr
opagation.FactoryBuilder#addP
refixedFields(String,
java.util.Collection)

spring.sleuth.circuitbreaker.ena
bled

true Enable Spring Cloud
CircuitBreaker instrumentation.

spring.sleuth.enabled true

Name Default Description

spring.sleuth.feign.enabled true Enable span information
propagation when using Feign.

spring.sleuth.feign.processor.en
abled

true Enable post processor that
wraps Feign Context in its
tracing representations.

spring.sleuth.grpc.enabled true Enable span information
propagation when using GRPC.

spring.sleuth.http.enabled true

spring.sleuth.http.legacy.enable
d

false Enables the legacy Sleuth setup.

spring.sleuth.hystrix.strategy.en
abled

true Enable custom
HystrixConcurrencyStrategy
that wraps all Callable instances
into their Sleuth representative
- the TraceCallable.

spring.sleuth.hystrix.strategy.pa
ssthrough

false When enabled the tracing
information is passed to the
Hystrix execution threads but
spans are not created for each
execution.

spring.sleuth.integration.enable
d

true Enable Spring Integration
sleuth instrumentation.

spring.sleuth.integration.patter
ns

[!hystrixStreamOutput*, ,
!channel]

An array of patterns against
which channel names will be
matched. @see
org.springframework.integratio
n.config.GlobalChannelIntercep
tor#patterns() Defaults to any
channel name not matching the
Hystrix Stream and functional
Stream channel names.

spring.sleuth.integration.webso
ckets.enabled

true Enable tracing for WebSockets.

spring.sleuth.keys.http.headers Additional headers that should
be added as tags if they exist. If
the header value is multi-
valued, the tag value will be a
comma-separated, single-
quoted list.

spring.sleuth.keys.http.prefix http. Prefix for header names if they
are added as tags.

Name Default Description

spring.sleuth.local-keys Same as {@link
#propagationKeys} except that
this field is not propagated to
remote services. @see
brave.propagation.ExtraFieldPr
opagation.FactoryBuilder#addR
edactedField(String)

spring.sleuth.log.slf4j.enabled true Enable a {@link
Slf4jScopeDecorator} that prints
tracing information in the logs.

spring.sleuth.log.slf4j.whiteliste
d-mdc-keys

A list of keys to be put from
baggage to MDC.

spring.sleuth.messaging.enable
d

false Should messaging be turned on.

spring.sleuth.messaging.jms.en
abled

true Enable tracing of JMS.

spring.sleuth.messaging.jms.re
mote-service-name

jms

spring.sleuth.messaging.kafka.e
nabled

true Enable tracing of Kafka.

spring.sleuth.messaging.kafka.
mapper.enabled

true Enable
DefaultKafkaHeaderMapper
tracing for Kafka.

spring.sleuth.messaging.kafka.r
emote-service-name

kafka

spring.sleuth.messaging.rabbit.
enabled

true Enable tracing of RabbitMQ.

spring.sleuth.messaging.rabbit.r
emote-service-name

rabbitmq

spring.sleuth.opentracing.enabl
ed

true

Name Default Description

spring.sleuth.propagation-keys List of fields that are referenced
the same in-process as it is on
the wire. For example, the
name "x-vcap-request-id" would
be set as-is including the prefix.
<p> Note: {@code fieldName}
will be implicitly lower-cased.
@see
brave.propagation.ExtraFieldPr
opagation.FactoryBuilder#addF
ield(String)

spring.sleuth.propagation.tag.e
nabled

true Enables a {@link
TagPropagationFinishedSpanHa
ndler} that adds extra
propagated fields to span tags.

spring.sleuth.propagation.tag.w
hitelisted-keys

A list of keys to be put from
extra propagation fields to span
tags.

spring.sleuth.reactor.decorate-
on-each

true When true decorates on each
operator, will be less
performing, but logging will
always contain the tracing
entries in each operator. When
false decorates on last operator,
will be more performing, but
logging might not always
contain the tracing entries.

spring.sleuth.reactor.enabled true When true enables
instrumentation for reactor.

spring.sleuth.redis.enabled true Enable span information
propagation when using Redis.

spring.sleuth.redis.remote-
service-name

redis Service name for the remote
Redis endpoint.

spring.sleuth.rpc.enabled true Enable tracing of RPC.

spring.sleuth.rxjava.schedulers.
hook.enabled

true Enable support for RxJava via
RxJavaSchedulersHook.

spring.sleuth.rxjava.schedulers.
ignoredthreads

[HystrixMetricPoller,
^RxComputation.*$]

Thread names for which spans
will not be sampled.

Name Default Description

spring.sleuth.sampler.probabilit
y

Probability of requests that
should be sampled. E.g. 1.0 -
100% requests should be
sampled. The precision is
whole-numbers only (i.e. there’s
no support for 0.1% of the
traces).

spring.sleuth.sampler.rate 10 A rate per second can be a nice
choice for low-traffic endpoints
as it allows you surge
protection. For example, you
may never expect the endpoint
to get more than 50 requests
per second. If there was a
sudden surge of traffic, to 5000
requests per second, you would
still end up with 50 traces per
second. Conversely, if you had a
percentage, like 10%, the same
surge would end up with 500
traces per second, possibly
overloading your storage.
Amazon X-Ray includes a rate-
limited sampler (named
Reservoir) for this purpose.
Brave has taken the same
approach via the {@link
brave.sampler.RateLimitingSam
pler}.

spring.sleuth.scheduled.enabled true Enable tracing for {@link
org.springframework.schedulin
g.annotation.Scheduled}.

spring.sleuth.scheduled.skip-
pattern

org.springframework.cloud.netf
lix.hystrix.stream.HystrixStrea
mTask

Pattern for the fully qualified
name of a class that should be
skipped.

spring.sleuth.supports-join true True means the tracing system
supports sharing a span ID
between a client and server.

spring.sleuth.trace-id128 false When true, generate 128-bit
trace IDs instead of 64-bit ones.

Name Default Description

spring.sleuth.web.additional-
skip-pattern

Additional pattern for URLs that
should be skipped in tracing.
This will be appended to the
{@link
SleuthWebProperties#skipPatte
rn}.

spring.sleuth.web.client.enable
d

true Enable interceptor injecting
into {@link
org.springframework.web.clien
t.RestTemplate}.

spring.sleuth.web.client.skip-
pattern

Pattern for URLs that should be
skipped in client side tracing.

spring.sleuth.web.enabled true When true enables
instrumentation for web
applications.

spring.sleuth.web.exception-
logging-filter-enabled

true Flag to toggle the presence of a
filter that logs thrown
exceptions.

spring.sleuth.web.exception-
throwing-filter-enabled

true Flag to toggle the presence of a
filter that logs thrown
exceptions. @deprecated use
{@link
#exceptionLoggingFilterEnable
d}

spring.sleuth.web.filter-order Order in which the tracing
filters should be registered.
Defaults to {@link
TraceHttpAutoConfiguration#T
RACING_FILTER_ORDER}.

spring.sleuth.web.ignore-auto-
configured-skip-patterns

false If set to true, auto-configured
skip patterns will be ignored.
@see
TraceWebAutoConfiguration

spring.sleuth.web.skip-pattern /api-docs.|/swagger.|.
\.png|.\.css|.\.js|.\.html|/favico
n.ico|/hystrix.stream

Pattern for URLs that should be
skipped in tracing.

spring.sleuth.zuul.enabled true Enable span information
propagation when using Zuul.

spring.zipkin.activemq.message
-max-bytes

100000 Maximum number of bytes for
a given message with spans
sent to Zipkin over ActiveMQ.

Name Default Description

spring.zipkin.activemq.queue zipkin Name of the ActiveMQ queue
where spans should be sent to
Zipkin.

spring.zipkin.base-url localhost:9411/ URL of the zipkin query server
instance. You can also provide
the service id of the Zipkin
server if Zipkin’s registered in
service discovery (e.g.
zipkinserver/).

spring.zipkin.compression.enab
led

false

spring.zipkin.discovery-client-
enabled

If set to {@code false}, will treat
the {@link
ZipkinProperties#baseUrl} as a
URL always.

spring.zipkin.enabled true Enables sending spans to
Zipkin.

spring.zipkin.encoder Encoding type of spans sent to
Zipkin. Set to {@link
SpanBytesEncoder#JSON_V1} if
your server is not recent.

spring.zipkin.kafka.topic zipkin Name of the Kafka topic where
spans should be sent to Zipkin.

spring.zipkin.locator.discovery.
enabled

false Enabling of locating the host
name via service discovery.

spring.zipkin.message-timeout 1 Timeout in seconds before
pending spans will be sent in
batches to Zipkin.

spring.zipkin.rabbitmq.address
es

Addresses of the RabbitMQ
brokers used to send spans to
Zipkin

spring.zipkin.rabbitmq.queue zipkin Name of the RabbitMQ queue
where spans should be sent to
Zipkin.

spring.zipkin.sender.type Means of sending spans to
Zipkin.

spring.zipkin.service.name The name of the service, from
which the Span was sent via
HTTP, that should appear in
Zipkin.

http://localhost:9411/
https://zipkinserver/

Name Default Description

stubrunner.amqp.enabled false Whether to enable support for
Stub Runner and AMQP.

stubrunner.amqp.mockCOnnect
ion

true Whether to enable support for
Stub Runner and AMQP mocked
connection factory.

stubrunner.classifier stubs The classifier to use by default
in ivy co-ordinates for a stub.

stubrunner.cloud.consul.enable
d

true Whether to enable stubs
registration in Consul.

stubrunner.cloud.delegate.enab
led

true Whether to enable
DiscoveryClient’s Stub Runner
implementation.

stubrunner.cloud.enabled true Whether to enable Spring Cloud
support for Stub Runner.

stubrunner.cloud.eureka.enable
d

true Whether to enable stubs
registration in Eureka.

stubrunner.cloud.loadbalancer.
enabled

true Whether to enable Stub
Runner’s Spring Cloud Load
Balancer integration.

stubrunner.cloud.stubbed.disco
very.enabled

true Whether Service Discovery
should be stubbed for Stub
Runner. If set to false, stubs will
get registered in real service
discovery.

stubrunner.cloud.zookeeper.en
abled

true Whether to enable stubs
registration in Zookeeper.

stubrunner.consumer-name You can override the default
{@code
spring.application.name} of this
field by setting a value to this
parameter.

stubrunner.delete-stubs-after-
test

true If set to {@code false} will NOT
delete stubs from a temporary
folder after running tests.

stubrunner.fail-on-no-stubs true When enabled, this flag will tell
stub runner to throw an
exception when no stubs /
contracts were found.

Name Default Description

stubrunner.generate-stubs false When enabled, this flag will tell
stub runner to not load the
generated stubs, but convert the
found contracts at runtime to a
stub format and run those
stubs.

stubrunner.http-server-stub-
configurer

Configuration for an HTTP
server stub.

stubrunner.ids [] The ids of the stubs to run in
"ivy" notation
([groupId]:artifactId:[version]:[c
lassifier][:port]). {@code
groupId}, {@code classifier},
{@code version} and {@code
port} can be optional.

stubrunner.ids-to-service-ids Mapping of Ivy notation based
ids to serviceIds inside your
application. Example "a:b" →
"myService" "artifactId" →
"myOtherService"

stubrunner.integration.enabled true Whether to enable Stub Runner
integration with Spring
Integration.

stubrunner.jms.enabled true Whether to enable Stub Runner
integration with Spring JMS.

stubrunner.kafka.enabled true Whether to enable Stub Runner
integration with Spring Kafka.

stubrunner.kafka.initializer.ena
bled

true Whether to allow Stub Runner
to take care of polling for
messages instead of the
KafkaStubMessages component.
The latter should be used only
on the producer side.

stubrunner.mappings-output-
folder

Dumps the mappings of each
HTTP server to the selected
folder.

stubrunner.max-port 15000 Max value of a port for the
automatically started WireMock
server.

stubrunner.min-port 10000 Min value of a port for the
automatically started WireMock
server.

Name Default Description

stubrunner.password Repository password.

stubrunner.properties Map of properties that can be
passed to custom {@link
org.springframework.cloud.con
tract.stubrunner.StubDownload
erBuilder}.

stubrunner.proxy-host Repository proxy host.

stubrunner.proxy-port Repository proxy port.

stubrunner.stream.enabled true Whether to enable Stub Runner
integration with Spring Cloud
Stream.

stubrunner.stubs-mode Pick where the stubs should
come from.

stubrunner.stubs-per-consumer false Should only stubs for this
particular consumer get
registered in HTTP server stub.

stubrunner.username Repository username.

wiremock.placeholders.enabled true Flag to indicate that http URLs
in generated wiremock stubs
should be filtered to add or
resolve a placeholder for a
dynamic port.

wiremock.reset-mappings-after-
each-test

false

wiremock.rest-template-ssl-
enabled

false

wiremock.server.files []

wiremock.server.https-port -1

wiremock.server.https-port-
dynamic

false

wiremock.server.port 8080

wiremock.server.port-dynamic false

wiremock.server.stubs []

	Spring Cloud
	Table of Contents
	Chapter 1. Features
	Chapter 2. Release Train Versions
	Chapter 3. Cloud Native Applications
	3.1. Spring Cloud Context: Application Context Services
	3.2. Spring Cloud Commons: Common Abstractions
	3.3. Spring Cloud LoadBalancer
	3.4. Spring Cloud Circuit Breaker
	3.5. CachedRandomPropertySource
	3.6. Configuration Properties

	Chapter 4. Spring Cloud Config
	4.1. Quick Start
	4.2. Spring Cloud Config Server
	4.3. Serving Alternative Formats
	4.4. Serving Plain Text
	4.5. Embedding the Config Server
	4.6. Push Notifications and Spring Cloud Bus
	4.7. Spring Cloud Config Client

	Chapter 5. Spring Cloud Netflix
	5.1. Service Discovery: Eureka Clients
	5.2. Service Discovery: Eureka Server
	5.3. Circuit Breaker: Spring Cloud Circuit Breaker With Hystrix
	5.4. Circuit Breaker: Hystrix Clients
	5.5. Circuit Breaker: Hystrix Dashboard
	5.6. Hystrix Timeouts And Ribbon Clients
	5.7. Client Side Load Balancer: Ribbon
	5.8. External Configuration: Archaius
	5.9. Router and Filter: Zuul
	5.10. Polyglot support with Sidecar
	5.11. Retrying Failed Requests
	5.12. HTTP Clients
	5.13. Modules In Maintenance Mode
	5.14. Configuration properties

	Chapter 6. Spring Cloud OpenFeign
	6.1. Declarative REST Client: Feign
	6.2. Configuration properties

	Chapter 7. Spring Cloud Bus
	7.1. Quick Start
	7.2. Bus Endpoints
	7.3. Addressing an Instance
	7.4. Addressing All Instances of a Service
	7.5. Service ID Must Be Unique
	7.6. Customizing the Message Broker
	7.7. Tracing Bus Events
	7.8. Broadcasting Your Own Events
	7.9. Configuration properties

	Chapter 8. Spring Cloud Sleuth
	8.1. Introduction
	8.2. Additional Resources
	8.3. Features
	8.4. Sampling
	8.5. Propagation
	8.6. Current Tracing Component
	8.7. Current Span
	8.8. Instrumentation
	8.9. Span lifecycle
	8.10. Naming spans
	8.11. Managing Spans with Annotations
	8.12. Customizations
	8.13. Sending Spans to Zipkin
	8.14. Zipkin Stream Span Consumer
	8.15. Integrations
	8.16. Configuration properties
	8.17. Running examples

	Chapter 9. Spring Cloud Consul
	9.1. Install Consul
	9.2. Consul Agent
	9.3. Service Discovery with Consul
	9.4. Distributed Configuration with Consul
	9.5. Consul Retry
	9.6. Spring Cloud Bus with Consul
	9.7. Circuit Breaker with Hystrix
	9.8. Hystrix metrics aggregation with Turbine and Consul
	9.9. Configuration Properties

	Chapter 10. Spring Cloud Zookeeper
	10.1. Install Zookeeper
	10.2. Service Discovery with Zookeeper
	10.3. Using Spring Cloud Zookeeper with Spring Cloud Netflix Components
	10.4. Spring Cloud Zookeeper and Service Registry
	10.5. Zookeeper Dependencies
	10.6. Spring Cloud Zookeeper Dependency Watcher
	10.7. Distributed Configuration with Zookeeper

	Chapter 11. Spring Boot Cloud CLI
	11.1. Installation
	11.2. Running Spring Cloud Services in Development
	11.3. Writing Groovy Scripts and Running Applications
	11.4. Encryption and Decryption

	Chapter 12. Spring Cloud Security
	12.1. Quickstart
	12.2. More Detail
	12.3. Configuring Authentication Downstream of a Zuul Proxy

	Chapter 13. Spring Cloud for Cloud Foundry
	13.1. Discovery
	13.2. Single Sign On
	13.3. Configuration

	Chapter 14. Spring Cloud Contract Reference Documentation
	Legal
	14.1. Getting Started
	14.2. Using Spring Cloud Contract
	14.3. Spring Cloud Contract Features
	14.4. Maven Project
	14.5. Gradle Project
	14.6. Docker Project
	14.7. Spring Cloud Contract customization
	14.8. “How-to” Guides

	Chapter 15. Spring Cloud Vault
	15.1. Quick Start
	15.2. Client Side Usage
	15.3. Authentication methods
	15.4. Secret Backends
	15.5. Database backends
	15.6. Configure PropertySourceLocator behavior
	15.7. Service Registry Configuration
	15.8. Vault Client Fail Fast
	15.9. Vault Enterprise Namespace Support
	15.10. Vault Client SSL configuration
	15.11. Lease lifecycle management (renewal and revocation)

	Chapter 16. Spring Cloud Gateway
	16.1. How to Include Spring Cloud Gateway
	16.2. Glossary
	16.3. How It Works
	16.4. Configuring Route Predicate Factories and Gateway Filter Factories
	16.5. Route Predicate Factories
	16.6. GatewayFilter Factories
	16.7. Global Filters
	16.8. HttpHeadersFilters
	16.9. TLS and SSL
	16.10. Configuration
	16.11. Route Metadata Configuration
	16.12. Http timeouts configuration
	16.13. Reactor Netty Access Logs
	16.14. CORS Configuration
	16.15. Actuator API
	16.16. Troubleshooting
	16.17. Developer Guide
	16.18. Building a Simple Gateway by Using Spring MVC or Webflux
	16.19. Configuration properties

	Chapter 17. Spring Cloud Function
	17.1. Introduction
	17.2. Getting Started
	17.3. Programming model
	17.4. Standalone Web Applications
	17.5. Standalone Streaming Applications
	17.6. Deploying a Packaged Function
	17.7. Functional Bean Definitions
	17.8. Testing Functional Applications
	17.9. Dynamic Compilation
	17.10. Serverless Platform Adapters

	Chapter 18. Spring Cloud Kubernetes
	18.1. Why do you need Spring Cloud Kubernetes?
	18.2. Starters
	18.3. DiscoveryClient for Kubernetes
	18.4. Kubernetes native service discovery
	18.5. Kubernetes PropertySource implementations
	18.6. Kubernetes Ecosystem Awareness
	18.7. Pod Health Indicator
	18.8. Leader Election
	18.9. Security Configurations Inside Kubernetes
	18.10. Service Registry Implementation
	18.11. Examples
	18.12. Other Resources
	18.13. Configuration properties
	18.14. Building
	18.15. Contributing

	Chapter 19. Spring Cloud GCP
	19.1. Introduction
	19.2. Getting Started
	19.3. Spring Cloud GCP Core
	19.4. Cloud Storage
	19.5. Cloud SQL
	19.6. Cloud Pub/Sub
	19.7. Spring Integration
	19.8. Spring Cloud Stream
	19.9. Spring Cloud Bus
	19.10. Stackdriver Trace
	19.11. Stackdriver Logging
	19.12. Spring Data Cloud Spanner
	19.13. Spring Data Cloud Datastore
	19.14. Spring Data Cloud Firestore
	19.15. Cloud Memorystore for Redis
	19.16. BigQuery
	19.17. Cloud IAP
	19.18. Cloud Vision
	19.19. Secret Manager
	19.20. Cloud Runtime Configuration API
	19.21. Cloud Foundry
	19.22. Kotlin Support
	19.23. Configuration properties

	Chapter 20. Spring Cloud Circuit Breaker
	20.3. Building
	20.4. Contributing

	Chapter 21. Spring Cloud Stream
	21.1. A Brief History of Spring’s Data Integration Journey
	21.2. Quick Start
	21.3. What’s New in 2.2?
	21.4. Notes on migrating from 1.x to 2.x?

	Chapter 22. Spring Cloud Stream Reference Guide
	Chapter 23. Preface
	23.1. A Brief History of Spring’s Data Integration Journey
	23.2. Quick Start
	23.3. What’s New in 2.2?
	23.4. Notes on migrating from 1.x to 2.x?
	23.5. Introducing Spring Cloud Stream
	23.6. Main Concepts
	23.7. Programming Model
	23.8. Binders
	23.9. Configuration Options
	23.10. Content Type Negotiation
	23.11. Schema Evolution Support
	23.12. Inter-Application Communication
	23.13. Testing
	23.14. Health Indicator
	23.15. Metrics Emitter
	23.16. Samples
	23.17. Binder Implementations

	Chapter 24. Binder Implementations
	24.1. Apache Kafka Binder
	24.2. Apache Kafka Streams Binder
	24.3. RabbitMQ Binder

	Appendix: Compendium of Configuration Properties

